Component level design

(1)




Translation: analysis to design

Scenerio-based
elements

Flow-oriented
elements

Use cases - text
Usecase diagrams
Activity diagrams

Data flow diagrams
Controlflow diagrams
Processing narratives

Comranenf—
Level Design

Swimlane diagrams

T Interface Design

Andlysis Model

Behavioral
elements

Class-based

elements Architectural Design

State diagrams

Class diagrams
Sequence diagrams

Analysis packages
CRC models
Collaboration diagrams

Data/Class Design

y —

Design Model

Data/Class design: transforms analysis classes into implementation classes and data
structures

Architectural design: defines relationships among the major structural elements of the
software, the architectural styles and patterns

Interface design—defines how software elements, hardware elements, and end-users
communicate. Usage scenarios and behavioral models are used

Component-level design—transforms structural elements into procedural descriptions of
software components. Class-based models and behavioral models server as the basis

Only scenario-based elements serve just one design model



Designing traditional components

* Fundamental constructs
— Sequential
— Condition
— Repetition
* Structured programming
— A design technique for component level design
* Constrain logic flows to these three constructs

— Limit structural design to small number of predictable
logical structure
* Reduce program complexity
* Enhance readability, testability, and maintainability
* Conducive to human understanding --- Chunking

The foundations of component-level design for traditional software components
were formed in the early 1960s and were solidified with the work of Edsger
Dijkstra and his colleagues; In the late 1960s, Dijkstra and others proposed the
use of a set of constrained logical constructs from which any program could be
formed. The constructs emphasized “maintenance of functional domain.” ; That
is, each construct had a predictable logical structure and was entered at the top
and exited at the bottom, enabling a reader to follow procedural flow more
easily.

Sequence implements processing steps that are essential in the specification of
any algorithm.

Condition provides the facility for selected processing based on some logical
occurrence, and

Repetition allows for looping.

These three constructs are fundamental to structured programming—an
important component-level design technique.

The structured constructs are logical chunks that allow a reader to recognize
procedural elements of a module, rather than reading the design or code line by



line. Understanding is enhanced when readily recognizable logical patterns are
encountered.



Designing traditional components:
graphical notations (flowchart)

4 - Condlhcn
First
task v T ¥
Nt Elsepart Then-pcrr
task
Sequence I‘-fhon else

Case
condition

N

Do while Repeat until

¥ Solociton Repetition

The activity diagram allows you to represent sequence, condition, and
repetition—

all elements of structured programming—and is a descendent of an earlier
pictorial

design representation (still used widely) called a flowchart. A flowchart, like

an activity diagram, is quite simple pictorially. A box is used to indicate a
processing

step. A diamond represents a logical condition, and arrows show the flow

of control.

The selection (or select-case) construct shown in the figure

is actually an extension of the if-then-else.



Designing traditional components:
tabular notations (decision table)

* Express complex combination of Rules
Conaiten: Condifions 1[2]3]4]5]6
* Steps — T
— 1. List all actions that can be associated AgUiar cusiomer
with a specific procedure (or N e Tl
component).
— 2. List all conditions (or decisions Gold customer T|T
made) during execution of the —
procedure. Specu:| discount FIT|F|T|F|T
— 3. Associate specific sets of conditions :
with specific actions, eliminating Actions
impossible combinations of conditions; No discount v
alternatively, develop every possible
permutation of conditions. App}y 8 percent discount
— 4, Define rules by indicating what .
actions occur for a set of conditions. Apply 15 percent discount
additional x percent
Qigfiyum * / /

To illustrate the use of a decision table, consider the following excerpt from an

informal use case that has just been proposed for the print shop system:

Three types of customers are defined: a regular customer, a silver customer, and
a gold

customer (these types are assigned by the amount of business the customer
does with the

print shop over a 12 month period). A regular customer receives normal print
rates and

delivery. A silver customer gets an 8 percent discount on all quotes and is placed
ahead

of all regular customers in the job queue. A gold customer gets a 15 percent
reduction in

guoted prices and is placed ahead of both regular and silver customers in the job
queue.

A special discount of x percent in addition to other discounts can be applied to
any

customer’s quote at the discretion of management.



