Component level design

(1)

Translation: analysis to design

Scenerio-based
elements

Flow-oriented
elements

Use cases - text
Usecase diagrams
Activity diagrams

Data flow diagrams
Controlflow diagrams
Processing narratives

Comranenf—
Level Design

Swimlane diagrams

Andlysis Model

Interface Design

ehaviora
elements

State diagrams

Sequence diagrams

Class-based
elements
Class diagrams
Analysis packages
CRC models
Collaboration diagrams

Architectural Design

Data/Class Design

y —

Design Model

Data/Class design: transforms analysis classes into implementation classes and data
structures

Architectural design: defines relationships among the major structural elements of the
software, the architectural styles and patterns

Interface design—defines how software elements, hardware elements, and end-users
communicate. Usage scenarios and behavioral models are used

Component-level design—transforms structural elements into procedural descriptions of
software components. Class-based models and behavioral models server as the basis

Only scenario-based elements serve just one design model

Component level design

* Major steps / typical task set

1. Identify all design classes that correspond to the problem domain.

2. Identify all design classes that correspond to the infrastructure domain.

3. Elaborate all design classes that are not acquired as reusable components.

4. Describe persistent data sources and identify classes to manage them.

5. Develop and elaborate behavioral representations for a class/component.

6. Elaborate deployment diagrams to provide additional implementation detail.

7. Factor every component-level design representation and consider alternatives.

Component level design —step 1

1. Identify all design classes that correspond to the problem domain.

getlobData Design componen!

$ ComputePageCost

accessCostsDB

Eloborated module
PageCost

in: numberPages

in: numberDocs

in: sides= 1, 2

in: color=1,2, 3, 4

in: page size=A, B, C, D

out: page cost

in: job size

in: color=1,2,3,4

in: pageSize=A,B,C, D

out: BPC

— N Bobonoted design chass
computelob Friniob
ompusePogeCon | s
P kO
compuebrodCont] popaType
compuaTorliebCend | N poper Waight

\ poporSize
poperColor
\| mognification
colorRequirements.

roducionfeatures
—Y §°H:$£> out: SF job size (JS) =

—— coverSios . -
;:;Jl ey . getlobData (numberPages, numberDocs, |£,$b;'::g ;;ge';’:mp%? _s,

Ty e sides, color, pageSize, pageCost] accessCostsDB (IS, color);

;Z‘.L‘li'?f,lmu) WOnumber accessCostsDB|jobSize, color, pageSize, B [Sh ~
e S BPC, SF]P T | accessCostDB (IS, color, size)

— computel ag st) job complexity factor (ICF) =
1 + [[sides-1)*sideCost + SF]

pagecost = BPC * JCF

passloblo Productionl)

Using the requirements and architectural model, each analysis class and
architectural component is elaborated

We talked about this last time when looking at the concept of ‘component’ in different
views: left — OO view, right — traditional/structural view

Component level design — step 2

2. Identify all design classes that correspond to the infrastructure domain.

* Ininfrastructure domain
— GUI components
— OS components
— Data management components

note: components/classes are used exchangeably now as
each component is derived from a class through elaboration

These classes are not described in the requirements model and are often missing
from the architecture model, but they must be described at this point.

Classes and components in this category include GUI components (often
available as reusable components), operating system components, and object
and data management components.

Component level design — step 3

* 3.1 Specify message details when classes or
components collaborate
— Collaboration/communication diagram

-Producionjob

1: buildjob 2: submitjob

(Wc-mbeV o [guard condition] sequence expression
\ (return value) : message name

(argument list)

‘WorkOrder

JobQueve

1 1

Requirement analysis Component level design

3. Elaboration requires that all interfaces, attributes, and operations necessary to
implement the class be described in detail.

Design heuristics (e.g., component cohesion and coupling) must be considered
as this task is conducted

3.1 The requirements model makes use of a collaboration diagram to show how
analysis classes collaborate with one another.

As component-level design proceeds, it is sometimes useful to show the details
of these collaborations by specifying the structure of messages that are passed
between objects within a system.

