Software Project Management

Collaboration L) bl vk R Tests
|
@ Defeds i =Dncumenls
D thonges w2 Project Manogement @ rime
il Dashboards B Customization ‘2 Resources

Report:
8l Reports '/ Security

The Four P’s

* People — the most important element of a
successful project

* Product — the software to be built

* Process — the set of framework activities
and software engineering tasks to get the
job done

Project — all work required to make the
product a reality

Effective software project management focuses on the four P’s: people, product,

process, and project. The order is not arbitrary. The manager who forgets that
software

engineering work is an intensely human endeavor will never have success in

project management. A manager who fails to encourage comprehensive
stakeholder

communication early in the evolution of a product risks building an elegant
solution for the wrong problem. The manager who pays little attention to the
process runs the risk of inserting competent technical methods and tools into a
vacuum. The manager who embarks without a solid project plan jeopardizes the

success of the project.

Stakeholders

* Senior managers who define the business issues
that often have significant influence on the project.

* Project (technical) managers who must plan,
motivate, organize, and control the practitioners
who do software work.

* Practitioners who deliver the technical skills that are
necessary to engineer a product or application.

* Customers who specify the requirements for the
software to be engineered and other stakeholders
who have a peripheral interest in the outcome.

e End-users who interact with the software once it is
released for production use.

Every software project is populated by people who fall within this taxonomy.2 To
be

effective, the project team must be organized in a way that maximizes each
person’s

skills and abilities. And that’s the job of the team leader.

Software Teams

How to lead?

7’ How to organize?
How to collaborate? _ g%%
C\Ne
ﬁ/&.\\;\)\ \ \ ‘ &f#
BASE M)
4
o
\7\\\\%@% %

How to motivate? How to create good ideas?

o~

Team Leader
* The MOI Model

— Motivation. The ability to encourage (by “push or pull”)
technical people to produce to their best ability.

— Organization. The ability to mold existing processes (or
invent new ones) that will enable the initial concept to be
translated into a final product.

— Ideas or innovation. The ability to encourage people to
create and feel creative even when they must work within
bounds established for a particular software product or
application.

successful project leaders apply a problem-solving management
style. That is, a software project manager should concentrate on understanding
the problem to be solved, managing the flow of ideas, and at the same time,

letting everyone on the team know (by words and, far more important, by
actions)

that quality counts and that it will not be compromised.

Software Teams

The following factors must be considered when
selecting a software project team structure ...

* the difficulty of the problem to be solved

* the size of the resultant program(s) in lines of code or
function points

* the time that the team will stay together (team
lifetime)

* the degree to which the problem can be modularized

* the required quality and reliability of the system to be
built

* the rigidity of the delivery date

* the degree of sociability (communication) required
for the project

The “best” team structure depends on the management style of your
organization,

the number of people who will populate the team and their skill levels, and the
overall

problem difficulty. Mantei [Man81] describes seven project factors that should
be

considered when planning the structure of software engineering teams:

Organizational Paradigms

* closed paradigm—structures a team along a
traditional hierarchy of authority

* random paradigm—structures a team loosely and
depends on individual initiative of the team
members

* open paradigm—attempts to structure a team in a
manner that achieves some of the controls
associated with the closed paradigm but also much
of the innovation that occurs when using the random
paradigm

* synchronous paradigm—relies on the natural
compartmentalization of a problem and organizes
team members to work on pieces of the problem
with little active communication among themselves

As an historical footnote, one of the earliest software team organizations was a

closed paradigm structure originally called the chief programmer team.

Avoid Team “Toxicity”

* A frenzied work atmosphere in which team members
waste energy and lose focus on the objectives of the
work to be performed.

» High frustration caused by personal, business, or
technological factors that cause friction among team
members.

» “Fragmented or poorly coordinated procedures” or a
poorly defined or improperly chosen process model that
becomes a roadblock to accomplishment.

* Unclear definition of roles resulting in a lack of
accountability and resultant finger-pointing.

* “Continuous and repeated exposure to failure” that leads
to a loss of confidence and a lowering of morale.

But not all teams jell. In fact, many teams suffer from what Jackman [Jac98] calls

“team toxicity.” She defines five factors that “foster a potentially toxic team
environment”:

(1) a frenzied work atmosphere, (2) high frustration that causes friction

among team members, (3) a “fragmented or poorly coordinated” software
process,

(4) an unclear definition of roles on the software team, and (5) “continuous and
repeated

exposure to failure.”

