Software Process
(process models)

Categories of Process Models

* Prescriptive model (traditional model)
— Sequential model
— Incremental model
— Evolutionary model
* Specialized process model
— Component-based model
— Formal method model
— Aspect-Oriented model

* Unified process model
— Software development with UML

Specialized Process Models

Specialized Process Models

* Designed for specific software engineering approach.

* May incorporate characteristics from one/more traditional
(prescriptive) models.

* Examples:
— Component-based Development Model
— Formal Methods Model
— Aspect-Oriented Software Development Model

In some cases, these specialized process models might better be
characterized as a collection of

techniques or a “methodology” for accomplishing a specific software
development goal. However,

they do imply a process.

Component Based Development Model

°

Applied when reuse is a development objective
— Underlying technology is component-based design.
* Comprises applications from prepackaged software
components
— COTS (Commercial off-the-self) software components
* Sharing the characteristics of other models
— Iterative (evolutionary: spiral)
* Modeling and construction activities begin with the
identification of candidate components

the component-based development (CBD) model incorporates many of the
iterative characteristics of the spiral model. The main difference is that in CBD
the emphasis is on composing solutions from prepackaged software components
or classes. This CBD emphasizes software reusability. Further discussion of CBD
can be found in Chapter 10.

Formal Method Model

* Emphasize the mathematical specification of requirements
— Underlying technology is formal specification

» Offers the promise of defect-free software
— Examples: aircraft avionics and medical devices

* Specify, develop and verify a computer-based system by
applying a rigorous mathematical notation

* Ambiguity, incompleteness, and inconsistency can be
discovered and corrected more easily through the application
of mathematic analysis

* Problems

— Expensive to develop and apply (needs extensive training)
— Difficult to communicate with team members and customers

It is difficult to use the models as a communication mechanism for
technically unsophisticated customers

Aspect-oriented Software Development

* Concerns

— High-level properties of a system (E.g. security and fault tolerance)
that span the entire software architecture

* Crosscutting concerns
— Concerns that cut cross multiple system functions, features, and
information
* Aspects

— Mechanisms for localizing the expression of a crosscutting concern

* AOSD/AOP process model

— provides a methodological approach for defining, specifying, designing,
and constructing aspects

— Likely adopt characteristics of both evolutionary and concurrent
process models

A standalone AOSD process model has not matured yet, so only extrapolation
here.

Unified Process

Unified Process

* A “use-case driven, architecture-centric, iterative and
incremental” software process

— Draw on the best features and characteristics of traditional software
process models

— Implements many of the best principles of agile software
development

* Key features:
— Recognizes the importance of customer communication
— Emphasizes the important role of software architecture

— Helps the architect focus on the right goals, such as understandability,
reliance to future changes, and reuse

— iterative and incremental, providing the evolutionary feel that is
essential in modern software development

Historically, this process model has a very close connection with UML (a
unified modeling language):

Contains a robust notation for the modeling and development of object-
oriented systems

By 1997, UML became a de facto industry standard for object-oriented
software development

The Unified Process

Elaboration

———

Release = Transition

software increment

Production

* Every iteration - identify use cases, create a design, implement the design
* Every iteration is a complete development process

UP phases are similar in intent to the generic framework activities defined
in this book.

10

Unified Process: Phases

Elaboration

Release = Transition

software increment

Production

Inception Phase

— Encompasses both customer communication and planning activities
* Business requirements are described through a set of preliminary use
case
— Describe which features and functions each major class of users
desires

11

Unified Process: Phases

Elaboration
/

Construction

T Transition

Release

software increment

Production

Elaboration phase
— Encompasses the planning and modeling activities
— Refines and expands the preliminary use cases

— Expands the architectural representation to include five different
views of the software(the use case model, the analysis model, ...)

12

Unified Process: Phases

Elaboration
/

Construction

T Transition

Release

software increment

Production

* Construction Phase
— Implement design / construction activity in generic process

* Transition Phase

— Encompasses the latter stages of the generic construction activity and

the first part of generic deployment activity
— Software is given to end uses for beta testing
— User feedback reports both defects and necessary changes

13

Unified Process: Phases

Elaboration

Construction

T Transition

Release

software increment

Production

Production Phase

— Coincides with the development activity of generic process

— The ongoing use of the software is monitored

— Defect reports and requests for changes are submitted and evaluated

14

Unified Process: Phases

UP Phases

Inception Elaboration Construction Transition Production

Workflows
Requirements .d_'_l_r = =S

Analysis =

DeSign I- rrm»—
Implementation
Test _H_I_ITLh_“I—I— —1

Support

Iterations # | #2 #n-1| #n

It is likely that at the same time the construction, transition, and production
phases are being conducted, work may have already begun on the next
software increment. This means that the five UP phases do not occur in a
sequence, but rather

with staggered concurrency.

A software engineering workflow is distributed across all UP phases. In the
context of UP, a workflow is analogous to a task set. That is, a workflow
identifies the tasks required to accomplish an important software

engineering action and the work products that are produced as a
consequence of successfully completing the tasks.

15

Inception phase

Vision document
Initia use-case model
Initial project glossary
Initial business case
Initial risk assessment .
Project plan,

phases and iterations.
Business model,

if necessary.
One or more prototypes

UP Work Products

Haboration phase

Use-case model
Supplementary requirement §
including non-functional
Analysis model
Software architecture
Description.
Executable architectural
prototype.
Preliminary design model
Revised risk list
Project plan including
iteration plan
adapted workflows
milestones
technical work products
Preliminary user manual

Construction phase

Design model

Software components

Integrat ed software
increment

Test plan and procedure

Test cases

Support documentation
user manuals
inst dlation manuas
description of current

increment

« Bach phase will produce some work products.

* Bach iteration will refine these work products.

Transition phase

Delivered software increment

Betatest reports
General user feedback

16

Personal/Team Process

In an ideal setting, you would create a process that best fits your needs,
and at the same time, meets the broader needs of the team and the
organization

Alternatively, the team itself can create its own process, and at the same
time meet the narrower needs

of individuals and the broader needs of the organization.

The best processes are those close to the people who will be doing the
work.

Personal and team processes are developed to fit individual and team’ s
need, while still fulfill the project goal.

17

Personal Software Process (PSP)

* Emphasizes the need to record and analyze the types of errors
you make, thus to develop strategies to eliminate them

* Defines five framework activities
— Planning

« Estimate resource and decide schedule.
High-level design

* Architecture and component design.
High-level design review

* Peer-review or other formal review shall be performed.
Development

* Generate/review/compile/test code
Postmortem

* Measure/assess process effectiveness, prepare for process improvement

PSP stresses the need to identify errors early and, just as important, to
understand

the types of errors that you are likely to make.

When PSP is properly introduced to software engineers, the resulting
improvement in software engineering productivity and software quality are
significant

18

Team Software Process (TSP)

* Goal
— to build self-directed software development teams.

* Defines five framework activities
— Project launch

High-level design

Implementation

Integration and test
Postmortem

* Approaches

— use a series of scripts, forms, and standards to guide team members in
their works.

* E.g. each projectis “launched” usinga “script” that defines the tasks
to be accomplished

many industry-grade software projects are addressed by a team of
practitioners,

Watts Humphrey extended the lessons learned from the introduction of
PSP

and proposed a Team Software Process (TSP).

Summary

Generic process model / process framework
— Framework Activities

— Umbrella Activities

— Process Flow

Process Models

— Prescriptive (traditional) models

— Specialized models

— Unified model

— PSP/TSP

Key: relationships, differences, pros/cons.

— Be able to choose a model, and justify the choice

20