Three objects, ProductionJob, WorkOrder, and JobQueue, collaborate to prepare
a print job for submission to the production stream.

Messages are passed between objects as illustrated by the arrows in the figure.

A [guard condition] is written in Object Constraint Language (OCL)5 and specifies
any set of conditions that must be met before the message can be sent;
Sequence expression is an integer value that indicates the sequential order in
which a message is sent; (return value) is the name of the information that is
returned by the operation invoked by the message; message name identifies the

operation that is to be invoked; (argument list) is the list of attributes that are
passed to the operation.

Component level design — step 3
* 3.2 Identify appropriate interfaces for each component

— Interface: externally visible (public) operations
-

* The interface needs
to be cohesive

* What about
initiateJob here?

Foboraed des o chass

Printlob

<<interfoces>
computejob

computePageCost|)
compuiePoperCost{)
compuseProdCost)
compuseTotallobCost| |

numberOffoge:
numberOfSides
poperType

a paperWeight

b poperSize

X paperColor

v| mognification
colorRequirements
productionFeatures
] collationOptions
bindingOptions
coverSioc

bleed

buildWorkOrder|) !mF:l,':gl’;o-.-

checkPricein | WOrombar

pazzjobto Production|)

<cinterfaces
initiate)ob

1 _computePogeCos|)
e JcomputePaperCost|)
computeProdCost{ |
computeTotaljobCozH)
buildWorkOrder|)
checkPriority{)
pazzlobss Production(|

Within the context of component-level design, a UML interface is “a group of
externally visible (i.e., public) operations;

The interface contains no internal structure, it has no attributes, no associations;
an interface is the equivalent of an abstract class that provides a controlled
connection between design classes.

In essence, operations defined for the design class are categorized into one or
more abstract classes.

Every operation within the abstract class (the interface) should be cohesive; that
is, it should exhibit processing that focuses on one limited function or
subfunction.

initiateJobdoes not exhibit sufficient cohesion.

In actuality, it performs three different subfunctions—building a work order,
checking job priority, and passing a job to production.

The interface design should be refactored.

Component level design — step 3

3. Elaborate all design classes that are not acquired as reusable components.

* 3.2 Identify appropriate interfaces for each component

— Refactoring non-cohesive interface

<<interface>>
initiateJob)
compute)ol
buildWorkOrder() =
checkPriority() Bt
passlobto Production(| i | initiate)ob o
_— =
;
WorkOrder i
1
getlobDescription | 9ppropriafe attributes buildjob 1 «.in.,?,foc o
o—— buildWorkOrder () |~ initiateJob
Productionjob passjobToProduction()

JobQueuve -
appropriate afiributes

o———— checkPriority ()

The interface design should be refactored. One approach might be to reexamine
the design

classes and define a new class WorkOrder that would take care of all activities

associated with the assembly of a work order. The operation buildWorkOrder()
becomes

a part of that class. Similarly, we might define a class JobQueue that would

incorporate the operation checkPriority(). A class ProductionJob would
encompass

all information associated with a production job to be passed to the production
facility. The interface initiateJob would then take the form shown in Figure 10.7.

The interface initiateJob is now cohesive, focusing on one function. The
interfaces

associated with ProductionJob, WorkOrder, and JobQueue are similarly

single-minded.

Component level design — step 3

* 3.3 Elaborate attributes and define data types and
data structures required to implement them.

| name : type-expression initial-value {property string} ‘

Analysis dlass

Printlob

numb‘:CPoge:
numberOfSides
paperlype —

paperType-weight: string “A” { contains 1 of 4
B values -A, B, C, or D}

mognification
productionFeatures

computejobCosH{)
pazslobtcPrinter|)

In general, data structures and types used to define attributes are defined within
the context of the programming language that is to be used for implementation;
UML defines an attribute’s data type using the following syntax:

name is the attribute name
Type expression is the data type,
initial value is the value that the attribute takes when an object is created, and

property-string defines a property or characteristic of the attribute.

Example: defines paperType-weight as a string variable initialized to the value A
that can take on one of four values from the set {A,B,C, D}.

