Software Quality Management
Software Testing Strategies

Software Testing

Testing is the process of exercising

a program with the specific intent of
finding errors prior to delivery to the
end user.

different test methods are beginning to cluster themselves into several distinct
approaches and philosophies.

These “approaches and philosophies” are what | call strategy

What Testing Shows

\: "\ an indication
N\ G of quality

Strategic Approach

* To perform effective testing, you should conduct effective
technical reviews. By doing this, many errors will be
eliminated before testing commences.

* Testing begins at the component level and works "outward"
toward the integration of the entire computer-based system.

« Different testing technigues are appropriate for different
software engineering approaches and at different points in
time.

* Testing is conducted by the developer of the software and (for
large projects) an independent test group.

+ Testing and debugging are different activities, but debugging
must be accommodated in any testing strategy.

A number of software testing strategies have been proposed in the literature.
All provide you with a template for testing and all have the following generic

characteristics:

V&V

« Verification refers to the set of tasks that ensure that
software correctly implements a specific function.

« Validation refers to a different set of tasks that
ensure that the software that has been built is
traceable to customer requirements. Boehm [Boe81]
states this another way:

— Verification: "Are we building the product right?"
— Validation: "Are we building the right product?"”

Can you remind me of the software process model that is featured with V&V also, why
(because V model also emphasizes quality assurance via verification and validation).

Software testing is one element of a broader topic that is often referred to as
verification

and validation (V&V). Verification refers to the set of tasks that ensure that
software correctly implements a specific function.

Validation refers to a different set of tasks that ensure that the software that has
been built is traceable to customer

requirements.

Verification and validation includes a wide array of SQA activities: technical

reviews, quality and configuration audits, performance monitoring, simulation,
feasibility
study, documentation review, database review, algorithm analysis, development

testing, usability testing, qualification testing, acceptance testing, and installation
testing.

Although testing plays an extremely important role in V&V, many other

activities

are also necessary.

Who Tests the Software?

developer independent tester
Understands the system Must learn about the system,
but, will test "gently" but, will attempt to break it
and, is driven by "delivery” and, is driven by quality

The people who have built the software are now asked to test the software.
This seems harmless in itself; after all, who knows the program better than its

developers? Unfortunately, these same developers have a vested interest in
demonstrating

that the program is error-free, that it works according to customer requirements,
and that it will be completed on schedule and within budget. Each of these

interests mitigate against thorough testing.

Testing Strategy

System engineering

Valigation test

System test

A strategy for software testing may also be viewed in the context of the spiral

(Figure 17.1). Unit testing begins at the vortex of the spiral and concentrates on
each

unit (e.g., component, class, or WebApp content object) of the software as
implemented

in source code. Testing progresses by moving outward along the spiral to

integration testing, where the focus is on design and the construction of the
software

architecture. Taking another turn outward on the spiral, you encounter validation

testing, where requirements established as part of requirements modeling are
validated

against the software that has been constructed. Finally, you arrive at system

testing, where the software and other system elements are tested as a whole. To
test

computer software, you spiral out in a clockwise direction along streamlines that

broaden the scope of testing with each turn.

Testing Strategy

ystem testing
Validation testing
Integration testing
Unit festing

Code
Design

Requirements
System engineering

Testing Strategy

/

Requirements

/

Design Integration test

High-order
tests

Code

/

Testing
“direction”

Initially, tests focus on each component individually, ensuring that it functions
properly as a unit. Hence, the name unit testing

Next, components must be assembled or integrated to form the complete
software package. Integration testing addresses the issues associated

with the dual problems of verification and program construction.

After the software has been integrated

(constructed), a set of high-order tests is conducted. Validation criteria
(established

during requirements analysis) must be evaluated. Validation testing provides
final assurance that software meets all informational, functional, behavioral, and

performance requirements.

