Software Quality Management
Software Testing Techniques

Fundamentals of Testing

* Testability

— Make the software testable (ease to test)
* Test characteristics

— Make the tests able to discover errors

The goal of testing is to find errors, and a good test is one that has a high
probability

of finding an error. Therefore, you should design and implement a computer
based

system or a product with “testability” in mind. At the same time, the tests

themselves must exhibit a set of characteristics that achieve the goal of finding
the

most errors with a minimum of effort.

Software testability

* Operability—it operates cleanly
— Program has good initial quality.
* Observability—the results of each test case are readily observed
— Success of a test can be judged by observable behaviors.
* Controllability—the degree to which testing can be automated and
optimized
* Decomposability—testing can be targeted
* Simplicity—reduce complex architecture and logic to simplify tests
+ Stability—few changes are requested during testing
* Understandability—of the design

— A good understanding of the design helps improve testing
effectiveness.

Operability. “The better it works, the more efficiently it can be tested.” If a
system

is designed and implemented with quality in mind, relatively few bugs will block
the execution of tests, allowing testing to progress without fits and starts.
Observability. “What you see is what you test.” Inputs provided as part of testing

produce distinct outputs. System states and variables are visible or queriable
during

execution. Incorrect output is easily identified. Internal errors are automatically
detected and reported. Source code is accessible.

Controllability. “The better we can control the software, the more the testing
can

be automated and optimized.” All possible outputs can be generated through
some

combination of input, and I/O formats are consistent and structured. All code is
executable through some combination of input.
Decomposability. “By controlling the scope of testing, we can more quickly

isolate problems and perform smarter retesting.” The software system is built
from

independent modules that can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.” The program
should exhibit functional simplicity (e.g., the feature set is the minimum necessary
to meet requirements); structural simplicity (e.g., architecture is modularized

to limit the propagation of faults), and code simplicity (e.g., a coding standard is
adopted for ease of inspection and maintenance).

Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes

to the software are infrequent, controlled when they do occur, and do not
invalidate

existing tests. The software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.” The
architectural design and the dependencies between internal, external, and shared
components are well understood. Technical documentation is instantly accessible,
well organized, specific and detailed, and accurate. Changes to the design are

communicated to testers.

Test characteristics

* A good test has a high probability of finding an error
* A good test is not redundant.
* A good test should be “best of breed”

— Select test cases from a pool of candidate test
cases based on its likelihood of finding bugs.

* A good test should be neither too simple nor too
complex

— When it is too complex, it may be hard to locate a
bug because of interaction between different
factors.

A good test is not redundant. Testing time and resources are limited. There is no
point in conducting a test that has the same purpose as another test. Every test

should have a different purpose (even if it is subtly different).

A good test should be “best of breed” [Kan93]. In a group of tests that have a
similar

intent, time and resource limitations may mitigate toward the execution of only
a subset of these tests. In such cases, the test that has the highest likelihood of

uncovering a whole class of errors should be used.

Testing: internal/external views

» External (black-box)

— demonstrate each function is fully operational while at the
same time searching for errors in each function

* Internal (white-box)

— internal operations are performed according to
specifications and all internal components have been
adequately exercised

Any engineered product (and most other
things) can be tested in one of two ways:
Knowing the specified function that a product has
been designed to perform, tests can be conducted
that demonstrate each function is fully operational
while at the same time searching for errors in each

function;

Knowing the internal workings of a product, tests can
be conducted to ensure that "all gears mesh," that is,
internal operations are performed according to
specifications and all internal components have been

adequately exercised.

Black-box testing alludes to tests that are conducted at the software interface.
A black-box test examines some fundamental aspect of a system with little regard

for the internal logical structure of the software. White-box testing of software is

predicated

on close examination of procedural detail.

The terms functional testing and structural testing are sometimes used in place of
black-box and

white-box testing, respectively.

Test Case Design

"Bugs lurk in corners
and congregate at
boundaries ..."