Designing traditional components:
program design language (PDL)

component alarmManagement;
o The intent of this component is o manage control panel switches and input from sensors
* Logical constructs + S g A ’ =
set default values for systemStatus (returned value), all data items
natural lan guage il o ool i ol B
check controlPanelSwitches (cps)
if ops = "test" then invoke alarm set to "on"

* NOT a programming opa = "l than ke el ot o "o
if ops = “newBoundingValue" then invoke keyboardinput
I a N g u a g e i ops = "burglarAlarmO#" invoke deactivateAlarm;

* Example
default for cps = none
— SafeHome Security reset all sighalValues and switches

do for all sensors

invoke ch procedure returning sig!
if signalValue > bound [alarmType]

then phoneMessage = message [alarmType]

B

set Bell to “on" for

set system status = "alarmCondition"

[y )

parbegin
invoke alarm procedure with "on", alarmTime8econds:
invoke phone procedure set to alarmType, phoneNumber
endpar
else skip
endif
enddofor

end alarmManagement

Program design language (PDL), also called structured English or pseudocode,
incorporates

the logical structure of a programming language with the free-form expressive

ability of a natural language.

It should be noted that PDL can be extended to include keywords for multitasking
and/or concurrent processing, interrupt

handling, interprocess synchronization, and many other features.



Component-based development

* CBSE (Component-based Software Engineering)

— a process that emphasizes the design and construction of
computer-based systems using reusable software
“components.”

* COTS (Commercial off-the-shelf) components

— purchase of packaged solutions which are then adapted to
satisfy the needs of the purchasing organisation

In the software engineering context, reuse is an idea both old and new.

Programmers have reused ideas, abstractions, and processes since the earliest
days of computing, but the early approach to reuse was ad hoc

Today, complex, high-quality computer based systems must be built in very
short time periods and demand a more organized approach to reuse.



Component-Based Development

* When faced with the possibility of reuse, the
software team asks:

— Are commercial off-the-shelf (COTS) components available
to implement the requirement?

— Are internally-developed reusable components available to
implement the requirement?

— Are the interfaces for available components compatible
within the architecture of the system to be built?
* At the same time, they are faced with the following
impediments to reuse ...




Impediments to Reuse

Few companies and organizations have anything that even
slightly resembles a comprehensive software reusability plan.

Although an increasing number of software vendors currently
sell tools or components that provide direct assistance for
software reuse, the majority of software developers do not
use them.

Relatively little training is available to help software engineers
and managers understand and apply reuse.

Many software practitioners continue to believe that reuse is
“more trouble than it’s worth.”

Many companies continue to encourage of software
development methodologies which do not facilitate reuse

Few companies provide an incentives to produce reusable
program components.




Component-based development

* Software process for CBSE

Domain Engineering

Domain Software Reusable
Analysis el | Architecture |==—{- Artifact
Development Development

Repository
Reusable
Artifacts/

Components

SEVSEV
(= [ [
v i . v

> f:;?;?s —- & el | Construction \

User Design
Requirements
\b System j\ Analysis _} Application
E & Design Software

Software Engineering

Models




Component-based development

* Domain engineering
— 1. Define the domain to be investigated.
— 2. Categorize the items extracted from the domain.

— 3. Collect a representative sample of applications in the
domain.

— 4. Analyze each application in the sample.
— 5. Develop an analysis model for the objects.

Domain engineering provides the library of reusable components that are
required for component-based software engineering.

The intent of domain engineering is to identify, construct, catalog, and
disseminate a set of software components that have applicability to existing and
future software in a particular application domain

Overall goal: establish mechanisms that enable software engineers to share
these components—to reuse them—during work on new and existing systems.

Domain engineering includes three major activities—analysis, construction, and
dissemination.

11



|ldentifying Reusable Components

Is component functionality required on future implementations?
How common is the component's function within the domain?

Is there duplication of the component's function within the domain?
Is the component hardware-dependent?

Does the hardware remain unchanged between implementations?
Can the hardware specifics be removed to another component?

Is the design optimized enough for the next implementation?

Can we parameterize a non-reusable component so that it becomes
reusable?

Is the component reusable in many implementations with only minor
changes?

Is reuse through modification feasible?

Can a non-reusable component be decomposed to yield reusable
components?

How valid is component decomposition for reuse?