The last high-order testing step falls outside the boundary of software
engineering

and into the broader context of computer system engineering. Software, once

validated, must be combined with other system elements (e.g., hardware,

people,
databases). System testing verifies that all elements mesh properly and that
overall

system function/performance is achieved.

Testing Strategy

We begin by ‘testing-in-the-small’ and move toward
‘testing-in-the-large’

For conventional software

— The module (component) is our initial focus

— Integration of modules follows

For OO software

— our focus when “testing in the small” changes from an
individual module (the conventional view) to an OO class
that encompasses attributes and operations and implies
communication and collaboration

10

Strategic Issues

* Specify product requirements in a quantifiable manner long
before testing commences.

» State testing objectives explicitly.

* Understand the users of the software and develop a profile
for each user category.

* Develop a testing plan that emphasizes “rapid cycle testing.”
* Build “robust” software that is designed to test itself
* Use effective technical reviews as a filter prior to testing

* Conduct technical reviews to assess the test strategy and test
cases themselves.

* Develop a continuous improvement approach for the testing
process.

a software testing strategy will succeed when software testers:

Specify product requirements in a quantifiable manner long before testing
commences.

Although the overriding objective of testing is to find errors, a good testing

strategy also assesses other quality characteristics such as portability,
maintainability,

and usability (Chapter 14). These should be specified in a way that is measurable
so that testing results are unambiguous.
State testing objectives explicitly. The specific objectives of testing should be

stated in measurable terms. For example, test effectiveness, test coverage,
meantime-

to-failure, the cost to find and fix defects, remaining defect density or frequency
of occurrence, and test work-hours should be stated within the test plan.

Understand the users of the software and develop a profile for each user
category.

Use cases that describe the interaction scenario for each class of user can reduce

overall testing effort by focusing testing on actual use of the product.

11

Develop a testing plan that emphasizes “rapid cycle testing.” Gilb [Gil95]
recommends

that a software team “learn to test in rapid cycles (2 percent of project
effort) of customer-useful, at least field ‘trialable,” increments of functionality

and/or quality improvement.” The feedback generated from these rapid cycle
tests

can be used to control quality levels and the corresponding test strategies.

Build “robust” software that is designed to test itself. Software should be designed

in a manner that uses antibugging (Section 17.3.1) techniques. That is, software
should be capable of diagnosing certain classes of errors. In addition, the design
should accommodate automated testing and regression testing.

Use effective technical reviews as a filter prior to testing. Technical reviews
(Chapter 15) can be as effective as testing in uncovering errors. For this reason,

reviews can reduce the amount of testing effort that is required to produce
highquality

software.

Conduct technical reviews to assess the test strategy and test cases themselves.
Technical reviews can uncover inconsistencies, omissions, and outright errors in
the testing approach. This saves time and also improves product quality.

Develop a continuous improvement approach for the testing process. The test
strategy

should be measured. The metrics collected during testing should be used as

part of a statistical process control approach for software testing.

11

Unit Testing

software

engineer
test cases

Unit testing focuses verification effort on the smallest unit of software design—
the

software component or module. Using the component-level design description
as a guide, important control paths are tested to uncover errors within the
boundary of

the module. The relative complexity of tests and the errors those tests uncover is
limited
by the constrained scope established for unit testing. The unit test focuses on the

internal processing logic and data structures within the boundaries of a
component.

This type of testing can be conducted in parallel for multiple components.

12

Unit Testing

interface

local data structures
boundary conditions
independent paths
error handling paths

test cases

Data flow across a component interface is tested before any other testing is
initiated.

If data do not enter and exit properly, all other tests are moot. In addition, local

data structures should be exercised and the local impact on global data should be
ascertained

(if possible) during unit testing.

Selective testing of execution paths is an essential task during the unit test. Test

cases should be designed to uncover errors due to erroneous computations,
incorrect

comparisons, or improper control flow.