To avoid a frenzied work environment, the project manager should be certain
that

the team has access to all information required to do the job and that major
goals and

objectives, once defined, should not be modified unless absolutely necessary. A
software

team can avoid frustration if it is given as much responsibility for decision making

as possible.

Agile Teams

* Team members must have trust in one another.

* The distribution of skills must be appropriate to the
problem.

* Mavericks may have to be excluded from the team, if
team cohesiveness is to be maintained.

* Team is “self-organizing”
— An adaptive team structure

— Uses elements of Constantine’s random, open,
and synchronous paradigms

— Significant autonomy

the agile philosophy encourages customer satisfaction and early incremental
delivery of software, small highly motivated project teams, informal methods,
minimal software engineering work products, and overall development simplicity.
The small, highly motivated project team, also called an agile team, adopts many

of the characteristics of successful software project teams discussed in the
preceding

section and avoids many of the toxins that create problems. However, the agile

philosophy stresses individual (team member) competency coupled with group
collaboration

as critical success factors for the team.

10

Team Coordination & Communication

Formal, impersonal approaches include software engineering
documents and work products (including source code), technical
memos, project milestones, schedules, and project control tools
(Chapter 23), change requests and related documentation, error
tracking reports, and repository data (see Chapter 26).

Formal, interpersonal procedures focus on quality assurance activities
(Chapter 25) applied to software engineering work products. These
include status review meetings and design and code inspections.

Informal, interpersonal procedures include group meetings for
information dissemination and problem solving and “collocation of
requirements and development staff.”

Electronic communication encompasses electronic mail, electronic
bulletin boards, and by extension, video-based conferencing systems.
Interpersonal networking includes informal discussions with team
members and those outside the project who may have experience or
insight that can assist team members.

10

The Four P’s

* People — the most important element of a
successful project

* Product — the software to be built

* Process — the set of framework activities
and software engineering tasks to get the
job done

* Project — all work required to make the
product a reality

1

11

The Product Scope

* Scope

* Context. How does the software to be built fit into a larger system,
product, or business context and what constraints are imposed as
a result of the context?

* Information objectives. What customer-visible data objects
(Chapter 8) are produced as output from the software? What data
objects are required for input?

* Function and performance. What function does the software
perform to transform input data into output? Are any special
performance characteristics to be addressed?

» Software project scope must be unambiguous and
understandable at the management and technical
levels.

12

Like it or not, you must examine the product and the problem it is intended to

solve at the very beginning of the project. At a minimum, the scope of the
product

must be established and bounded.

Problem Decomposition

* Sometimes called partitioning or problem
elaboration

* Once scope is defined ...
— It is decomposed into constituent functions
— Itis decomposed into user-visible data objects
or
— It is decomposed into a set of problem classes

* Decomposition process continues until all functions
or problem classes have been defined

13

Problem decomposition, sometimes called partitioning or problem elaboration, is
an

activity that sits at the core of software requirements analysis (Chapters 6 and 7).
During the scoping activity no attempt is made to fully decompose the problem.
Rather, decomposition is applied in two major areas: (1) the functionality and

content (information) that must be delivered and (2) the process that will be
used to

deliver it.

13

The Four P’s

* People — the most important element of a
successful project

* Product — the software to be built

* Process — the set of framewaork activities
and software engineering tasks to get the
job done

* Project — all work required to make the
product a reality

14

14

The Process

* Once a process framework has been established
— Consider project characteristics
— Determine the degree of rigor required

— Define a task set for each software engineering activity

* Task set =
— Software engineering tasks
— Work products
— Quality assurance points
— Milestones

15

The framework activities (Chapter 2) that characterize the software process are

applicable to all software projects. The problem is to select the process model
that is

appropriate for the software to be engineered by your project team.

15

Melding the Problem and the Process

R -~
&/ & S
COMMON PROCESS £/ £/ s S /€
FRAMEWORK ACTIVITIES /) ¥ VA
§ € /8
(¥

Software Engineering Tasks
Product Functions

Text input

Editing and formatting
Automatic copy edit

Page layout capability
Automatic indexing and TOC
File management

Document production

— —
— L— —
—l

16

Project planning begins with the melding of the product and the process. Each
function

to be engineered by your team must pass through the set of framework activities

that have been defined for your software organization.