If an attribute appears repeatedly across a number of design classes, and it has a
relatively complex structure, it is best to create a separate class to accommodate
the attribute.

Component level design — step 3

* 3.4 Describe processing flow within each operation

in detail.
/"F—“\

z Validate attributes
<<interface>>
computejob

computePageCost{)
computePaperCost| returns baseCoslperPage
computeProdCost()
computeTotallobCost() ¥, \ @
Size=B

Size =D paperCosiperPoge =
paperCosiperPage* 1.6

l

-l 08!
e Size = C__ " poperCosperPoge =
ek PoguRlid
| (

Color is custom

computePaperCost (weight, size, color): numeric ‘

PaperCosiperPage =
paperCostperPage®1.14

Color is standard
[pay

Returns
perCostperPage)

@

This may be accomplished using a programming language-based pseudocode or
with a UML activity diagram.

Each software component is elaborated through a number of iterations that
apply the stepwise refinement concept.

This indicates that computePaperCost() requires the attributes weight, size, and
color as input and returns a value that is numeric (actually a dollar value) as
output. If the algorithm required to implement computePaperCost() is simple and
widely understood, no further design elaboration may be necessary---The
software engineer who does the coding will provide the detail necessary to
implement the operation.

However, if the algorithm is more complex or arcane, further design elaboration
is required at this stage; an alternative is using pseudo code.

10

Component level design — step 4
* Persistent data structures
— E.g., databases, files
— Transcend the design of an individual component

* |nitially specified as part of architecture design

— Recall “data design” Design model — data element.

Data design / data architecting

— Datamodel ->
« Datastructures [componentlevel]

[N ow e I a bo rate \\\ « Database/file architecture [architectural level]
— Structure/organization

Databases and files normally transcend the design description of an individual
component.

In most cases, these persistent data stores are initially specified as part of
architectural design.

However, as design elaboration proceeds, it is often useful to provide additional
detail about the structure and organization of these persistent data sources.

Component level design — step 5

5. Develop and elaborate behavioral representations for a class/component.

* Examine use cases

— Delineate objects and associated events and states
* Recall “State diagrams”

* Behavioral representation
— Statechart diagrams

Timer < lockedTime

Locked

Timer > lockedTime

Password = incorrect
& numberOffries < maxTries

Readi
Key hit eading
Password
entered
L L &

Comparing numberOfTries > maxTries

Password = correct

UML state diagrams were used as part of the requirements model to represent
the externally observable behavior of the system and the more localized behavior
of individual analysis classes.

Activation successful

During component-level design, it is sometimes necessary to model the
behavior of a design class.

The dynamic behavior of an object (an instantiation of a design class as the
program executes) is affected by events that are external to it and the current
state (mode of behavior) of the object.

To understand the dynamic behavior of an object, we should examine all use
cases that are relevant to the design class throughout its life.

The transitions between states are represented using a UML statechart

12

Component level design — step 5

* Statechart diagram
— Event

‘ Event-name (parameter-list) [guard-condition] / action expression

— State
* Entry/ and exit/ action
* Do/ and include/ indicators

— Transition
* Between states, driven by events

The transition from one state (represented by a rectangle with rounded corners)
to another occurs as a consequence of an event that takes the form: event-
name identifies the event, parameter-list incorporates data that are associated
with the event, guard-condition is written in Object Constraint Language (OCL)
and specifies a condition that must be met before the event can occur, and
action expression defines an action that occurs as the transition takes place.

Each state may define entry/ and exit/ actions that occur as transition into the
state occurs and as transition out of the state occurs, respectively.

These actions correspond to operations that are relevant to the class that is
being modeled.

The do/ indicator provides a mechanism for indicating activities that occur
while in the state, and

the include/ indicator provides a means for elaborating the behavior by
embedding more statechart detail within the definition of a state.

13

Component level design — step 5

5. Develop and elaborate behavioral representations for a class/component.

Behavior within the
stote building ol
datalnputincomplete buildinglobData - ?

entry/read)obDatal) Pad ’
Analysis class |_ exit/displaylobDatal) | ,-”
Iy’ d:{ :dhlecfonsislemy(1}
« a1 include/datalnput .~
Printiob datalnputCompleted [all data .