Boundary testing is one of the most important unit testing tasks. Software often
fails at its boundaries. That is, errors often occur when the nth element of an

n-dimensional array is processed, when the ith repetition of a loop with i passes
is

invoked, when the maximum or minimum allowable value is encountered. Test

cases that exercise data structure, control flow, and data values just below, at,

13

and

just above maxima and minima are very likely to uncover errors.

13

Unit Test Environment

driver

interface

local data structures
Module boundary conditions
independent paths

error handling paths

test cases

RESULTS

The module interface is tested to ensure that information properly flows into and
out

of the program unit under test. Local data structures are examined to ensure that
data stored temporarily maintains its integrity during all steps in an algorithm’s

execution. All independent paths through the control structure are exercised to
ensure

that all statements in a module have been executed at least once. Boundary
conditions

are tested to ensure that the module operates properly at boundaries
established to

limit or restrict processing. And finally, all error-handling paths are tested.

14

Integration Testing Strategies

Options:
the “big bang” approach
an incremental construction strategy

15

Top Down Integration

top module is tested with
stubs

/ stubs are replaced one at

a time, "depth first"”

as new modules are integrated,
some subset of tests is re-run

The integration process is performed in a series

of five steps:

1. The main control module is used as a test driver and stubs are substituted for
all components directly subordinate to the main control module.

2. Depending on the integration approach selected (i.e., depth or breadth first),
subordinate stubs are replaced one at a time with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real
component.

5. Regression testing (discussed later in this section) may be conducted to

ensure that new errors have not been introduced.

16

Top Down Integration

depth-first integration integrates all components on a

major control path of the program structure. Selection of a major path is
somewhat

arbitrary and depends on application-specific characteristics. For example,
selecting

the left-hand path, components M1, M2, M5 would be integrated first. Next, M8
or (if

necessary for proper functioning of M2) M6 would be integrated. Then, the
central

and right-hand control paths are built. Breadth-first integration incorporates all
components

directly subordinate at each level, moving across the structure horizontally.

From the figure, components M2, M3, and M4 would be integrated first. The
next control

level, M5, M6, and so on, follows.

17

Bottom-Up Integration

N

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

cluster

A bottom-up integration strategy may

be implemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds)
that perform a specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case input
and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the

program structure.

Bottom-Up Integration

\
|
\
I
|
1

\
/
/

!
|
|
/

d

e

(D,
'..,3..|
|

Cluster 3

——1
oK
I
|
|
\
—
\ |
(w)
N
'L-I

N

OO
e
U

/

Cluster 1 <

Cluster 2

Integration follows the pattern illustrated in Figure 17.6. Components are
combined

to form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown

as a dashed block). Components in clusters 1 and 2 are subordinate to Ma.
Drivers D1

and D2 are removed and the clusters are interfaced directly to Ma. Similarly,
driver D3

for cluster 3 is removed prior to integration with module Mb. Both Ma and Mb
will

ultimately be integrated with component Mc, and so forth.

As integration moves upward, the need for separate test drivers lessens. In fact,

if the top two levels of program structure are integrated top down, the number
of

drivers can be reduced substantially and integration of clusters is greatly
simplified.

19

Sandwich Testing

Top modules are
tested with stubs

Worker modules are grouped into
builds and integrated

cluster

20

Selection of an integration strategy depends upon software characteristics and,
sometimes, project schedule. In general, a combined approach (sometimes called

sandwich testing) that uses top-down tests for upper levels of the program
structure,

coupled with bottom-up tests for subordinate levels may be the best
compromise.

As integration testing is conducted, the tester should identify critical modules. A

critical module has one or more of the following characteristics: (1) addresses
several

software requirements, (2) has a high level of control (resides relatively high in
the

program structure), (3) is complex or error prone, or (4) has definite performance

requirements. Critical modules should be tested as early as is possible. In
addition,

regression tests should focus on critical module function.

20

Regression Testing

* Regression testing is the re-execution of some subset of
tests that have already been conducted to ensure that
changes have not propagated unintended side effects

* Whenever software is corrected, some aspect of the
software configuration (the program, its documentation,
or the data that support it) is changed.

