Design modeling review
(a case study)

Translation: analysis to design

Scenerio-based
elements

Flow-oriented
elements

Com onent-
leve Design

Use cases - text
Usecase diagrams
Activity diagrams
Swimlane diagrams

Andlysis Mod

Class-based
elements
Class diagrams
Analysis packages
CRC models
Collaboration diagrams

Data flow diagrams

Control-flow dlcgroms

Processing narratives
' ‘ Interface Design
Architectural Design

7

Be aviora

elements

State diagrams
Sequence diagrams
Data/Class Design

Design Model

We are now going to review the entire process of modeling: including analysis and

design modeling

’ - EEL-"
W (L7 D L5558 =) gl
Bonus §y1925120 RS0l 09710 1% 7% F ~. b1.435.120

\ o ~ 1.325.5490

Undefined Fantastic Object features three playable characters (Reimu, Marisa
and Sanae), each with two weapon types

A single player game.

Playable characters:

Reimu Hakurei - The miko of the Hakurei Shrine. She sets out to investigate the
treasure ship thinking it is yet again the work of yokai.

Marisa Kirisame - A magician who lives in the Forest of Magic. She seeks the
treasure ship simply because it piqued her curiosity.

Sanae Kotiya - The wind priestess of Moriya Shrine who is playable for the first
time in Touhou. She is still adjusting to life in Gensokyo, and tries to prove herself
by setting out to find the treasure ship under the orders of the goddesses she
serves.

Enemies: seven bosses, six for stage 1 through 6, and one for extra stage.

elements

elements
Use cases - text Data flow diagrams
Usecase diagrams Controlflow diagrams
Activity diagrams Processing narratives
Swimlane diagrams
ysis Model

Class-based iora

elements elements

Translation: analysis to design

Component-
Level Design

Interface Design

Architectural Design

Data/Class Design

Design Model

First, requirement analysis/modeling

Preliminary Features

* A “bullet curtain” (danmaku) shooting game.

* You play the game by controlling your character, including
moving, shooting, bombing.

* There are multiple difficulty-level, characters, weapons to be
chosen.

* There are lots of enemies, both regular ones and bosses,
which shoot a large amount of bullets.

* Your character has a limited number of lives. If you lose all of
them, game over.

* Killed enemies drop items that can be collected for power,
score, and bonus.

* You have to beat 6 stages to win the game. At the end of each
stage, you face a boss battle.

These are the high-level features of this game application

There are 4 levels of difficulty: Easy, Normal, Hard, and Lunatic

. Go to a menu (with some options)
. Select characters

. Select difficulty levels.

. Replays

. Select weapon

. Blow stuff up.

. Collect (items) -

. Rewarding risky behavior

W 00 ~N O U B W N

. Play music.
10. Enemies: regular ones and bosses.

12. Enemies drop items.

13. Save/Load

14. Setup at the start of the program.
15. Keeping scores.

16. In game upgrades.

Features and Use cases

11. Projectiles: different types of bullets.

Use cases (from playet’s point of view)

. Attack/Shoot
. Move
. Pause

1
2
3
4.
5
6
7
8

Exit

. Blow stuft up

. Select difficulty/character/weapon
. Die

. Set up program settings

These are the main use cases, corresponding to the main features listed before.

Possible questions to consider

. Difference between difficulty levels -> differences details
. How long for the game, with respect to different levels

. Enemies scripted or Al

. How to collect the items.

. Different characters, weapons: details

. Is there a high score

. MAX number of enemies

. Score affects anything?

O 0 N O 1 B W N -

. Can you earn more lives

10. Can you save/load the game

11. Can you change the controls? How do you control? Platform?
12. Online functionality? Achievement system?

13. Multiplayer options? Difficulty?

14. Which enemies drop items?

15. Multiple achievements? Bonus levels, extra bosses. Easter eggs.
16. On what platform?

These are the questions that you may have as the software engineering doing the
analysis and design;

Could also be questions that you discuss about with your stakeholders

» 1. Details on differences among different settings:
— Difficulty; Character; Weapon

. Duration of the game / each stage.
. Enemies: Scripted, Al, or both

. Collision

. Power, score, bonus system details
. MAX number of objects on screen

. Save/Load capability
. Score Board
. Multiplayer. Online. Achievement.

L]
W 00 0 N 1 B W N

. Configure control.
* 10. Easter Eggs.

e 11. Platform Constraint

We will mainly look at two parts: features related to gaming rules, and those concerning
system constraint

Gaming Rules

* Controlling? Bombing?

* Choose the setting?

* Life system?

* |tem system? Power? Score? Bonus?
» Stages? Boss battles?