]
(\
OBJECTIVE to uncover errors
CRITERIA in a (relatively) complete manner

CONSTRAINT with a minimum of effort and time

Exhaustive Testing

=N 1 B9 = Inap 20X

There are 1014 possible paths! If we execute one
test per millisecond, it would take 3,170 years to
test this program!!

Unfortunately, exhaustive testing presents certain logistical problems. For even
small programs, the number of possible logical

paths can be very large. White-box testing should not, however, be dismissed as
impractical. A limited number of important logical paths can be selected and

exercised. Important data structures can be probed for validity.

Selective Testing

Software Testing

white-box black-box
methods methods

Methods

Strategies

White-Box Testing

$-

... our goal is to ensure that all
statements and conditions have
been executed at least once ...

White-box testing, sometimes called glass-box testing, is a test-case design
philosophy

that uses the control structure described as part of component-level design to
derive test cases. Using white-box testing methods, you can derive test cases that
(1) guarantee that all independent paths within a module have been exercised at

least once, (2) exercise all logical decisions on their true and false sides, (3)
execute

all loops at their boundaries and within their operational bounds, and (4)
exercise

internal data structures to ensure their validity.

Why Cover?

(] logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

[d weoften believe thata path is not
likely to be executed; in fact, reality is
often counter intuitive

[typographical errors are random; it's
likely that untested paths will contain
some

Basis Path Testing

First, we compute the cyclomatic
complexity:

number of simple decisions + 1
or

number of enclosed areas + 1

In this case, V(G) = 4

Basis path testing is a white-box testing technique.

The basis path method enables the test-case designer to derive a logical

complexity measure of a procedural design and use this measure as a guide for
defining

a basis set of execution paths. Test cases derived to exercise the basis set are
guaranteed

to execute every statement in the program at least one time during testing.

Before we consider the basis path method, a simple notation for the
representation

of control flow, called a flow graph (or program graph) must be introduced.3 The
flow

graph depicts logical control flow using the notation illustrated in Figure 18.1

Areas bounded by edges and nodes are called

regions. When counting regions, we include the area outside the graph as a
region

When stated in terms of a flow graph, an independent path must move along at
least one edge that has not been

traversed before the path is defined; Note that each new path introduces a new
edge

12

Cyclomatic Complexity

A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

Cyclomatic Risk
Complexity Evaluation

modules

a simple program,

=l without much risk
11-20 more comp.lex,
moderate risk
modules in this range are 21-50 complex, high risk
more error prone program

greater than | untestable program
50 (very high risk)

Cyclomatic complexity is a software metric that provides
a quantitative measure of the logical complexity of a program. When used in

the context of the basis path testing method, the value computed for cyclomatic
complexity

defines the number of independent paths in the basis set of a program and

provides you with an upper bound for the number of tests that must be
conducted to

ensure that all statements have been executed at least once.

More important, the value for V(G) provides you with an upper bound for the
number

of independent paths that form the basis set and, by implication, an upper
bound

on the number of tests that must be designed and executed to guarantee
coverage

of all program statements

Basis Path Testing

Next, we derive the
independent paths:

1
Since V(G) = 4,
there are four paths

,_®_| Path 1: 1,2,3,6,7,8
‘ Path 2: 1,2,3,5,7,8

I] Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these
paths.

Basis Path Testing Notes

[] youdon't need a flow chart,

- but the picture will help when
é you trace program paths

[] Test a base set of linearly
4 Independent paths.

5 6
1
[basis path testing should be
applied to critical modules
Os

A critical module has one or more of the following characteristics: (1) addresses
several

software requirements, (2) has a high level of control (resides relatively high in
the

program structure), (3) is complex or error prone, or (4) has definite performance

requirements. Critical modules should be tested as early as is possible. In
addition,

regression tests should focus on critical module function.

15

Deriving Test Cases

* Summarizing:
— Using the design or code as a foundation, draw a
corresponding flow graph.
— Determine the cyclomatic complexity of the resultant flow
graph.
— Determine a basis set of linearly independent paths.