* Regression testing helps to ensure that changes (due to
testing or for other reasons) do not introduce
unintended behavior or additional errors.

* Regression testing may be conducted manually, by re-
executing a subset of all test cases or using automated
capture/playback tools.

In the context of an integration test strategy,

regression testing is the reexecution of some subset of tests that have already
been

conducted to ensure that changes have not propagated unintended side effects.

The regression test suite (the subset of tests to be executed) contains

three different classes of test cases:

* A representative sample of tests that will exercise all software functions.

e Additional tests that focus on software functions that are likely to be affected
by the change.

e Tests that focus on the software components that have been changed.

21

Smoke Testing

* A common approach for creating “daily builds” for product software
* Smoke testing steps:

— Software components that have been translated into code are
integrated into a “build.”
* A build includes all data files, libraries, reusable modules,
and engineered components that are required to implement
one or more product functions.

— A series of tests is designed to expose errors that will keep the
build from properly performing its function.

* The intent should be to uncover “show stopper” errors that
have the highest likelihood of throwing the software project
behind schedule.

— The build is integrated with other builds and the entire product
(in its current form) is smoke tested daily.

* The integration approach may be top down or bottom up.

Smoke testing is an integration testing approach that is commonly
used when product software is developed. It is designed as a pacing mechanism
for time-critical projects, allowing the software team to assess the project on

a frequent basis. In essence, the smoke-testing approach encompasses the
following

activities:

22

Object-Oriented Testing

* begins by evaluating the correctness and consistency
of the analysis and design models

* testing strategy changes
— the concept of the ‘unit’ broadens due to encapsulation

— integration focuses on classes and their execution across a
‘thread’ or in the context of a usage scenario

— validation uses conventional black box methods

* test case design draws on conventional methods, but
also encompasses special features

The objective of testing, stated simply, is to find the greatest possible number of
errors with a manageable amount of effort applied over a realistic time span.

Although this fundamental objective remains unchanged for object-oriented
software,

the nature of object-oriented software changes both testing strategy and testing
tactics

When object-oriented software is considered, the concept of the unit changes.
Encapsulation drives the definition of classes and objects. This means that each
class and each instance of a class packages attributes (data) and the operations
that manipulate these data.

An encapsulated class is usually the focus of unit testing. However,

operations (methods) within the class are the smallest testable units

23

Broadening the View of “Testing”

* |t can be argued that the review of OO analysis and
design models is especially useful because the same
semantic constructs (e.g., classes, attributes,
operations, messages) appear at the analysis, design,
and code level. Therefore, a problem in the definition
of class attributes that is uncovered during analysis
will circumvent side effects that might occur if the
problem were not discovered until design or code (or
even the next iteration of analysis).

The construction of object-oriented software begins with the creation of analysis
and design models. Because of the evolutionary nature of the OO software
engineering paradigm, these models begin as relatively informal representations
of system requirements and evolve into detailed models of classes, class
connections and relationships, system design and allocation, and object design
incorporating a model of object connectivity via messaging). At each stage, the
models can be tested in an attempt to uncover errors prior to their propagation
to the next iteration.

It can be argued that the review of OO analysis and design models is especially
useful because the same semantic constructs (e.g., classes, attributes,
operations, messages) appear at the analysis, design, and code levels. Therefore,
a problem in the definition of class attributes that is uncovered during analysis
will circumvent side effects that might occur if the problem were not discovered
until design or code (or even the next iteration of analysis).

For example, consider a class in which a number of attributes are defined during
the first iteration of OOA. An extraneous attribute is appended to the class (due
to a misunderstanding of the problem domain). Two operations are then
specified to manipulate the attribute. A review is conducted and a domain expert
points out the error. By eliminating the extraneous attribute at this stage, the
following problems and unnecessary effort may be avoided during analysis:

24

1. Special subclasses may have been generated to accommodate the unnecessary
attribute or exceptions to it. Work involved in the creation of unnecessary
subclasses has been avoided.

