Software Quality Management
concepts, review techniques, and SQA

A layered overview of SE

tools

methods

process model

* Tools developed in Computer Science provide
technologies which are necessary for fulfilling the
goals of software development.

The Primary Goal of Any Software Process:
High Quality

High quality = project timeliness
Why?

Less rework!

Quality

* Whatiis it?
— “a characteristic or attribute of something.”
* two kinds of software quality

— Quality of design encompasses requirements, specifications,
and the design of the system.

— Quality of conformance is an issue focused primarily on
implementation.

User satisfaction =

compliant product + good quality + delivery within budget and
schedule

quality of design encompasses the degree to which the design meets the
functions and features specified in the requirements model. Quality

of conformance focuses on the degree to which the implementation follows the
design and the resulting system meets its requirements and performance goals.

Quality Dimensions

Performance Quality. Does the software deliver all content,
functions, and features that are specified as part of the
requirements model in a way that provides value to the end-
user?

Feature quality. Does the software provide features that
surprise and delight first-time end-users?

Reliability. Does the software deliver all features and
capability without failure? Is it available when it is needed?
Does it deliver functionality that is error free?

Conformance. Does the software conform to local and
external software standards that are relevant to the
application? Does it conform to de facto design and coding
conventions? For example, does the user interface conform to
accepted design rules for menu selection or data input?

Quality Dimensions

Durability. Can the software be maintained (changed) or
corrected (debugged) without the inadvertent generation of
unintended side effects? Will changes cause the error rate or
reliability to degrade with time?

Serviceability. Can the software be maintained (changed) or
corrected (debugged) in an acceptably short time period. Can
support staff acquire all information they need to make
changes or correct defects?

Aesthetics. Most of us would agree that an aesthetic entity
has a certain elegance, a unique flow, and an obvious
“presence” that are hard to quantify but evident nonetheless.
Perception. In some situations, you have a set of prejudices
that will influence your perception of quality.

The Software Quality Dilemma

* Dilemma
— Low quality, low cost, nobody buys
— High quality, high cost, slow release
» Way out
— Good enough software

If you produce a software system that has terrible quality, you lose
because no one will want to buy it.

If on the other hand you spend infinite time, extremely large effort, and
huge sums of money to build the absolutely perfect piece of software, then
it's going to take so long to complete and it will be so expensive to produce
that you'll be out of business anyway.

Either you missed the market window, or you simply exhausted all your
resources.

So people in industry try to get to that magical middle ground where the
product is good enough not to be rejected right away, such as during
evaluation, but also not the object of so much perfectionism and so much
work that it would take too long or cost too much to complete.

Good enough software delivers high quality
functions and features that end-users desire, but at
the same time it delivers other more obscure or
specialized functions and features that contain
known bugs.

Arguments against “good enough.”

It is true that “good enough” may work in some
application domains and for a few major software
companies. After all, if a company has a large
marketing budget and can convince enough people
to buy version 1.0, it has succeeded in locking them
in.

If you work for a small company be wary of this
philosophy. If you deliver a “good enough” (buggy)
product, you risk permanent damage to your
company’s reputation.

You may never get a chance to deliver version 2.0
because bad buzz may cause your sales to plummet
and your company to fold.

If you work in certain application domains (e.g., real
time embedded software, application software that is
integrated with hardware can be negligent and open
your company to expensive litigation.

Cost of Quality

* Prevention costs include
— quality planning
— formal technical reviews
— test equipment
— Training
* Internal failure costs include
— rework
— repair
— failure mode analysis
* External failure costs are
— complaint resolution
— product return and replacement
— help line support
— warranty work

Cost of Quality

$16,000.00
$14,102
$14,000.00
$12,000.00
$10,000.00

$8,000.00
$7.136
$6,000.00
$4,000.00

$2,000.00

$139 $455 $977
s

Requirements Design Coding Testing Maintenance

As expected, the relative costs to find and repair an error or defect increase
dramatically

as we go from prevention to detection to internal failure to external failure

costs.

Basically, the later the defect is discovered, the higher cost it takes to repair it.