— Prepare test cases that will force execution of each path in
the basis set.

Data should be chosen so that conditions at the predicate nodes are
appropriately set as each path is tested. Each test case is executed and compared
to expected results. Once all test cases have been completed, the tester

can be sure that all statements in the program have been executed at least

once.

It is important to note that some independent paths (e.g., path 1 in our example)

cannot be tested in stand-alone fashion. That is, the combination of data
required to

traverse the path cannot be achieved in the normal flow of the program. In such

cases, these paths are tested as part of another path test.

16

Graph Matrices

* A graph matrix is a square matrix
whose size (i.e., number of rows
and columns) is equal to the
number of nodes on a flow graph

* Each row and column Connected to
corresponds to an identified \“‘f 5

structure during testing Graoh matr
raph matrix

node, and matrix entries S
correspond to connections (an ‘ “
edge) between nodes. 2

* By adding a link weight to each 3 d b
matrix entry, the graph matrix
can become a powerful tool for 4 c
evaluating program control 5 g e

g

©:6;0,6,

Flow graph

the link weight provides additional information about control flow. In its simplest

form, the link weight is 1 (a connection exists) or 0 (a connection does not exist).

But

link weights can be assigned other, more interesting properties:
e The probability that a link (edge) will be execute.

* The processing time expended during traversal of a link

® The memory required during traversal of a link

* The resources required during traversal of a link.

17

Testing control structure

M Branch testing — a test case design method that
exercises both true and false branch of each decision
point contained in a program module. A.k.a, decision
testing.

M |t is similar to, but not same as statement coverage.

M Condition testing — a test case design method that
exercises both true and false outcomes of the logical
conditions contained in a program module

M Data flow testing — selects test paths of a program
according to the locations of definitions and uses of
variables in the program

The basis path testing technique described in Section 18.4 is one of a number of
techniques

for control structure testing. Although basis path testing is simple and highly

effective, it is not sufficient in itself. In this section, other variations on control
structure

testing are discussed. These broaden testing coverage and improve the quality

of white-box testing.

1

include "Hex _values.h"

2-11 // Description: ...

12
13
14
15
16

int cgi_decode(char *encoded, char *decoded) f g
char *eptr = encoded; + +dptr;
char *dptr = decoded; + + eptr;
int ok=0; g
while (*eptr) f *dptr = 'n0';
char c; return ok;
c=*eptr;
[*Case 1: \+" maps to blank */
if (c=="+")f
*dptr="";
geseif (c=="%") f
/*Case 2: '%xx' is hex for character xx */
int digit_high = Hex_Values[*(+ + eptr)];
int digit_low = Hex_Values[*(+ + eptr)];
/*Hex_Values maps illegal digitsto -1 */
if (digit-high==-1 jj digit_low ==-1) f
[* *dptr = "? */
ok=1; /* bad return state */
gelsef
"dptr = 16*digit_high+ digit _low;

/*Case 3: All other chracters map to themslves */

Demonstrate the insufficiency of basis path testing

19

Branch Testing

B Branch adequacy criterion requires each branch to be
executed at least once.

M Let T be a test suite for a program P. T satisfies the branch
adequacy criterion iff for each branch B of P, there exists at
least one test case in T that causes the execution of B.

M (in control flow graph) Each edge needs to be visited at
least once.

M Also referred as decision coverage.
B Branch coverage criterion.

number of executed branches

number of branches

m A test suite T satisfies the branch adequacy criterion for a program P
iff Cbranch:]'

Coranch =

20

int cgi_decode(char *encoded, char *decoded)

f char *eptr = encoded;
char *dptr = decoded;
int ok=0;

while (*eptr) f

char c;
c= *eptr;
if (c=="+") f

dseif (c=='%') f

*dptr="";
g
else int digit_high = Hex Valueq[*(+ + eptr)];
*dptr=*eptr; int digit Jow = Hex_Values* (+ + eptr)];

ATERAIC 9 if (digit_high==-1 jj digit low ==-1) f

return ok;
g dsef ok=1;
"dptr = 16*digit _high+ digit low; g9
9

++dptr;
+ +eptr;
g

We have four boolean expression, thus eight branches; the branch F is missed.