12



Component-based development

* the existence of reusable components does not
guarantee that these components can be integrated
easily or effectively into the architecture chosen for a
new application.

— Qualification
— Adaptation
— Composition

Some of these reusable components are developed in-house, others can be
extracted from existing applications, and still

others may be acquired from third parties.

Unfortunately, the existence of reusable components does not guarantee that

these components can be integrated easily or effectively into the architecture
chosen

for a new application.

It is for this reason that a sequence of component-based development actions is
applied when a component is proposed for use.

13



Component-based development

* Component qualification
— ensure a candidate component is appropriate to adopt

— Factors to consider
* API
* Development and integration tools
* Run-time requirements
* timing or speed, and network protocol
* Service requirements
* Security features
* Embedded design assumptions
* Exception handling.

Component qualification ensures that a candidate component will perform the
function required, will properly “fit” into the architectural style (Chapter 9)
specified for the system, and will exhibit the quality characteristics(e.g.,
performance, reliability, usability) that are required for the application.

An interface description provides useful information about the operation and use
of a software component, but it does not provide all of the information required
to determine if a proposed component can, in fact, be reused effectively in a new
application.

e Application programming interface (API).

e Development and integration tools required by the component.

* Run-time requirements, including resource usage (e.g., memory or storage),
timing or speed, and network protocol.

e Service requirements, including operating system interfaces and support
from other components.

e Security features, including access controls and authentication protocol.

e Embedded design assumptions, including the use of specific numerical or

nonnumerical algorithms.

14



e Exception handling.

it is much more difficult to determine the internal workings of commercial off-the-
shelf (COTS) or third-party components

because the only available information may be the interface specification itself.

14



Component-based development

* Component adaptation
— Address possible conflicts after qualification
— Adaptation technique (component wrapping)
* White-box wrapping
* Gray-box wrapping
* Black-box wrapping

In reality, even after a component has been qualified for use within an
application architecture, conflicts may occur in one or more of the areas just
noted.

White-box wrapping is applied when a software team has full access to the
internal design and code for a component (often not the case unless open-source
COTS components are used), white-box wrapping examines the internal
processing details of the component and makes code-level modifications to
remove any conflict.

Gray-box wrapping is applied when the component library provides a component
extension language or API that enables conflicts to be removed or masked.

Black-box wrapping requires the introduction of pre-and postprocessing at the
component interface to remove or mask conflicts.

15



Component-based development

* Component composition

— assembles qualified, adapted, and engineered components
to populate the architecture established for an application
— Need an infrastructure for binding the components
» OMG/CORBA
* Microsoft COM, .Net
* Sun JavaBeans Components

To accomplish this, an infrastructure must be established to bind the components
into an operational system.

The infrastructure (usually a library of specialized components) provides a model
for the coordination of components and specific services that enable
components to coordinate with one another and perform common tasks.

16



OMG/CORBA

* The Object Management Group has published a common
object request broker architecture (OMG/CORBA).

* An object request broker (ORB) provides services that enable
reusable components (objects) to communicate with other
components, regardless of their location within a system.

* Integration of CORBA components (without modification)
within a system is assured if an interface definition language
(IDL) interface is created for every component.

* Objects within the client application request one or more
services from the ORB server. Requests are made via an IDL or
dynamically at run time.

* An interface repository contains all necessary information
about the service’s request and response formats.

The Object Management Group has published a common object request broker
architecture (OMG/CORBA).



ORB Architecture

Interface
Repository

Client

ORB
interfacey

ORB Core

Server
Objects

ORB
interface]

Interface
Repository

18



Microsoft COM

* The component object model (COM) provides a
specification for using components produced by
various vendors within a single application running
under the Windows operating system.

* COM encompasses two elements:

— COM interfaces (implemented as COM objects)

— a set of mechanisms for registering and passing messages
between COM interfaces.

Microsoft has developed a component object model (COM) that provides a
specification for using components produced by various vendors within a single
application running under the Windows operating system.

19



to

Sun JavaBeans

* The JavaBeans component system is a portable, platform
independent CBSE infrastructure developed using the Java
programming language.

» The JavaBeans component system encompasses a set of tools,
called the Bean Development Kit (BDK), that allows developers

analyze how existing Beans (components) work

customize their behavior and appearance

establish mechanisms for coordination and communication
develop custom Beans for use in a specific application

test and evaluate Bean behavior.

