Requirements Engineering

(1)

RE Tasks

Inception
Elicitation
Elaboration
Negotiation
Specification
Validation

Requirements management

Eliciting Requirements

Meetings are conducted and attended by both software
engineers and customers

Rules for preparation and participation are established
An agenda is suggested

A "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting

A "definition mechanism" (can be work sheets, flip charts, or
wall stickers or an electronic bulletin board, chat room or
virtual forum) is used

The goal is
— to identify the problem
— propose elements of the solution
— negotiate different approaches, and
— specify a preliminary set of solution requirements

Example: SafeHome

SAFEHOME o ey ey

o = [

Example use case TR B2Rs
ready

0 LD

¢ Use case: /nitiateMonitoring =

* Primary actor: Homeowner.
* Goal in context: To set the system to monitor sensors when the homeowner leaves
the house or remains inside.
* Preconditions: System has been programmed for a password and to recognize
various sensors.
. L £ n H
* Trigger: The homeowner decides to “set” the system, i.e., to turn on the alarm
functions.
* Scenario:
— 1. Homeowner: observes control panel
— 2. Homeowner: enters password
— 3. Homeowner: selects “stay” or “away”
— 4. Homeowner: observes read alarm light to indicate that SafeHome has been armed

Use-Case Diagram

Arms/disarms
system

Accesses
system
via Internet

Sensors

Homeowner

Responds to
alarm event

Encounters
an error
condition

O

System
administrator

Reconfigures

sensors an
relate

system features

UML use case diagram for SafeHome home security function

Elaboration: Building the model

* The analysis/requirement model

— To provide a description of the required informational,
functional, and behavioral domains for a computer-based
system.

— The model changes dynamically as you learn more about the
system to be built

— The analysis model is a snapshot of requirements at any given
time. It is expected to change.

* The most common elements to be developed
— Scenario-based elements
— Class-based elements
— Behavioral elements

RE model versus process model

Scenario-based elements

The system is described from the user’s point of view
using a scenario-based approach

— (E.g., basic use cases and their corresponding use-case
diagrams evolve into more elaborate template-based use
cases.

Represented by activity diagram

Serve as input for the creation of other modeling
elements.

Conduct
Meeting

Make list of
functions, classes

Make list of
constraints, etc

Elicit
Requirement
\

Formal prioritization?

Use QFD to Informally e
prioritize prioritize
requirements requirements .

Define
actors

Draw use-

case
IETEI

Write
scenario

Complete
template

UML activity diagram: Eliciting Requirement ~
(scenario-based) % ‘

Class-based elements

* Each usage scenario implies a
set of objects that are
manipulated as an actor
interacts with the system.

* These objects are categorized
into classes

* Represented by class diagram

4 Sensor

Name

Type

Location

Area
Characteristics

Identify()
Enable()
Disable()

Reconfigure|()

-

* The behavior of a
computer-based system
can have a profound
effect on the design that
is chosen and the
implementation
approach that is applied.

* The state diagram is one
method for representing
the behavior of a system

Behavioral-based elements

4 Reading \:

commands

™~ State name

System status = "Ready”
Display msg = "enter cmd"
Display status = steady

™~ State variables

Entry/subsystems ready =
Do: poll user input panel
Do: read user input

Do: interpret user input

™~ State activities

N

A state is any externally observable mode of behavior. In addition, the

state diagram indicates

actions (e.g., process activation) taken as a consequence of a particular

event.

10

Negotiation

* Goal

— To develop a project plan that meets stakeholder needs while at
the same time reflecting the real-world constraints (e.g., time,
people, budget) that have been placed on the software team.

* The best negotiations strive for a “win-win” result

* A set of negotiation activities
— l|dentify the key stakeholders
* These are the people who will be involved in the negotiation
— Determine each of the stakeholders “win conditions”
* Win conditions are not always obvious
— Negotiate
* Work toward a set of requirements that lead to “win-win”

In an ideal case, the inception, elicitation, and elaboration tasks determine
customer requirements in sufficient detail to proceed to subsequent
software engineering activities. Unfortunately, this rarely happens.

Validating requirements

* As each element of the requirements model is created, it
is examined for inconsistency, omissions, and ambiguity.

* Guiding questions

Is each requirement consistent with the overall objective for the
system/product?

Have all requirements been specified at the proper level of
abstraction?

Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?

Is each requirement bounded and unambiguous?

Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?

Do any requirements conflict with other requirements?

12

Use Case Diagram
Y
* Created to visualize the -
interaction of your system O~

N/ _ ;"\lr__r./‘
with the outside world. s

:/ \

Customer.

\ N
Se{FiCatalog
£
A 4
Cancel Order

o
Deliver Product
o

ST

Supply Product

4
./}//\\

Shipping
compary

AN
Supplier

13

Use Case Diagram (Cont.)

* Actor

— arole that a human, hardware device, or another system
can play in relation to the system.

— Brief name

Use Case

— Use the active tense; begin with a verb
— Indicate the value or goal of the actor

14

Use Case Diagram (Cont.)

* Relationship (between actors and use cases)

— Aline is used to represent a communicates-association.

— An arrowhead indicates who initiates each interaction.
— No arrowhead indicates either end can initiate each

interaction.
A:sive sensor
% Monitor i
for alarms, it
Supervisor N\fe isensor

Hybrid sensor

15

Practice

* Youtube

— four use cases
* Watch cat video (e.g., the keyboard cat)
* Upload cat video
* Search for cat video
* Share cat video with friends

* Facebook
* Find the actors and use cases for these two websites

16

Checkpoints for Actors

* Have you found all the actors?

— Have you accounted for and modeled all roles in the
system’s environment?

* |s each actor involved with at least one use case?

— Can you name at least two people who would be able to
perform as a particular actor?

* Do any actors play similar roles in relation to the
system?
— If so, merge them into a single actor.

17

|ldentify Use Cases

* What are the goals of each actor?
— Why does the actor want to use the system?

— Will the actor create, store, change, remove, read data in
the system? If so, why?

— Will the actor need to inform the system about external
events or changes?

— Will the actor need to be informed about certain
occurrences in the system?
* Does the system supply the business with all of the
correct behaviors?

18

Checkpoints for Use Cases

* The use case model presents the behavior of the system; it is
easy to understand what the system does by reviewing the
model.

» All use cases have been identified; the use cases collectively
account for all required behavior.

+ All features map to at least one use case.

* The use case model contains no superfluous behavior; all use

cases can be justified by tracing them back to a functional
requirement.

* All valueless CRUD use cases have been removed.
— Create, Retrieve, Update, Delete

Remove CRUD use cases if they are data- management use cases that
do not provide results that are of value to actors.

19

Practice - Youtube

Actor

User
* Unregistered user/Registered user
Advertiser
Content provider
Embedder
Administrator
Etc...

Use cases

Register, Log In, Watch Video, Upload Video, Delete Video, Like, Share,
Comment, Reply, Flag, Subscribe, etc...

Provide Commercials, etc...
Upload Video, Set Price, etc...
Embed Video, etc...

Block User, Delete Comment, etc...

20

Avoid Functional Decomposition

Bank
I Consortium

@ \ / Select “To” Account

Select Transfer Funds 4/CUSt0mer\‘

Select “From” Account

Select Account Balance

Select Withdraw Cash

It is not uncommon that the use-case model degenerates into a functional
decomposition of the system. To avoid this, watch for the following
symptoms:

"Small" use cases, meaning that the description of the flow of events is
only one or a few sentences.

"Many" use cases, meaning that the number of use cases is some multiple
of a hundred, rather than a multiple of ten.

Use-case names that are constructions like "do this operation on this
particular data" or "do this function with this particular data". For example,
"Enter Personal Identification Number in an ATM machine" should not be
modeled as a separate use case for the ATM machine, since no one would
use the system to do just this. A use case is a complete flow of events that
results in something of value to an actor.

To avoid functional decomposition, you should make sure that the use-
case model helps answer questions like:

What is the context of the system?

21

Why is the system built?
What does the user want to achieve when using the system?
What value does the system add to the users?

21

Avoid Functional Decomposition

Withdraw Cash
Transfer Funds ;();

Bank

Customer Consortium

Deposit Funds

22

Relationship Between Actors

* Inheritance (Specialization / Generalization)

- -~

B D ssextendx T
e @ _/
75 EditSchedule~. ProvideSchedule

Participant\ <<ir‘mu£ie>>
T~
LA N o N
¢ D\ scincude>> 7 Y
e S - R
~ Withdraw _~7ValidateUser
N <<include>>
i
g /\ \“‘-\,\ s 4
Initiator \\/ 7\:_ <7<]nc|7uje_>>_,_;{/”-” 77-\\\:
\ . N
ScheduleMeeting GenerateSchedule

23

Relationships between Use Cases

T &

* Generalization

Check Password

Scan Fingerprint

* |nclude

— A relationship from a base use case to an inclusion use
case, specifying how the behavior defined for the inclusion
use case can be inserted into the behavior defined for the

base use case. ,
<<include>>
<<include>>

3
Validate Account

child use case inherits the behavior and meaning
of the parent use case;

The child may add to or override the behavior and
meaning of the parent use case;

The child may be substituted any place the parent
appears.