‘ CFD items consistent]/displayUserOptions e
- 3 CO‘SOQG compuiing]obCosi S~ .
— ies onrry/ :ompuhjob ®
poperlype exit/save tokaljobCost
mogniticaton
;:fodudonFeofure'. jobCostAccepted [customer is authorized]/

getElectronicSignature
computejobCos) —
el entry/ buil
pazsjobtcPrinter|) axl/scrve WOwmber
do/
deliveryDateAccepted [customer is authorized]/
printjobEstimate
submittinglob
entry/ submitlob
exit/initiateJob

do/place on JobQueue

jobSubmitted [all authorizations acquired]/
printWorkOrder

The behavioral model often contains information that is not immediately obvious
in other design models.

E.g.) Printshop project

The dynamic behavior of the Printlob class is contingent upon two customer
approvals as costs and schedule data for the print job are derived.

Without approvals (the guard condition ensures that the customer is
authorized to approve) the print job cannot be submitted because there is no
way to reach the submittingJob state

14

Statechart Diagram

» Shows the lifecycle of an analysis/design unit.
— How events change an object over its life.

Enroliment

—,

~\ i
Open For
.—‘)[P“’pos"d Enroliment
) ~
N\ \
l Closed to
[Scheduled Full Enlollmenl}
) 7
/

I cancelled

student dropped
[seminar size > 0]

classes
end

student dropped
[seminar size = 0]

Statechart Diagram

Originate from state transition diagrams that are
used for the Automaton Theory.

Transitions are supposed to represent actions which
occur quickly and are not interruptible.

States are supposed to represent longer-running
activities.

What constitutes “quickly” and “longer-running”
depends on the application.

16

Statechart Diagram Elements

* Astate is a condition or situation during the life of an
object during which it satisfies some condition,
performs some activity, or waits for some event.

— Name

— Entry/exit action
— Internal transition
— Substate

— Deferred event

Tracking

entry/ setModel(onTrack)

exit/ setiodel{offTrack)

event newTarget/ tracker. Acquire()
do/ followTarget

event selfTest/ defer

do/stateDiagramName(parameterList) —
“calls” another state diagram
entry/action -- carty out the action
when entering the activity
exit/action -- carty out the action when exiting

17

Statechart Diagram Elements

* A transition is a relationship between two states

indicating that an object in the first state will perform
specified actions and enter the second state when a
specified event occurs and specified guard conditions

are satisfied. A

put(¢)[c!=">"] /token.append(c)

\

L °
Format:

— event-signature ‘[guard-condition ‘]’ ‘/ action
* event-name ‘(" comma-separated-parameter-list)’

18

Statechart Diagram Elements

* Actions are processes that occur quickly and are not
interruptible

* Conditions (Guard) return a logical True/False — the
transitions occurs on True
* When there is no Event in the label the transition
occurs as soon as the activities of the current state
are completed. — B
event[xiV

o
A I; event[x=0] C

e
event[x>0] =,

19

Statecharts and Relationship to Other
Diagrams

* Events on the statechart diagram should appear as
an incoming message for the appropriate object on a
sequence and collaboration diagram.

* A statechart diagram is prepared for every object
class in the Class Diagram with non-trivial behavior.

* Every event should correspond to an operation on
the appropriate class.

20

Superstates and Supertransitions

* Where transitions may occur from several states to a
single state the Statechart Diagram may show this

single state as a Superstate
Order

Start
Superstate name
[
Iget first item AC tive
et next item
otall items checkedy [All items checked &&

Checking |_allitems available] oo™
do: checkitLJ do: initiate delivery

[Allitems checked &&
some items not in stock]
Item Received
Y [all items available]

Item Received Waiting \
[some items ot in stoc¢k]

Delivered

cancellation

Cancelled Delivered
O

21

Supertransitions

* Transition to superstate boundary = transition to
initial state of the superstate.
— entry actions of all regions entered are performed

* Transition from a superstate boundary = transition
from the final state of the superstate
— exit actions of all regions exited are performed

* There may also be transitions directly into a complex
state region (like program “gotos”).