* Key feature: bullets

In fact, there are several major dimensions to consider regarding the gaming rules

Refined Features

* Gaming Rules
— Control
— Win/Lose condition
— Details w.r.t different settings.
— Item system. Power system. Score system. Bonus system.
— Stages. Duration
— Player: shoot, bomb.
— Enemy: movement and shoot. Boss: battle.
— Bullet: type, pattern, etc.
— Collision.

* Save/Load/Replay

* Score board

* Practice

* Music room

* Multiplayer/Online function. Achievement system.
* Control Configuration.

* Easter Eggs.

After taking into consideration those dimensions of gaming rules, we may reach a more
refined level of features.

The detailed descriptions on functional features are the starting points of

developing refined use cases and class-based modeling.

Actual Rules

Control: high and low speed mode
Bomb

— Enter an invincible mode for a limited amount of time. Erase all
bullets. Deal large damage to enemies.

Setting
Life system
— Lost a life when hit by any bullet/enemy itself.

[tem system

— P-ltem: increase power; S-ltem: increase score; B-ltem: bonus towards
bomb or life

— Power system; Score system.
Stage.

— Go through a number of enemies/events, and at the end entering a
boss battle.

These are more detailed description about the rules, as a result of the refinement

11

Actual Rules

Boss battle

— Each boss has several lives. During each one of them, the boss
performs a regular attack and then a special attack (called spell card).

Bullets
— Types. Speed. Pattern. Size. Trajectory.

Even more details on use cases

12

Analysis Classes

* Object (Flyer) | Position, Speed, Hitbox | add(); remove();
move();
— Player | lives, power level, bombs | shoot(); bomb();

— Enemy | health | reduce_health(); shoot(); drop_item();
* Boss | lives[], health[], timelimit[] | shoot(); spell_card();

— Item | type
— Bullet | ...

* Menu | ..
* MainScreen |...
* SideBar | ...

We already have the use cases, now we should identify analysis classes (i.e., class-based
elements in the analysis model)

Translation: analysis to design

Scenerio-based Flow-oriented ‘ Com -

elements elements - Level Design

Use cases - text Data flow diagrams

Usecase diagrams Controlflow diagrams

Activity diagrams Processing narratives

Swimlane diagrams Interface Design

ndlysis Model
Class-based Behaviora - :
prasieiers olements Architectural Design

Class diagrams State diugrqms =
Analysis packages Sequence diagrams
CRC models

Collaboration diagrams

Now, we move to the design modeling based on the work products from requirements
analysis/modeling.

14

Design Classes

* Analysis classes are refined during design to become
entity classes

* Boundary classes are developed during design to
create the interface (e.g., interactive screen or
printed reports) that the user sees and interacts with
as the software is used.

Boundary classes are designed with the responsibility of
managing the way entity objects are represented to users.

* Controller classes are designed to manage

the creation or update of entity objects;

the instantiation of boundary objects as they obtain
information from entity objects;

complex communication between sets of objects;

validation of data communicated between objects or
between the user and the application.

So, the first step is to do data/class design.

15

Data/class design

* Design classes

Analysis class
describes requirements

1 refine 1 extend

Design class Entity classes
provides design detail for implementation Boundary classes
Controller classes

I Entity classes I

The analysis model defines a set of analysis classes.

The level of abstraction of an analysis class is relatively high

Design classes refine the analysis classes

Design class provides design detail that will enable the classes to be implemented,
and implement a software infrastructure that supports the business solution.

Controller classes are designed to manage (1) the creation or update of entity
objects, (2) the instantiation of boundary objects as they obtain information from

entity objects, (3) complex communication between sets of objects, and (4)
validation

of data communicated between objects or between the user and the application.

16

Data/class design
. FloorPlan
Analysis = E——
name
outsideDimensions type Camera
class T
doterminaType/) oddCameral) d
pml:ianfoorplon[) addWdll[) fieldView
S addWindow | panAngle
change color | deleleSegment() zoomSeting
draw| |
i T
Is placed within » | " - Q
Is part of Segment
siariCoordinale
endCoordinate
gefType{]
Camera Wall izl i
co0oo
e Vhormanions [I
afion
fildViow [Wallsegment | | Window |
nAnglo t 1 1 ' |
wmﬁaing dotermineTypel | L 1 ! 1
detormineTypel | computeDimensions (|
rdrunshh%ﬁ:arion[| .
1ISpAa
SEE) Design
Is used to build . i « Is used to build
[Is used o build class
WallSegment Window Door
Gt FerCoord PeCoord
topCoordi topCoord siopCoordinates
nextWallSement nextWindow naxtDoor
' Typel)] Typel) JotormineType()
drawl) draw| | drawl)

Example (SafeHome) - Design class for FloorPlan and composite aggregation for the
class (see sidebar discussion)

The analysis class showed only things in the problem domain, well, actually on
the computer screen, that were visible to the end user, right?

