Requirements Engineering

How the customer
explained it

How the project was
documented

How the project leader
understood it

‘What cperations
installed

How the engineer
designed &

How the customer
was billed

How the programmer
wrote it

How the halpdesk
supported it

How the sales
executive described it

What the customer
really needed

What is requirement engineering (RE)

A broad spectrum of tasks and techniques that lead to an
understanding of requirements.

Builds a bridge to design and construction of software.
Provides the appropriate mechanism for

Understanding what the customer wants,
analyzing need,

assessing feasibility,

negotiating a reasonable solution
specifying the solution unambiguously

validating the specification

Managing the requirements as they are transformed into an operational
system

Requirements Engineering-I

* Inception — ask a set of questions that establish ---
— basic understanding of the problem
— the people who want a solution
— the nature of the solution that is desired, and
the effectiveness of preliminary communication and collaboration
between the customer and the developer
* Elicitation — elicit requirements from all stakeholders

— Stakeholders including the people who may directly or indirectly benefit
from a software product: business operation manager, marketing
people, customers, etc.

* Elaboration — create an analysis model that identifies data,
function and behavioral requirements

* Negotiation — agree on a deliverable system that is realistic for
developers and customers

RE encompasses seven distinct tasks: inception, elicitation, elaboration,
negotiation, specification, validation, and management.

Requirements Engineering-ll

* Specification = can be any one (or more) of the following:
— A written document
— A set of models
— A formal mathematical
— A collection of user scenarios (use-cases)
A prototype
* Validation — a review mechanism that looks for
— errors in content or interpretation
— areas where clarification may be required
— missing information

— inconsistencies (a major problem when large products or systems are
engineered)

— conflicting or unrealistic (unachievable) requirements.
* Requirements management

— Establish traceability between requirements and software artifacts as
the development proceeds.

Inception

* Identify stakeholders

— “who else do you think | should talk to?”
* Recognize multiple points of view
* Work toward collaboration

* The first questions

— Who is behind the request for this work?

— Who will use the solution?
* A person using a product may not be the person requesting it.
* E.g., Marketing people request it for a scope of customers.

— What will be the economic benefit of a successful solution
» Commercial product has to have a business purpose.

— Is there another source for the solution that you need?

a stakeholder as “anyone who benefits in a direct or indirect way from the
system which is being developed

Because many different stakeholders exist, the requirements of the system
will be

explored from many different points of view. For example, the marketing
group is interested

in functions and features that will excite the potential market, Business
managers are interested in a feature set that can

be built within budget. End users may want features that are familiar to
them and that are easy to learn and use.

customers (and other stakeholders) must collaborate among themselves
(avoiding petty turf battles) and with software engineering practitioners

Eliciting Requirements

Meetings are conducted and attended by both software
engineers and customers

Rules for preparation and participation are established
An agenda is suggested

A "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting

A "definition mechanism" (can be work sheets, flip charts, or
wall stickers or an electronic bulletin board, chat room or
virtual forum) is used

The goal is
— to identify the problem
— propose elements of the solution
— negotiate different approaches, and
— specify a preliminary set of solution requirements

Conduct
Meeting

Make list of
functions, classes

Make list of
constraints, etc

Elicit
Requirement
\

Formal prioritization?

Use QFD to Informally e
prioritize prioritize
requirements requirements .

Define
actors

Draw use-

case
IETEI

Write
scenario

Complete
template

UML activity diagram: Eliciting Requirement ~
(scenario-based) % ‘

Quality Function Deployment (QFD)

* Function deployment determines the “value” (as perceived by
the customer) of each function required of the system

* Information deployment identifies data objects and events
* Task deployment examines the behavior of the system

* Value analysis determines the relative priority of
requirements

Quiality function deployment (QFD) is a quality management technique that
translates

the needs of the customer into technical requirements for software. QFD
“‘concentrates

on maximizing customer satisfaction from the software engineering
process”

Quality Function Deployment (QFD)

|dentifies three types of requirements

* Normal requirements: The objectives and goals that are
stated for a product or system during meetings with the
customer.

* Expected requirements: These requirements are implicit to
the product or system and may be so fundamental that the
customer does not explicitly state them. Their absence will be
a cause for significant dissatisfaction.

* Exciting requirements: These features go beyond the
customer’s expectations and prove to be very satisfying when
present.

Elicitation Work Products

A statement of need and feasibility.

A bounded statement of scope for the system or product.

A list of customers, users, and other stakeholders who
participated in requirements elicitation

A description of the system’s technical environment.

A list of requirements (preferably organized by function)
and the domain constraints that apply to each.

A set of usage scenarios that provide insight into the use
of the system or product under different operating
conditions.

Any prototypes developed to better define requirements.

10

Use-Cases

* A collection of user scenarios that describe the
thread of usage of a system

* Each scenario is described from the point-of-
view of an “actor” —a person or device that
interacts with the software in some way

— Actors v.s. users:

* An actor is a role and a user may have multiple roles.
* An actor can be an object providing inputs. E.g., sensors

As requirements are gathered, an overall vision of system functions and
features begins

to materialize. However, it is difficult to move into more technical software
engineering

activities until you understand how these functions and features will be

used by different classes of end users. To accomplish this, developers and
users can

create a set of scenarios that identify a thread of usage for the system to
be constructed.