2. A misinterpretation of the class definition may lead to incorrect or extraneous
class relationships.

3. The behavior of the system or its classes may be improperly characterized to
accommodate the extraneous attribute.

If the error is not uncovered during analysis and propagated further, the following
problems could occur (and will have been avoided because of the earlier review)
during design:

1. Improper allocation of the class to subsystem and/or tasks may occur during
system design.

2. Unnecessary design work may be expended to create the procedural design for
the operations that address the extraneous attribute.

3. The messaging model will be incorrect (because messages must be designed for
the operations that are extraneous).

If the error remains undetected during design and passes into the coding activity,
considerable effort will be expended to generate code that implements an
unnecessary attribute, two unnecessary operations, messages that drive
interobject communication, and many other related issues. In addition, testing of
the class will absorb more time than necessary. Once the problem is finally
uncovered, modification of the system must be carried out with the ever-present
potential for side effects that are caused by change.

During later stages of their development, OOA and OOD models provide
substantial information about the structure and behavior of the system. For this
reason, these models should be subjected to rigorous review prior to the
generation of code.

All object-oriented models should be tested (in this context, the term testing is
used to incorporate formal technical reviews) for correctness, completeness, and
consistency within the context of the model’s syntax, semantics, and pragmatics.

24

Testing the CRC Model

1. Revisit the CRC model and the object-relationship model.

2. Inspect the descrif)tion of each CRC index card to determine if a
delegated responsibility is part of the collaborator’s definition.

3. Invert the connection to ensure that each collaborator that is
asked for service is receiving requests from a reasonable source.

4. Using the inverted connections examined in step 3, determine
whether other classes might be required or whether responsibilities
are properly grouped among the classes.

5. Determine whether widely requested responsibilities might be
combined into a single responsibility.

6. Steps 1to 5 are applied iterativeIY to each class and through
each evolution of the analysis model.

25

OO Testing Strategy

* class testing is the equivalent of unit testing
— operations within the class are tested
— the state behavior of the class is examined

* integration applied three different strategies

— thread-based testing—integrates the set of classes
required to respond to one input or event

— use-based testing—integrates the set of classes required
to respond to one use case

— cluster testing—integrates the set of classes required to
demonstrate one collaboration

Class testing for OO software is the equivalent of unit testing for conventional

software. Unlike unit testing of conventional software, which tends to focus on
the

algorithmic detail of a module and the data that flow across the module
interface,

class testing for OO software is driven by the operations encapsulated by the
class

and the state behavior of the class.

Because object-oriented software does not have an obvious hierarchical control

structure, traditional top-down and bottom-up integration strategies (Section
17.3.2)

have little meaning. In addition, integrating operations one at a time into a class
(the

conventional incremental integration approach) is often impossible because of
the

“direct and indirect interactions of the components that make up the class.

There are two different strategies for integration testing of OO systems.

26

The first, thread-based testing, integrates the set of classes required to respond to
one

input or event for the system. Each thread is integrated and tested individually.

Regression testing is applied to ensure that no side effects occur. The second
integration

approach, use-based testing, begins the construction of the system by testing
those classes (called independent classes) that use very few (if any) server classes.

After the independent classes are tested, the next layer of classes, called
dependent

classes, that use the independent classes are tested. This sequence of testing
layers

of dependent classes continues until the entire system is constructed.

The use of drivers and stubs also changes when integration testing of OO systems
is conducted. Drivers can be used to test operations at the lowest level and for the

testing of whole groups of classes. A driver can also be used to replace the user
interface

so that tests of system functionality can be conducted prior to implementation
of the interface. Stubs can be used in situations in which collaboration between

classes is required but one or more of the collaborating classes has not yet been
fully

implemented.

Cluster testing is one step in the integration testing of OO software. Here, a cluster
of collaborating classes (determined by examining the CRC and object-relationship
model) is exercised by designing test cases that attempt to uncover errors in the

collaborations.