Achieving Software Quality

* Critical success factors:
— Software Engineering Methods
— Project Management Techniques
— Quality Control
— Quality Assurance

10

Software reviews

* a meeting conducted by technical people for
technical people

a technical assessment of a work product created
during the software engineering process

a software quality assurance mechanism
* atraining ground

reviews are applied at various points during software engineering and serve to
uncover

errors and defects that can then be removed

A project summary or progress assessment
A meeting intended solely to impart information

A mechanism for political or personal reprisal!

11

Purpose of reviews

* Find errors
* Errors and defects

— Error—a quality problem found before the software is
released to end users

— Defect/Fault—a quality problem found only affer the
software has been released to end-users

The primary objective of technical reviews is to find errors during the process so

that they do not become defects after release of the software.

We make this distinction because errors and defects have very different economic,
business, psychological, and human impact

However, the temporal distinction made between errors and defects in this book is
not mainstream thinking

Defect amplification — no review

Development step

Defects Detection
Errors from< S i Percent
revious ste ici
r 4 Amplified errors 1 : x efﬁ"c:r?;ry |—Errors passed
detection to next step
Preliminary design Newly generated errors

0

io & Detail design
0 0% I_ é Code/unit test
10 AFa=x1.5 o 3710 1
IS il g e L g
25 7% 3 No0% 24

x=3

Integration test 25
Validation test
0 50% A7 To integration

Sys?em test
0 l— 0 |so%}4
—I- 0 |soxp2

lotent errors
([defects)

In some cases, errors passed through from previous steps are amplified
(amplification factor, x) by current

work. The box subdivisions represent each of these characteristics and the
percent of

efficiency for detecting errors, a function of the thoroughness of the review.

a software process that does NOT include reviews,
yields 94 errors at the beginning of testing and

Releases 12 latent defects to the field

13

Defect amplification - review

Development step
Defects Detection

Errors passed through

el il o
P P Amplified errors 1 : x officiency |——» Errors passed

for error o Rt sh
detection iy~ 4

Newly generated errors

Preliminary design

0 Detail design
0 70% - 2 Code/unit test
10 L 1e15 |s0%p> 5

25 I‘_. 103 |60%}24

24 Integration test 25
Validation test N

0 500112 _— res::O integration
0 —l— 0 |sox}

0 —I__ 0 50% k-3

Latent errors
|defects)

Figure 15.3 considers the same conditions except that design and
code reviews are conducted as part of each software engineering action. In this
case,

10 initial preliminary (architectural) design errors are amplified to 24 errors
before

testing commences. Only three latent errors exist. The relative costs associated
with

the discovery and correction of errors, overall cost (with and without review for
our

hypothetical example) can be established.

a software process that does include reviews,
yields 24 errors at the beginning of testing and

releases 3 latent defects to the field

A cost analysis indicates that the process with NO reviews costs approximately 3 times
more than the process with reviews, taking the cost of correcting the latent defects into

account

14

Metrics

* Effort expended with and without reviews

Effort
Without
inspections
With
inspections
T 1 T T > Time
\ Design Code Test \ /
Requirements Deployment

Planning

* The total review effort and the total number of
errors discovered are defined as:

¢ Ereview = Ep & Ea o Er
- Errto! = Errminor + Errmajor

15

Software Quality Assurance

* SQA (quality management)
— An umbrella activity
* Elements of SQA

— Standards

— Reviews and Audits

— Testing

— Error/defect collection and analysis
— Change management

— Education

— Vendor management

— Security management

— Safety

— Risk management

Software quality assurance (often called quality management) is an umbrella
activity (Chapter 2) that is applied throughout the software process.

Software quality assurance encompasses a broad range of concerns and activities

that focus on the management of software quality. These can be summarized as
these elements.

16

SQA Tasks

* Prepares an SQA plan for a project.

* Participates in the development of the project’s software
process description.

* Reviews software engineering activities to verify compliance
with the defined software process.

* Audits designated software work products to verify
compliance with those defined as part of the software
process.

* Ensures that deviations in software work and work products
are documented and handled according to a documented
procedure.

* Records any noncompliance and reports to senior
management.

The plan identifies
evaluations to be performed

audits and reviews to be performed

standards that are applicable to the project

procedures for error reporting and tracking

documents to be produced by the SQA group

amount of feedback provided to the software project team

Participates in the development of the project’s
software process description.
The SQA group reviews the process description for
compliance with organizational policy, internal software

standards, externally imposed standards (e.g., ISO-9001),
and other parts of the software project plan.