21

int cgi_decode(char *encoded, char *decoded)

f char *eptr = encoded;
char *dptr = decoded;
int ok=0;

while (*eptr) f

char c;
c= *eptr;
if (c=="+") f

dseif (c=='%') f

*dptr="";
g
else int digit_high = Hex Valueq[*(+ + eptr)];
*dptr=*eptr; int digit Jow = Hex_Values* (+ + eptr)];

ATERAIC 9 if (digit_high==-1 jj digit low ==-1) f

return ok;
g dsef ok=1;
"dptr = 16*digit _high+ digit low;
9

++dptr;

+ +eptr;
g

So we add tests to cover that missed branch

22

1

include "Hex_values.h"

2-11 // Description: ...

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

int cgi_decode(char *encoded, char *decoded) f
char *eptr = encoded;
char *dptr = decoded;
int ok=0;
while (*eptr) f
char c;
c=*eptr;
/*Case 1: \+" maps to blank */
if (c=="+")f
*dptr="";
gdseif (c=="%'") f
/*Case 2: '%xx' is hex for character xx */
int digit_high = Hex_Valueg*(+ + eptr)];
int digit low = Hex_Values[*(+ + eptr)];
/*Hex_Values maps illegal digitsto-1*/
if (digit_high==-1 jj digit_low ==-1) f
[* *dptr = '?" */
ok=1; /* bad return state */
gesef
"dptr = 16*digit_high+ digit_low;
9
/*Case 3: All other chracters map to themslves */

Demonstrate the need for condition testing

gelsef
*dptr = *eptr;
g
+ +dptr;
+ +eptr;

g
*dptr = 'n0';
return ok;

23

Condition Testing

B Condition adequacy criterion requires each basic condition in
control statements to be covered for true and false at least
once.

M Let T be a test suite for a program P. T satisfies the branch adequacy
criterion iff for each basic condition in P has a true outcome in at least
one test cases in T and a false outcome in at least one test case in T.

B |n contrast, branch (decision) coverage only covers the true and false
branches of entire Boolean expression in control statements.

B Condition coverage criterion.
total number of truth values assumed by all basic conditions

Chasic.oonditions = 2£ number of basic conditions

m Atest suite T satisfies condition adequacy criterion for a program
P iff Cbasit:_r.‘:onditicms=‘I
m Condition Testing doesn’t subsume branch testing.

24

int cgi_decode(char *encoded, char *decoded)

f char *eptr = encoded;
char *dptr = decoded;
int ok=0;

else
*dptr=*eptr; int digit Jow = Hex_Values* (+ + eptr)];

dptr= "nc g if (digit_high==-1 jj) f

return ok;
g esef
"dptr = 16*digit _high+ digit low;
9

++dptr;
+ +eptr;
g

We have five logic conditions, thus 10 outcomes. The ‘digit_high==-1' condition being
true is missed

25

int cgi_decode(char *encoded, char *decoded)

f char *eptr = encoded;
char *dptr = decoded;
int ok=0;

else int digit_high = Hex Valueg[*(+ + eptr)];
*dptr=*eptr; int digit Jow = Hex_Values* (+ + eptr)];
g if (ji) f

dptr = 'n 0';
return ok;
[o] elsef
"dptr = 16*digit _high+ digit low;
9

++dptr;

+ +eptr;
g

We changed the test to cover the ‘true’ outcome of that condition

26

int cgi_decode(char *encoded, char *decoded)

f char *eptr = encoded;
char *dptr = decoded;
int ok=0;

while () f

char c;
c= *eptr;
if () f

dseif (ki

else int digit_high = Hex Valueg[*(+ + eptr)];
*dptr=*eptr; int digit Jow = Hex_Values* (+ + eptr)];

ATERAIC L if (i i

return ok;
g esef
"dptr = 16*digit _high+ digit low;
9

++dptr;
+ +eptr;
g

But with this single test, branch H is not covered. So branch coverage is not sufficient,

thus may need another test.