26

WebApp Testing - |

The content model for the WebApp is reviewed to uncover
errors.

The interface model is reviewed to ensure that all use cases
can be accommodated.

The design model for the WebApp is reviewed to uncover
navigation errors.

The user interface is tested to uncover errors in presentation
and/or navigation mechanics.

Each functional component is unit tested.

27

WebApp Testing - Il

Navigation throughout the architecture is tested.

The WebApp is implemented in a variety of different
environmental configurations and is tested for compatibility
with each configuration.

Security tests are conducted in an attempt to exploit
vulnerabilities in the WebApp or within its environment.

Performance tests are conducted.

The WebApp is tested by a controlled and monitored
population of end-users. The results of their interaction with
the system are evaluated for content and navigation errors,
usability concerns, compatibility concerns, and WebApp
reliability and performance.

28

High Order Testing

* Validation testing
— Focus is on software requirements
e System testing
— Focus is on system integration
* Alpha/Beta testing
— Focus is on customer usage
* Recovery testing

— forces the software to fail in a variety of ways and verifies that recovery is
properly performed

e Security testing

— verifies that protection mechanisms built into a system will, in fact,
protect it from improper penetration

* Stress testing

— executes a system in @a manner that demands resources in abnormal
quantity, frequency, or volume

e Performance Testing

— test the run-time performance of software within the context of an
integrated system

Deployment testing, sometimes called

configuration testing, exercises the software in each environment in which it is to
operate. In addition, deployment testing examines all installation procedures and
specialized installation software (e.g., “installers”) that will be used by customers,
and all documentation that will be used to introduce the software to end users.
As an example, consider the Internet-accessible version of SafeHome software

that would allow a customer to monitor the security system from remote
locations.

The SafeHome WebApp must be tested using all Web browsers that are likely to
be

encountered. A more thorough deployment test might encompass combinations
of Web browsers with various operating systems (e.g., Linux, Mac OS, Windows).

Because security is a major issue, a complete set of security tests would be
integrated

with the deployment test.

29

Debugging: A Diagnostic Process

Debugging occurs as a consequence of successful testing. That is, when a test

case uncovers an error, debugging is the process that results in the removal of
the

error.

Debugging is not testing but often occurs as a consequence of testing. the
debugging process begins with the execution of a test case. Results

are assessed and a lack of correspondence between expected and actual
performance is encountered.

30

The Debugging Process

new test results
regression ©a%€S
tests suspected

Causes —-auijes—

test cases
D
O
[—
OO
DO
O
OO
e
e ——
O
O

corrections

identified
causes

the debugging process begins with the execution of a test case. Results

are assessed and a lack of correspondence between expected and actual
performance

is encountered. In many cases, the noncorresponding data are a symptom of

an underlying cause as yet hidden. The debugging process attempts to match
symptom

with cause, thereby leading to error correction.

The debugging process will usually have one of two outcomes: (1) the cause will

be found and corrected or (2) the cause will not be found. In the latter case, the
person

performing debugging may suspect a cause, design a test case to help validate

that suspicion, and work toward error correction in an iterative fashion.

31

The Debugging Process

=

Results

Additional tests

Regressl(ests Suspected causes

Corrections
o identified < buggi
-

32

32

Debugging Effort

B time required
. to diagnose the
time required W 9 symptom and
to correct the error | détermine the
and conduct | cause
regression tests s —— |

33

Symptoms & Causes

d symptom and cause may be
. geographically separated

[J symptom may disappear when
. another problem is fixed

’\ (1 cause may be due to a

. . combination of non-errors

|\ [cause may be due to a system

. or compiler error

-
I A=

cause may be due to
assumptions that everyone
cause believes

/I

symptom

(1 symptom may be intermittent

Why is debugging so difficult? In all likelihood, human psychology (see Section
17.8.2) has more to do with an answer than software technology. However, a
few characteristics of bugs provide some clues:

1. The symptom and the cause may be geographically remote. That is, the
symptom may appear in one part of a program, while the cause may actually
be located at a site that is far removed. Highly coupled components

(Chapter 8) exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is corrected.
3. The symptom may actually be caused by nonerrors (e.g., round-off
inaccuracies).