Ed: Yep, but for the FloorPlan design class, I've got to add some things that are
implementation specific. | needed to show that FloorPlan is an aggregation of
segments—hence the Segment class—and that the Segment class is composed
of lists for wall segments, windows, doors, and so on. The class Camera
collaborates with FloorPlan, and obviously, there can be many cameras in the
floor plan.

17

Design Classes

User interface classes
— Define all abstractions that are necessary for human-computer interaction.

Business domain classes
— Often are refinements of the analysis classes defined earlier.
— Identify the attributes and services (methods) that are required.

Process classes
— Implement lower-level business abstractions

Persistent classes
— Represent data stores

System classes

— Implement software management and control functions that enable the
system to operate and communicate within its computing environment and
with the outside world.

p230

18

Data/class design

* Design classes
— User interface classes -

— Business domain classes

Entity classes

— Processclasses _ " poundary classes

— Persistent classes

—— Centroller classes

— Systemclasses

This is a finer classification of design classes. (the mapping is my personal
opinion!)

User interface classes define all abstractions that are necessary for human
computer interaction (HCI).

Business domain classes are often refinements of the analysis classes defined
earlier. The classes identify the attributes and services (methods) that are
required to implement some element of the business domain.

Process classes implement lower-level business abstractions required to fully
manage the business domain classes.

Persistent classes represent data stores (e.g., a database) that will persist beyond
the execution of the software.

System classes implement software management and control functions that
enable the system to operate and communicate within its computing
environment and with the outside world.

19

Architectural Design

The software must be placed into context

— the design should define the external entities (other
systems, devices, people) that the software interacts with
and the nature of the interaction

A set of architectural archetypes should be identified
— An archetype is an abstraction (similar to a class) that
represents one element of system behavior

¢ E.g. Nodes (Detectors and indicators) and controllers, in SafeHome
project.

The designer specifies the structure of the system by defining
and refining software components that implement each
archetype

20

20

Architectural design: step 1
(representing system in context)

* Representation: architectural context diagram (ACD)

Superordinate systems

I .

Used by

|

j—_ Target system - >
Uses
Uses Peers
{ —

Actors

Depends on

Subordinate systems

Systems that interoperate with the target system

Superordinate systems—those systems that use the target system as part of
some higher-level processing scheme.

Subordinate systems—those systems that are used by the target system and
provide data or processing that are necessary to complete target system
functionality.

Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,

information is either produced or consumed by the peers and the target system.

Actors—entities (people, devices) that interact with the target system by
producing or consuming information that is necessary for requisite processing

21

Architectural design: step 2
(defining archetypes)

* Representation: class diagrams

Controller

T I Communicates with

Node

7Y
| |

Detector Indicator

Node. Represents a cohesive collection of input and output elements of the
home security function.

For example a node might be comprised of (1) various sensors and (2) a variety
of alarm (output) indicators

Detector. An abstraction that encompasses all sensing equipment that feeds
information into the target system.

Indicator. An abstraction that represents all mechanisms (e.g., alarm siren,
flashing lights, bell) for indicating that an alarm condition is occurring.

Controller. An abstraction that depicts the mechanism that allows the arming
or disarming of a node. If controllers reside on a network, they have the ability to
communicate with one another.

22

Architectural design: step 3
(refining architecture into components)

* Representation: component diagrams

__1 SafeHome
|1 executive

-~ Function
.- 3 s. sl .
-7 sooos T ~o_ selection
- - \\ - ~ S e
- iy .~ .
A} o Swl
External Y el S...
-
communication ‘\‘ Sl -~
N -
management % ~. e
P : S B
’ ~

o N $ Security l%&;rvei”unce

Home
eee
management

GUI Internet i Y =
interface 4 \ RS
s \ S
| i) \ S

Control panel
processing

Detector Alarm
management processing

External communication management—coordinates communication of the
security function with external entities such as other Internet-based systems and
external alarm notification.

Control panel processing—manages all control panel functionality.

Detector management—coordinates access to all detectors attached to the
system.

Alarm processing—verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and
then positioned within the overall SafeHome architecture.

Design classes (with appropriate attributes and operations) would be defined
for each.

It is important to note, however, that the design details of all attributes and
operations would not be specified until component-level design

23

Input Device

Architectural Context

Files:
Audio/Video Infrastructure

(Save)

Architectural Context Diagram: Define the relation between a system and its environment

24

Archetypes

Ga

Input

AV Display

AV Display

Input

Gaming

Infrastru

Uses

Infrastructure

25

Component Structure

S

E AV Display i Controller i GameObject

% GUI % Audio % Video
7~

What is a Component?