27

Data-flow testing

* DEF(S) {X | statement S contains a definition of X}
* USE(S) {X | statement S contains a use of X}

* A definition-use (DU) chain of variable X is of the
form [X, S, S'], where S and S’ are statement
numbers, Xis in DEF(S) and USE(S’), and the
definition of X in statement S is live at statement §°

* DU Testing

— require that every DU chain be covered at least once

One simple data flow testing strategy is to require that every DU chain be
covered

at least once. We refer to this strategy as the DU testing strategy. It has been
shown

that DU testing does not guarantee the coverage of all branches of a program.
However,

a branch is not guaranteed to be covered by DU testing only in rare situations

such as if-then-else constructs in which the then part has no definition of any
variable

and the else part does not exist. In this situation, the else branch of the if
statement

is not necessarily covered by DU testing.

28

Loop Testing

.
3

o0l

Concatenated
Loops Unstructured

Loops

Loop testing is a white-box testing technique that focuses exclusively on the

validity of loop constructs. Four different classes of loops [Bei90] can be defined:
simple

loops, concatenated loops, nested loops, and unstructured loops (Figure 18.7).

Loop Testing: Simple Loops

Minimum conditions—Simple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop where m<n

5. (n-1), n, and (n+1) passes through
the loop

Simple loops
where n is the maximum number
of allowable passes

The following set of tests can be applied to simple loops, where n

is the maximum number of allowable passes through the loop.

30

Loop Testing: Nested Loops

Nested Loops

1. Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.

2. Test the min+1, typical, max-1 and max for the
Nistiad Liogs innermost loop, while holding the outer loops at their
minimum values.

3. Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

Concatenated Loops

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*

for example, the final loop counter value of loop 1 is
used to initialize loop 2.

paaliy

alialiy

Concatenated
loops

If we were to extend the test approach for simple loops to nested

loops, the number of possible tests would grow geometrically as the level of
nesting

increases. This would result in an impractical number of tests.

Concatenated loops can be tested using the approach

defined for simple loops, if each of the loops is independent of the other.
However,

if two loops are concatenated and the loop counter for loop 1 is used as the
initial

value for loop 2, then the loops are not independent. When the loops are not
independent,

the approach applied to nested loops is recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned

to reflect the use of the structured programming constructs

31

Black-Box Testing

requirements
il

> S

Black-box testing, also called behavioral testing, focuses on the functional
requirements

of the software. That is, black-box testing techniques enable you to derive sets

of input conditions that will fully exercise all functional requirements for a
program.

Black-box testing is not an alternative to white-box techniques. Rather, it is a
complementary

approach that is likely to uncover a different class of errors than whitebox
methods.

Black-Box Testing

M How is functional validity tested?

B How is system behavior and performance
tested?

B What classes of input will make good test
cases?

M |s the system particularly sensitive to certain
input values?

B How are the boundaries of a data class isolated?

B What data rates and data volume can the
system tolerate?

B What effect will specific combinations of data
have on system operation?

Black-box testing attempts to find errors in the following categories: (1) incorrect
or missing functions, (2) interface errors, (3) errors in data structures or external
database access, (4) behavior or performance errors, and (5) initialization and

termination errors.