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing
problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time
application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded

systems that couple hardware and software inextricably.

34

8. The symptom may be due to causes that are distributed across a number of

tasks running on different processors.

34

Consequences of Bugs
A

infectious

damage

catastrophic

serious
disturbing

—4 annoying

L

Bug Type

Bug Categories: function-related bugs,
system-related bugs, data bugs, coding bugs,
design bugs, documentation bugs, standards
violations, etc.

Debugging is one of the more frustrating parts of programming. It has elements
of problem

solving or brain teasers, coupled with the annoying recognition that you have
made

a mistake. Heightened anxiety and the unwillingness to accept the possibility of
errors

increases the task difficulty. Fortunately, there is a great sigh of relief and a
lessening of

tension when the bug is ultimately . . . corrected.

35

Debugging Techniques

[brute force / testing
0 backtracking
[induction

1 deduction

The brute force category of debugging is probably the most

common and least efficient method for isolating the cause of a software error.
You

apply brute force debugging methods when all else fails. Using a “let the
computer

find the error” philosophy, memory dumps are taken, run-time traces are
invoked,

and the program is loaded with output statements. You hope that somewhere in
the

morass of information that is produced you’ll find a clue that can lead to the
cause

of an error. Although the mass of information produced may ultimately lead to
success, it more frequently leads to wasted effort and time. Thought must be
expended first!

Backtracking is a fairly common debugging approach that can be used
successfully

in small programs. Beginning at the site where a symptom has been uncovered,

the source code is traced backward (manually) until the cause is found.
Unfortunately,

36

as the number of source lines increases, the number of potential backward
paths may become unmanageably large.
The third approach to debugging—cause elimination—is manifested by induction

or deduction and introduces the concept of binary partitioning. Data related to
the

error occurrence are organized to isolate potential causes. A “cause hypothesis” is

devised and the aforementioned data are used to prove or disprove the
hypothesis.

Alternatively, a list of all possible causes is developed and tests are conducted to
eliminate each. If initial tests indicate that a particular cause hypothesis shows

promise, data are refined in an attempt to isolate the bug.

36

Correcting the Error

e Is the cause of the bug reproduced in another part of the program? In
many situations, a program defect is caused by an erroneous pattern of
logic that may be reproduced elsewhere.

e What "next bug" might be introduced by the fix I'm about to make? Before
the correction is made, the source code (or, better, the design) should be
evaluated to assess coupling of logic and data structures.

¢ What could we have done to prevent this bug in the first place? This
question is the first step toward establishing a statistical software quality
assurance approach. If you correct the process as well as the product, the
bug will be removed from the current program and may be eliminated
from all future programs.

Once a bug has been found, it must be corrected. But, as we have already noted,
the

correction of a bug can introduce other errors and therefore do more harm than

good. Van Vleck [Van89] suggests three simple questions that you should ask
before

making the “correction” that removes the cause of a bug:

37

Final Thoughts

Think -- before you act to correct
Use tools to gain additional insight
If you’re at an impasse, get help from someone else

Once you correct the bug, use regression testing to
uncover any side effects

38

Summary

Software testing usually accounts for a large share of technical efforts in
software process.

Software shall start with ‘testing-in-the-small and move toward ‘testing-
in-the-large’
B Unit testing, integration testing, validation testing, and system testing

Testing and quality assurance in general shall be planned ahead and start
early in the process.

In the Object-Oriented context, unit testing and integration testing take
different meanings and techniques from their traditional approaches.

Debugging must track down the course of an error.

B Regression test suite shall be extended to prevent the same type of
bugs from re-occurring.

39