The scenarios, often called use cases [Jac92], provide a description of
how

the system will be used.

11

Use-Cases

* Each scenario answers the following questions:

Who is the primary actor, the secondary actor (s)?

What are the actor’s goals?

What preconditions should exist before the story begins?
What main tasks or functions are performed by the actor?

What extensions might be considered as the story is
described?

What variations in the actor’s interaction are possible?

What system information will the actor acquire, produce,
or change?

Will the actor have to inform the system about changes in
the external environment?

What information does the actor desire from the system?

Does the actor wish to be informed about unexpected
changes?

12

UML Characteristics

The de facto standard software modeling
language in practice.

Object-orientation
Visualization, expressive
Independent on processes and methodologies

Easy to understand and use concepts,
notations and structures

13

UML Constructs

* Basic Building Blocks
— Things:

 Structural

— Class, interface, collaboration, use case, active class,

component, node
* Behavioral
— Interaction, state machine
* Grouping
— Package
* Annotational
— Note

14

UML Constructs

» Basic Building Blocks (Cont.)

— Relationships:
* Dependency
* Association
* Generalization
* Realization
— Diagrams
* Rules

* Common mechanisms

15

Diagram

Structure Behavior
Diagram Diagram
- x
[| [[[—
Class Diagram Componnet Object Activity Use Case State Machine
Diagram Diagram Diagram Diagram Diagram
Composite Structure | | Deployment Package Interaction
Diagram Diagragm Diagram Diagram
A
| [
Sequence Interaction Overview
Diagram Diagram
Communication Timing

Diagram Diagram

16

Use Case Diagram

£
* Created to visualize the -

7 Place Order
interaction of your system /K\ ()
i 1 Custormer. __\GelStath
with the outside world. \ T

b
SG{IiCatalog
PN
S

Cancel Order
i

D
Deliver Product
N

-

Supply Product

}//\\

Shipping
compary

AN
Supplier

17

Example: SafeHome

» Control panel / User interface

SAFEHOME R
~ '
o = || 883
alarm ‘::;!cr 3 5 :E]
C?:h ::f-'::;dy nsont codo‘ chimo
7 8 9
— ajola
o power =
panc

Our research indicates that the market for home management systems is
growing at a

rate of 40 percent per year. The first SafeHome function we bring to
market should be the

home security function. Most people are familiar with “alarm systems” so
this would be

an easy sell.

The home security function would protect against and/or recognize a
variety of undesirable

“situations” such as illegal entry, fire, flooding, carbon monoxide levels,
and

others. It'll use our wireless sensors to detect each situation. It can be
programmed by the

homeowner, and will automatically telephone a monitoring agency when a
situation is

detected.

18

Example: SafeHome

Basic use cases

* 1. The homeowner observes the SafeHome control panel to determine if
the system is ready for input. If the system is not ready, a not ready
message is displayed on the LCD display, and the homeowner must
physically close windows or doors so that the not ready message
disappears. [A not ready message implies that a sensor is open; i.e., that a
door or window is open.]

+ 2.The homeowner uses the keypad to key in a four-digit password. The
password is compared with the valid password stored in the system. If the
password is incorrect, the control panel will beep once and reset itself for
additional input. If the password is correct, the control panel awaits
further action.

* 3. The homeowner selects and keys in stay or away to activate the system.

Stay activates only perimeter sensors (inside motion detecting sensors are
deactivated). Away activates all sensors.

* 4. When activation occurs, a red alarm light can be observed by the
homeowner.

19

Example: SafeHome

Template

¢ Use case name
* Primary actor
* Goal in context
* Preconditions

* Trigger

* Scenario

* Exceptions
* Priority

* When available

* Frequency of use

* Channel to actor

* Secondary actors

* Channels to secondary actors
¢ Open issues

20

Example: SafeHome

Example use case

* Use case: InitiateMonitoring

J Primary actor: Homeowner.

. Goal in context: To set the system to monitor sensors when the homeowner
leaves the house or remains inside.

. Preconditions: System has been programmed for a password and to recognize
various sensors.

. Trigger: The homeowner decides to “set” the system, i.e., to turn on the alarm
functions.

J Scenario:

. 1. Homeowner: observes control panel

o 2. Homeowner: enters password

. 3. Homeowner: selects “stay” or “away”

. 4. Homeowner: observes read alarm light to indicate that SafeHome has been
armed

21

Use-Case Diagram

Arms/disarms
system

Accesses
system

Sensors

via Internet

Homeowner

Responds to
alarm event

Encounters
an error
condition
System
administrator

Reconfigures

sensors an
relate

system features

22

e RE: concept
* RE: seven tasks
* Tasks

— Inception

— Elicitation

Summary

* Use case development

About feedback collection;

Homeworks: emphasizing on policy (no excuse; notification in advance if having

difficulties, otherwise zero point, see syllabus)
Homework 2 release, check Blackboard/Piazza

23