Tests are designed to answer the following questions:

By applying black-box techniques, you derive a set of test cases that satisfy the
following

criteria [Mye79]: (1) test cases that reduce, by a count that is greater than one,
the number of additional test cases that must be designed to achieve reasonable

testing, and (2) test cases that tell you something about the presence or absence
of

classes of errors, rather than an error associated only with the specific test at
hand

Graph-Based Methods

To understand the
objects that are
modeled in software
and the relationships
that connect these
objects

Directed link
(link weight)

Undirected link Node weight

Parallel links (value)

In this context, we
consider the term
“objects” in the (a)
broadest possible
context. It
encompasses data
objects, traditional
components Is represented as
(modules), and

object-oriented

elements of computer

software. (b)

Menu select generates

(generation time < 1.0 sec)

~ Atiributes:
Contains Sigrt dimension: default sefting
or preferences
Background color: white
Text color: default color
or preferences

The first step in black-box testing is to understand the objects5 that are modeled
in

software and the relationships that connect these objects

Software testing begins by creating a graph of important objects and their
relationships and then devising a series of tests that will cover the graph so that
each object and relationship is exercised and errors are uncovered.

you begin by creating a graph—a collection of nodes

that represent objects, links that represent the relationships between objects,
node

weights that describe the properties of a node (e.g., a specific data value or state

behavior), and link weights that describe some characteristic of a link.

A directed link (represented by an arrow) indicates that a relationship moves in
only

one direction. A bidirectional link, also called a symmetric link, implies that the
relationship

applies in both directions. Parallel links are used when a number of different

relationships are established between graph nodes.

Referring to the figure, a menu select on newFile generates a document window.

The node weight of documentWindow provides a list of the window attributes
that

are to be expected when the window is generated. The link weight indicates that
the window must be generated in less than 1.0 second. An undirected link
establishes a

symmetric relationship between the newFile menu selection and documentText,
and parallel links indicate relationships between documentWindow and
documentText. In reality, a far more detailed graph would have to be generated
as a precursor to test-case design. You can then derive test cases by traversing the
graph and covering each of the relationships shown. These test cases are designed

in an attempt to find errors in any of the relationships.

34

Equivalence Partitioning

i
user, output
HUELLES formats
j“l W prompts

Equivalence partitioning is a black-box testing method that divides the input
domain

of a program into classes of data from which test cases can be derived

Test-case design for equivalence partitioning is based on an evaluation of

equivalence classes for an input condition.

if a set of objects can be linked by relationships that are symmetric transitive,
and reflexive, an equivalence class is present [Bei95]. An equivalence

class represents a set of valid or invalid states for input conditions. Typically, an
input

condition is either a specific numeric value, a range of values, a set of related
values,

or a Boolean condition.

Sample Equivalence Classes

Valid data
user supplied commands
responses to system prompts
file names
computational data
physical parameters
bounding values
initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

Invalid data
data outside bounds of the program
physically impossible data
proper value supplied in wrong place

Equivalence classes may be defined according to the

following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence
classes are defined.

2. If an input condition requires a specific value, one valid and two invalid
equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid
equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

Test cases are selected

so that the largest number of attributes of an equivalence class are exercised at
once.

Boundary Value Analysis

user
queries

) . output
input domain domain

37

A greater number of errors occurs at the boundaries of the input domain rather
than

in the “center.” It is for this reason that boundary value analysis (BVA) has been
developed

as a testing technique. Boundary value analysis leads to a selection of test

cases that exercise bounding values.

Boundary value analysis is a test-case design technique that complements
equivalence

partitioning. Rather than selecting any element of an equivalence class, BVA

leads to the selection of test cases at the “edges” of the class. Rather than
focusing

solely on input conditions, BVA derives test cases from the output domain as well

1. If an input condition specifies a range bounded by values a and b, test cases
should be designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be
developed

that exercise the minimum and maximum numbers. Values just above
and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a
temperature

versus pressure table is required as output from an engineering analysis
program. Test cases should be designed to create an output report that
produces the maximum (and minimum) allowable number of table entries.

4. If internal program data structures have prescribed boundaries (e.g., a table
has a defined limit of 100 entries), be certain to design a test case to exercise

the data structure at its boundary.