* OMG Unified Modeling Language Specification [OMGO01]
defines a component as
— “...amodular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a
set of interfaces.”

* OO0 view: a component contains a set of collaborating classes

* Conventional view:
— Logic and algorithms
— Internal data structures that are required to implement the processing
logic
— Interface that enables the component to be invoked and data to be
passed to it.

Now, component level design, which we just finished studying

27

The view of component: OO

* Component: a set of collaborating classes
* Design:

— Begin with requirements model, elaborate analysis class
and infrastructure class

* Recall: how did we do data/class design?

Each class within a component has been fully elaborated to include all
attributes and operations that are relevant to its implementation.

All interfaces that enable the classes to communicate and collaborate with
other design classes must also be defined.

To define a component, we begin with the requirements model and elaborate
analysis classes (for components that relate to the problem domain) and
infrastructure classes (for components that provide support services for the
problem domain).

28

Select Components

* Analysis classes
* |nfrastructure domain

— Memory management components
— Communication components

— Database components

— Task management components

* Interfaces depicted in the ACD

29

Component Structure

Input ————

AV Display i GameObject

Pick each component from the architecture design, do the component level design on
that component.

Component level design: OO view

Requirements

model

Architectural

Analysis class dESign
Printiob

numberOfPages
numberOfSides
e poperType
SompiProdCond e - maognification
productionFeatures

compusTorliobCost | I,

computejobCosH)
pazslobtcPrinter|)

posslobis Froduction! |

During architectural design, PrintJob is defined as a component within the
software architecture and is represented using the shorthand UML notation
shown in the middle right of the figure.

Printlob has two interfaces, computelob, which provides job costing capability,
and initiateJob, which passes the job along to the production facility.

Represented using the “lollipop” symbols shown to the left of the component
box.

31

Questions (component-level design)

* How do we implement the “behavior” of enemies/bullets?
— Movement; Action (enemy shooting);

* Using “scripts” to describe the behavior.

* How do we control these behaviors? How do the classes
interact with each other? (Interface)

— EnemyManager
— Enemies

— BulletManager
— Bullets

— Player

For example, when working on the component “Game”, which will implement the major
gaming rules, we may get a few questions

32

Command Pattern

Client

Invoker

v

Command

<«instartite=>

Receiver

receive

+exeaute().void

ConcreteCommndl

+action():void

state:int

+exeate():void

exeate() {
receiveradion(),

}

And during the design, we always want to look for appropriate design patterns to adapt.

For this game, we may want to use a pattern called ‘command pattern’

33

Command Pattern

Command: declares an interface for executing an operation;

ConcreteCommand: extends the Command interface,
implementing the Execute method by invoking the
corresponding operations on Receiver. It defines a link
between the Receiver and the action.

Client: creates a ConcreteCommand object and sets its
receiver;

Invoker: asks the command to carry out the request;
Receiver: knows how to perform the operations;

[o T e o=

34

Command Pattern

+execube(fvad

BuyStockOrdar

~sndcSdTrade

texeoute(pvad
+BuyStnckOrder{stock StackTrade)vad

SaliStockComand

Agent agant = new Ageny)

- 4 public statc void man{Sting] args) {
SwckTmde stack = new SackTrade()

[N

Chent Agoent
m_ordersQueue Quaue
I smain jvoud splaceOrdedorder Ordar)k vad
1
1 v ssal{pvad
1]
1
| T
1 1
L]
- : <<zt
: moie
L StockTrade
i
1
1
I souy():vad
1
1 el pvad
1
|
1
1
1

-shockSackTrade

+axoacuie| pvad

+ SaiSnckOrexstack- Stack Trada}vad ||

BuyStackCammand bsc = new BuyStockC d(
SdiStackCammand s2c = new SallStockCammand|stack);

agert phoeOrdar(tec); # Buy Shares
agant phoeOrdar(ssc); /! Sall Shares

| exease}{
sadkbuy):

BN
1 exeatel){
shocksal)

)

Adapted for the game application.

35

e e[

+executeTasks(task: Task)

e
+colision{bulletquere: queue)

execute{
Player.respond_input();
Player.collision();

H

Y
+m_BehaviorScript: Script
X

+behave(behaviorscript: Script)

The component level design of the “Game component”

36

Design Pattern

— P351
— http://www.dofactory.com/Patterns/Patterns.aspx

— http://www.oodesign.com/

37

Stepwise Refinement

O p €en

repeat until door opens

turn knob cloc

if knob doesn't tutn,
take key out;
find correct key;
insert in lock;

endif

38

An important design concept that is constantly applied.

Summary

Requirements and Stakeholders

— Requirements come from more than just users.

Prioritize the features
From requirements analysis to design

Build up architecture
— Follow the steps

Elaborate components
Look for design patterns
Address changing requirements

39

