Software Process
(process models)

Categories of Process Models

* Prescriptive model
— Sequential model
— Incremental model
— Evolutionary model
* Specialized process model
— Component-based model
— Formal method model
— Aspect-Oriented process model

* Unified process model
— Software development with UML

Prescriptive Process Models

(2)

Evolutionary Models

* Evolutionary processes produce an increasingly more
complete version of the software with each iteration.
— Like incremental process model, they are iterative.
— Unlike incremental process model, each iteration does not

necessarily produce a full-functional product.

* Examples:
— Prototyping model
— Spiral model

Subtle differences

Prototyping

Communication

Quick plan

: Modeiing

Quick design

Deployment
Deliver

& Feedback

Construction
of

prototype

Rapidly revise requirements and designs before going
for operational product

Design pattern
Key in the scenario: Define the requirements details.

Starts with communication. Quick design: Focus on aspects that are visible to
end users.

Prototype delivered, evaluated by stakeholders, who provide feedback and used
for further refinement on the requirements.

Prototyping

* A software process to develop consensus on
requirements through iterations of prototypes.

— Used for situations where customers don’t have a clear
specification for software.

— Each iteration will produce a prototype that best presents
developers’ understanding on what customers want.

— Customers provide feedbacks based on prototypes.

— Final products are usually built using technologies different
from those used in prototypes for better quality.

* In throwaway prototyping, prototypes are used only as references
for requirements and designs.

Prototyping

* Strength

— Prototyping has an integrated and iterative
“‘communication” stage for feedback.
* Each prototype demonstrates engineers/analysts’ understanding.

¢ Customers will communicate their feedbacks on prototypes.

— Better risk management.
* Avoid costly revision after product release due to
misunderstanding of requirement.
— Prototyping may be used as “proof-of-concept’, to
measure the performance of algorithms and data
structures.

research

Prototyping

* Disadvantages

— may provide the false image of “quick fix” to
engineers and customers, causing unrealistic
expectations from both sides.

* Prototype is built to demonstrate the feasibility, not
quality.

* Finish product is often rebuilt using different
techniques to ensure quality and maintainability.

— E.g. use Visual Basic instead of C++ when prototyping GUI
application, which compromise efficiency and portability.

Stakeholders and engineers like prototyping, but provides false sense of quality.
Customers expect to see the product fast.

Engineers might ignore the problems that are there at the beginning: inefficient
algorithms, inappropriate programming languages.

Make it clear at the beginning.

Prototyping

* Use scenarios
— Standalone model
— Assistive technique
* Benefits
— Requirements identification

« process (phase) pattern example

— Reuse
* Problems
— Quality

Spiral Model

Planning
estimation
scheduling
risk analysis

Modeling
analysis
design

.

Deployment

: Construction
delivery ik
feedback P

* Each cycle will produce artifacts which will be one step closer to the finish product
than previous step.
* Anchor points will serve as milestones to check the progress of software development.

Risk driven!

Multi-stakeholder concurrent engineering. Two features: cyclic approach; a set of
anchor point milestones.

Divide into a set of framework activities.

Spiral Model

» Strength

— Delivers initial value early
* Focus on high-priority functionality
— Better risk management
— Improvement and bug fixing can be handled during iterations.
— Frequent requirements refinement

* Uses feedback from one iteration to refine
requirements for the next.

* The deliverable at the end of each circle is NOT
necessarily a functional product.

spiral flow can be applied across the entire lifecycle, from product inception to
maintenance.

“concept development project” -> “new product development project” -> “product
enhancement project”

Suitable for large-scale systems and software. Uses prototyping as a risk
reduction mechanism, but also allows the engineers to apply prototyping
technique at any state during the evolution.

Spiral Model

* Weakness
— Hard to control the timeline of software
development.

* Not suitable for projects demanding rigid timeline
control and strict deadline.

— Relying on risk-assessment expertise.

* Questions like “should we move to next iteration of
development?”

12

Comparison with Incremental Model

Planning
estimation
scheduling
risk analysis

D Communication
D Planning

D Modsling (analysis, dasign)

Increment # n

D Consiruchon code, est]
} [:l Deployment dakvery,feedbock DDDDD
Modeling 3

¢ T
delvery of
nh increment

analysis 7) .'
design icrement # 2

U00mg .

-
\ i Increment & | Ind herement
é D'DDDD
deoaryil
Deployment we:m-w-.'yc-]
P‘ i Construction 18t ncreme
delivery ok
feedback

fd Projoct Calendar Time

*Nature: iterative vetsus incremental
*Deliverable: early versus partial
*Focus: tisk reduction/quality control versus delivery of operational product

Extreme case: requirements and design are only done once at the beginning.

The key here is increment.

But for evolutional models, the key is evolution. For example, the coupling
between successive versions in evolutional models are much looser.

13

Concurrent Development Model

Development activities are
modeled as finite state machines
(finite automata).

— States indicate the progress of an

activity.

— E.g. modeling activity on the right.
The entire software process is
modeled by many finite automata
that operate concurrently.

— The overall state of software process
is a vector of states of each individual
finite state model.

— E.g. the current state of software
process is given by the progress on
design, implementation, verification
and validation etc.

Meodsling activity

’~

Awaiting
changes

| Inactive |
b

Represents the siate
Undr prispir-inbichr
development aciivity or fask

Defines a series of events that will trigger the transitions from state to state.

14

Features

Requirement

Planning

Documentation

Handle large project

User involvement

Returning to early phase

Cost

Modifications
Duration

Testing

Risk
Maintenance

Reuse

Framework

Incremental

Beginning

Yes

Yes
Not necessary
Intermediate

Yes

Low
Easy
Long

After each
iteration

Low
Easy

Up to some extent

Iterative and
Linear

Spiral

Beginning

High

Yes

High
Easy
Long

After each
iteration

Medium to high
Hard

Up to some extent

Iterative and
Linear

RAD

Waterfall

Time boxed release Beginning

Not require

Not necessary

Not necessary

At beginning only

Yes

Low
Easy
Short

After coding

Low
Easy

Yes

Linear

www.learnerswindow.com/compare-incremental-vs-spiral-vs-rad-vs-waterfall-model

http:/ /www.curu99.com /compare-waterfall-vs-incremental-vs-spiral-vs-rad.html

Yes

Yes

Not necessary

At beginning only

No

Low
Difficult
Long

After coding

High
Easy

Up to some extent

Linear

15