37

Comparison Testing

M Used only in situations in which the reliability of
software is absolutely critical (e.g., human-rated
systems)

M Separate software engineering teams develop
independent versions of an application using the same
specification

B Each version can be tested with the same test data to
ensure that all provide identical output

Bl Then all versions are executed in parallel with real-time
comparison of results to ensure consistency

Orthogonal Array Testing

M Used when the number of input parameters is small
and the values that each of the parameters may take
are clearly bounded

N —»

W
Y

X—»

One input item at a time L9orthogonal arr:

P499, second paragraph;

There are many applications in which the input domain is relatively limited. That
is,

the number of input parameters is small and the values that each of the
parameters

may take are clearly bounded. When these numbers are very small (e.g., three
input

parameters taking on three discrete values each), it is possible to consider every

input permutation and exhaustively test the input domain. However, as the
number

of input values grows and the number of discrete values for each data item
increases,

exhaustive testing becomes impractical or impossible.

Orthogonal array testing can be applied to problems in which the input domain is
relatively small but too large to accommodate exhaustive testing. The orthogonal

array testing method is particularly useful in finding region faults—an error
category

associated with faulty logic within a software component.

To illustrate the difference between orthogonal array testing and more
conventional

“one input item at a time” approaches, consider a system that has three input
items, X, ¥, and Z. Each of these input items has three discrete values associated
with

it. There are 33 27 possible test cases. Phadke [Pha97] suggests a geometric view
of the possible test cases associated with X, Y, and Z illustrated in Figure 18.9.

Referring to the figure, one input item at a time may be varied in sequence along
each

input axis. This results in relatively limited coverage of the input domain
(represented

by the left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is
created. The L9 orthogonal array has a “balancing property” [Pha97]. That is, test
cases (represented by dark dots in the figure) are “dispersed uniformly throughout
the test domain,” as illustrated in the right-hand cube in Figure 18.9. Test coverage

across the input domain is more complete.

If a “one input item at a time” testing strategy were chosen, the following

sequence of tests (P1, P2, P3, P4) would be specified: (1, 1,1, 1), (2,1, 1, 1), (3, 1,
1,1),

(11 2[1I 1)I (11 3[1I 1)I (1I 1[2I 1)I (1I 1I 3' 1)I (1I 1I 1I 2)I and (1I 1I 1[3)'

1,1,1,1
1,2,2,2
1,3,3,3
2,1,2,3
2,2,3,1
2,3,1,2
3,1,3,2
3,2,1,3
3,3,2,1

39

Testing Patterns

Pattern name: pair testing

Abstract: A process-oriented pattern, pair testing describes a technique
that is analogous to pair programming (Chapter 4) in which two testers
work together to design and execute a series of tests that can be
applied to unit, integration or validation testing activities.

Pattern name: separate test interface

Abstract: There is a need to test every class in an object-oriented
system, including “internal classes” (i.e., classes that do not expose any
interface outside of the component that used them). The separate test
interface pattern describes how to create “a test interface that can be
used to describe specific tests on classes that are visible only internally
to a component.” [LANO1]

Pattern name: scenario testing
Abstract: Once unit and integration tests have been conducted, there is
a need to determine whether the software will perform in a manner
that satisfies users. The scenario testing pattern describes a technique
for exercising the software from the user’s point of view. A failure at this
level indicates that the software has failed to meet a user visible
requirement. [KANO1]

The use of patterns as a mechanism for describing solutions to specific design
problems

was discussed in Chapter 12. But patterns can also be used to propose solutions
to other

software engineering situations—in this case, software testing. Testing patterns
describe

common testing problems and solutions that can assist you in dealing with them.

Testing patterns are described in much the same way as design patterns

(Chapter 12). Dozens of testing patterns have been proposed in the literature
(e.g.,

[Mar02]). The following three testing patterns (presented in abstract form only)

provide representative examples:

* Testability

* White-box testing
— Basis path testing
— Branch testing
— Condition testing
— Data-flow testing
* Black-box testing
— Partitioning
— Boundary analysis

Summary

41