Reviews software engineering activities to verify compliance
with the defined software process.

identifies, documents, and tracks deviations from the process

17

and verifies that corrections have been made.

Audits designated software work products to verify
compliance with those defined as part of the software
process.

reviews selected work products; identifies, documents, and
tracks deviations; verifies that corrections have been made

periodically reports the results of its work to the project
manager.

Ensures that deviations in software work and work products
are documented and handled according to a documented
procedure.

Records any noncompliance and reports to senior
management.

Noncompliance items are tracked until they are resolved.

17

SQA Goals

* Requirements quality. The correctness, completeness, and
consistency of the requirements model will have a strong
influence on the quality of all work products that follow.

* Design quality. Every element of the design model should be
assessed by the software team to ensure that it exhibits high
quality and that the design itself conforms to requirements.

* Code quality. Source code and related work products (e.g.,
other descriptive information) must conform to local coding
standards and exhibit characteristics that will facilitate
maintainability.

* Quality control effectiveness. A software team should apply
limited resources in a way that has the highest likelihood of
achieving a high quality result.

There are detailed attributes to describe these goals, and concrete metrics for
measuring each attribute.

Statistical SQA

Product + Collect information on all defects
& Process + Find the causes of the defects
Move to provide fixes for the process

rement

... an understanding of how
to improve quality ...

Statistical quality assurance reflects a growing trend throughout industry to
become

more quantitative about quality. For software, statistical quality assurance
implies

the following steps:

1. Information about software errors and defects is collected and categorized.
2. An attempt is made to trace each error and defect to its underlying cause
(e.g., nonconformance to specifications, design error, violation of standards,
poor communication with the customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20
percent

of all possible causes), isolate the 20 percent (the vital few).
4. Once the vital few causes have been identified, move to correct the problems

that have caused the errors and defects.

19

Six-Sigma for Software Engineering

* The term “six sigma” is derived from six standard deviations
(60)—3.4 instances (defects) per million occurrences—
implying an extremely high quality standard.

* The Six Sigma methodology defines three core steps:

— Define customer requirements and deliverables and project goals via
well-defined methods of customer communication

— Measure the existing process and its output to determine current
quality performance (collect defect metrics)

— Analyze defect metrics and determine the vital few causes.
* Two additional steps

— Improve the process by eliminating the root causes of defects.

— Control the process to ensure that future work does not reintroduce
the causes of defects.

Six Sigma is the most widely used strategy for statistical quality assurance in
industry today.

is a rigorous and disciplined methodology that uses data and statistical analysis
to

measure and improve a company’s operational performance by identifying and
eliminating

defects’ in manufacturing and service-related processes.

standard deviations between the mean and the nearest specification limit.

20

Software Reliability

* A simple measure of reliability is mean-time-
between-failure (MTBF), where

MTBF = MTTF + MTTR

* The acronyms MTTF and MTTR are mean-time-to-
failure and mean-time-to-repair, respectively.

* Software availability is the probability that a program
is operating according to requirements at a given
point in time and is defined as

Availability = [MTTF/(MTTF + MTTR)] x 100%

21

Software Safety

* Software safety is a software quality assurance
activity that focuses on the identification and
assessment of potential hazards that may affect

software negatively and cause an entire system to
fail.

* If hazards can be identified early in the software
process, software design features can be specified

that will either eliminate or control potential hazards.

22

ISO 9001:2000 Standard

* ISO 9001:2000 is the quality assurance standard that applies
to software engineering.
* The standard contains 20 requirements that must be present
for an effective quality assurance system.
* The requirements delineated by ISO 9001:2000 address topics
such as
— management responsibility, quality system, contract
review, design control, document and data control,
product identification and traceability, process control,
inspection and testing, corrective and preventive action,
control of quality records, internal quality audits, training,
servicing, and statistical techniques.

23

Summary

* Software quality management
— Quality concepts

* Dimensions, dilemma, cost
— Technical review

* Defect augmentation model

— Its relationship with technical review

— SQA

* Tasks

* Goals

* Reliability

24