Each major product function (the figure notes functions
for the word-processing software discussed earlier) is listed in the left-hand

column. Framework activities are listed in the top row. Software engineering
work

tasks (for each framework activity) would be entered in the following row.5 The
job

of the project manager (and other team members) is to estimate resource
requirements

for each matrix cell, start and end dates for the tasks associated with each cell,

and work products to be produced as a consequence of each task.

16

17

The Four P’s

* People — the most important element of a
successful project

* Product — the software to be built

* Process — the set of framework activities
and software engineering tasks to get the
job done

* Project — all work required to make the
product a reality

17

The Project

* Projects get into trouble when ...
— Software people don’t understand their customer’s needs.
— The product scope is poorly defined.
— Changes are managed poorly.
— The chosen technology changes.
— Business needs change [or are ill-defined].
— Deadlines are unrealistic.
— Users are resistant.
— Sponsorship is lost [or was never properly obtained].
— The project team lacks people with appropriate skills.
— Managers [and practitioners] avoid best practices and lessons learned.

18

In order to manage a successful software project, you have to understand what
can

go wrong so that problems can be avoided. In an excellent paper on software
projects,

John Reel [Ree99] defines 10 signs that indicate that an information systems

project is in jeopardy:

19

Common-Sense Approach to Projects

Start on the right foot. This is accomplished by working hard
(very hard) to understand the problem that is to be solved
and then setting realistic objectives and expectations.
Maintain momentum. The project manager must provide
incentives to keep turnover of personnel to an absolute
minimum, the team should emphasize quality in every task it
performs, and senior management should do everything
possible to stay out of the team’s way.

Track progress. For a software project, progress is tracked as
work products (e.g., models, source code, sets of test cases)
are produced and approved (using formal technical reviews)
as part of a quality assurance activity.

Make smart decisions. In essence, the decisions of the
project manager and the software team should be to “keep it
simple.”

Conduct a postmortem analysis. Establish a consistent
mechanism for extracting lessons learned for each project.

19

20

To Get to the Essence of a Project

* Why is the system being developed?

* What will be done?

* When will it be accomplished?

* Who is responsible?

* Where are they organizationally located?

* How will the job be done technically and
managerially?

* How much of each resource (e.g., people,
software, tools, database) will be needed?

20

W->HH Principle

* Boehm [BOE96] suggests a question-based approach
that addresses project objectives, milestones and
schedules, responsibilities, management and
technical approaches, and required resources.

— Why is the system being developed?

* The answer to this question enables all parties to assess the
validity of business reasons for the software work. Stated in
another way, does the business purpose justify the expenditure of
people, time, and money?

— What will be done?
— When will it be accomplished?
* The answers to these two questions help the team to establish a

project schedule by identifying key project tasks and the
milestones that are required by the customer.

W?>HH Principle

— Who is responsible for a function?

* The responsibilities of each member of the software team must be
defined.

— Where are they organizationally located?

* Not all roles and responsibilities reside within the software team
itself. The customer, users, and other stakeholders also have
responsibilities.

— How will the job be done technically and managerially?

* Once product scope is established, a management and technical
strategy for the project must be defined.

— How much of each resource (e.g., people, software, tools,
database) will be needed?

* The answer to this question is derived by developing estimates
based on answers to earlier questions.

22

Critical Practices

* Formal risk management

* Empirical cost and schedule
estimation

* Metrics-based project management

* Earned value tracking

» Defect tracking against quality targets
* People aware project management

23

The Airlie Council8 has developed a list of “critical software practices for
performance-based management.” These practices are “consistently used by, and

considered critical by, highly successful software projects and organizations
whose

’bottom line” performance is consistently much better than industry averages”
[Air99].

Summary

Software project management is about people, product,

process, and project. It includes,

— Team building,

— Requirement solicitation and engineering,

— Process model adapted to the people and problem,

— Project organized in a manner that enables the software team
to succeed.

Remember, project management is a people business,

— Emphasize on the communication: formal reviews and informal
person-to-person communication have the most value for
practitioners.

— The end note to an engineering manager: if you take care of
your people, they will take care of the work.