22

Composite, Super/Sub states

* For UML statecharts diagrams, states can be
composed into nested states. Such compositions
make it possible to view a state at different levels of
abstraction.

* A composite state is a state that consists of either
concurrent substates or sequential substates.

* A substate is a state that is nested inside another
one.

23

Composite, Super/Sub states

Transmission

select R
R -3 ! e

select N
select N‘ lselect F

Forward
upshift upshift
—Lm Second Third
downshift downshlft

)

24

Substates

“and” “or” relationships

Running

Forward Backward
*) [

Running

}[Forward Backward
o
Low speed High speed

25

Concurrent States

* Used when a given object has sets of independent behaviours

* When the superstate is “on”, all of their component states are

i n

_.
/ Rejected

26

History State

* A pseudostate whose activation restores the
previously active state within a composite state
— H, H*

<._query

BackingUp

Collecting

H: outest, latest

H*: any layer

27

Statechart Diagram Elements

* An event is the specification of a noteworthy
occurrence that has a location in time and space.

— Ca” event Manual startaﬁ\l.lkapilol(r1orma|)> Automatic]

* event_name([parameter list, ...])

— Change event
» Keyword: when (’\

— Time event

* Keyword: after/when ——
— Signal event /C]

-

¢ Same as call event 'after(2 seconds) / dropConnection()

—

when(temperature > 120) / alarm()

when(date = Jan. 1,2000) | Active2

28

Statechart Diagram Elements

* An action is an executable atomic computation.

— entry/exit action

* Relation to other diagrams:
— Every action should correspond to the execution of an
operation on the appropriate class.

— Entry/Action, Exit/Action and Do/Activity within a State will
normally be equivalent to Operations in the Class Diagram.

— Every outgoing message sent from a statechart must
correspond to an operation on another class.

29

Component level design —step 6

6. Elaborate deployment diagrams to provide additional implementation detail.

* Additional details

— Location of key packages of components

— Hardware
- 0S

<<device>> <<device>>
Browser Client | | http/Internet Web Server

<<artifact>>

b bl {web server = apache}

{OS = linux}

http/LAN

<<device>>
Render engine

During component-level design, deployment diagrams can be elaborated to
represent the location of key packages of components.

The specific hardware and operating system environment(s) that will be used is
(are) specified and the location of component packages within this environment
is indicated

Component level design — step 7

7. Factor every component-level design representation and consider alternatives.

* |terative nature of design
* Refactor as needed

* Consider all possible alternatives (design solutions)
before finalization

Design is an iterative process!

The first component-level model we create will not be as complete, consistent, or
accurate as the nth iteration you apply to the model.

It is essential to refactor as design work is conducted

you should not suffer from tunnel vision. There are always alternative design
solutions, and the best designers consider all (or most) of them before

settling on the final design model.

Develop alternatives and consider each carefully, using the design principles and
concepts

31

Object Constraint Language (OCL)

Complements UML by allowing a software engineer to
use a formal grammar and syntax to construct
unambiguous statements about various design model
elements

Simplest OCL language statements are constructed in
four parts:
— (1) a context that defines the limited situation in
which the statement is valid;

— (2) a property that represents some characteristics of
the context (e.g., if the context is a class, a property
might be an attribute)

— (3) an operation (e.g., arithmetic, set-oriented) that
manipulates or qualifies a property, and

— (4) keywords (e.g., if, then, else, and, or, not, implies)
that are used to specify conditional expressions.

32

OCL Example

context PrintJob::validate(upperCostBound : Integer,
custDeliveryReq :
Integer)
pre: upperCostBound > 0
and custDeliveryReq > 0
and self.jobAuthotization = 'no'
post: if self.totalJobCost <= upperCostBound
and self.deliveryDate <= custDeliveryReq
then
self.jobAuthorization = 'yes
endif

1

33

Summary

* Component-level design

— Seven steps

— Statechart diagrams

34