The JavaBeans component system is a portable, platform-independent CBSE

infrastructure developed using the Java programming language.

20



Architectural Mismatch

One of the challenges facing widespread reuse is
architectural mismatch

The designer of reusable components often make implicit
assumptions about the environment to which the
component is coupled

These assumptions often focus on the component
control model, the nature of the component connections
(interfaces), the architectural infrastructure itself, and the
nature of the construction process

If these assumptions are incorrect, architectural
mismatch occurs

21



Architectural Mismatch

* All the design concepts contribute to the creation of
software components that are reusable and prevent
architectural mismatch

— Abstraction, hiding, functional independence, refinement,
and structured programming, along with object-oriented

methods, testing, software quality assurance (SQA), and
correctness verification methods),

22



Architectural Mismatch

Early detection of architectural mismatch can occur if
stakeholder assumptions are explicitly documented

The use of a risk-driven process model emphasizes
the definition of early architectural prototypes and
points to areas of mismatch

Repairing architectural mismatch is often very
difficult without making use of mechanisms like
wrappers or adapters

Sometimes, it is necessary to completely redesign a
component interface or the component itself to
remove coupling issues

23



Analysis/design for reuse

* Specification matching

— Elements of the requirements model are compared to
descriptions of reusable components

— When matching an existing component, extract from a reuse
library and use it
* DFR (Design for Reuse)

— Standard data. If the application domain has standard global
data structures, the component should be designed to make use
of these standard data structures

— Standard interface protocols within an application domain
should be adopted,

— An architectural style that is appropriate for the domain can
serve as a template for the architectural design of new software

Although the CBSE process encourages the use of existing software components,

there are times when new software components must be developed and
integrated

with existing COTS and in-house components. Because these new components

become members of the in-house library of reusable components, they should
be

engineered for reuse.

If components cannot be found (i.e., there is no match), a new component is
created.

when you begin to create a new component—that design for reuse (DFR) should
be considered.

a number of key issues that form a basis for design for reuse: standard data, ...

24



Classifying/retrieving components

* Too many reusable components, how do we search?

* C(Classification — 3C model
— Concept, content, and context
— What, how, and where

Consider a large university library. Hundreds of thousands of books, periodicals,
and other information resources are available for use.

But to access these resources, a categorization scheme must be developed.

3C model: A description of what the component accomplishes, how this is
achieved with content that may be hidden from causal users and need be known
only to those who intend to modify or test the component, and where the
component resides within its domain of applicability

25



Classifying/retrieving components

* Too many reusable components, how do we search?
* Classification — 3C model

— Concept, content, and context
— What, how, and where

* Classification enables you to find and retrieve
candidate reusable components, but a reuse
environment must exist to integrate these
components effectively.

Consider a large university library. Hundreds of thousands of books, periodicals,
and other information resources are available for use.

But to access these resources, a categorization scheme must be developed.

3C model: A description of what the component accomplishes, how this is
achieved with content that may be hidden from causal users and need be known
only to those who intend to modify or test the component, and where the
component resides within its domain of applicability

26



Classification

* Enumerated classification—components are
described by defining a hierarchical structure in
which classes and varying levels of subclasses of
software components are defined

* Faceted classification —a domain area is analyzed
and a set of basic descriptive features are identified

» Attribute-value classification —a set of attributes are
defined for all components in a domain area

27



Indexing
Indexing
Vocabularies

/\

Uncontrolled

/\ N

Temns exdractad Termns not extractad

frovo tesd frorn teod,
Enurnerated Descriptors With symtac
Sumect Without symtact

L Thesanrus

28



The Reuse Environment

* A component database capable of storing software
components and the classification information
necessary to retrieve them.

* A library management system that provides access to
the database.

* A software component retrieval system (e.g., an
object request broker) that enables a client
application to retrieve components and services from
the library server.

* CBSE tools that support the integration of reused
components into a new design or implementation.

The characteristics of a reuse environment are: a component database ...

Each of these functions interact with or is embodied within the confines of a
reuse library, one element of a larger software repository



Summary

* Designing traditional components
— Graphical notation
— Tabular notation
— PDL

* Component-based development
— Domain engineering
— Qualification, adaptation, composition
— Classification, retrieval

30