24

Relationships Between UCs (Cont.)

Extend

— A relationship from an extension use case to a base use
case, specifying how the behavior defined for the
extension use case can be inserted into the behavior
defined for the base use case.

— Extension points have to be defined in base use case.

<<include>> Identify Customer
Start ATM Session v s,
= <<include>>=(_ Validate Account

<<extend>>
<<extend>>,

Extension points: transaction possible, receipt details

25

Include and Extend

* When to use Includes?

— You have a piece of behavior that is similar across many
use cases.

— Break this out as a separate use case and let the others
“include” it.
* When to use Extends?

— A use case is similar to another one but does a little bit
more.

— Put the normal behavior in one use case and the
exceptional behavior somewhere else.

26

System Boundary

System
Boundary

Y
h—y

NS

Cashier

®)
p—

AN

System
Adminitrator

<O

" Buytem

~
U/

ustomer

1
W/

\ S

StartUp
Y
A e

Manage Users

Y
A A

Add a Lot more...

Manager

27

Exercise

A computer manufacturer provides opportunities for online
purchasing through Internet.

Customers can visit their website and select a computer to buy.
Computers are defined in three categories: server, PC, laptop.
Customers can choose default configurations, or customize their

own by selecting configurable parts (memories, hard drives, etc.)
from a list. For each configuration, the system calculates the price.

To submit an order, the customer has to provide shipping and billing
information, credit card or checks are both accepted.

Once the order has been submitted, the system sends a
confirmation email to the customer with details.

Customer can check the status of an order before it is delivered.
The sales team manages the orders that have been submitted. The
process includes the following steps: verify the billing information,

send the configuration to the warehouse, print receipt, and request
shipment.

28

-

Display Standard Computer

Configuration
AR
Y ¥
Build Computer
O / Configuration
” — - N\ <<extend>> _ /"D—)
N \V__>< N
Customery ¢, configured Computer Order with Salesp: Sales Person
4 ﬁ)
\-; —

Accept Customer

. I I
C D C >—7
N _ A
Update Order Status Inform Warehouse About \y/arehouse

Order

Bad use case diagram: most use cases are wrong in one way ot anothet.

29

Registered
Customer
Web
Customer
New
Customer

«Subsystem»
Online Shopping

|
| «include»

: «include»

Checkout

s,

~

«Service»
Authentication

Identity
Provider

Client
Register

Credit
Payment
Service

PayPal

30

Analysis Patterns

Pattern name:

Intent:
Motivation:

Forces and context: /:
Solution: /2

Consequences

Design

Known uses
Related patterns

WAnalysis patterns summarize solutions for reusable patterns in requirement engineering.
W E.g. online home banking, which, regardless of banking
institution, consists of the same set of problems (authorization,
etc), and requirements.

certain problems reoccur across all projects within a specific application
domain.18 These analysis patterns [Fow97] suggest solutions

(e.g., a class, a function, a behavior) within the application domain that can
be reused when modeling many applications.

Analysis patterns are integrated into the analysis model by reference to
the pattern name. They are also stored in a repository so that
requirements engineers can use search facilities to find and apply them.

31

Useful Resource

* UML
— Use case diagrams

http://msdn.microsoft.com/en-us/library/vstudio/dd409427.aspx
— Notations
http://www.tutorialspoint.com/uml/uml_basic_notations.htm

* Use case development

— Use case identification

http://www.upedu.org/process/gdlines/md ucmod.htm
— CRUD

http://businessanalystlearnings.com/ba-
technigues/2013/3/13/techniques-for-identifying-use-cases

32

Summary

RE Tasks

— Elaboration: requirement modeling
— Negotiation

— Specification

— Validation

— Management

Use case diagrams (UML)

— Actors and use cases
* |dentification (checkpoints)
* Relationships

— Examples

33

