Component level design

(1)

Translation: analysis to design

Scenerio-based
elements

Flow-oriented
elements

Use cases - text
Usecase diagrams
Activity diagrams

Data flow diagrams
Controlflow diagrams
Processing narratives

Comranenf—
Level Design

Swimlane diagrams

T Interface Design

Andlysis Model

Behavioral
elements

Class-based

elements Architectural Design

State diagrams

Class diagrams
Sequence diagrams

Analysis packages
CRC models
Collaboration diagrams

Data/Class Design

y —

Design Model

Data/Class design: transforms analysis classes into implementation classes and data
structures

Architectural design: defines relationships among the major structural elements of the
software, the architectural styles and patterns

Interface design—defines how software elements, hardware elements, and end-users
communicate. Usage scenarios and behavioral models are used

Component-level design—transforms structural elements into procedural descriptions of
software components. Class-based models and behavioral models server as the basis

Only scenario-based elements serve just one design model

The view of component

* What is a component?
— a modular building block for computer software
— Depending on different views
* Traditional view

* Object-oriented view
* Process-related view

component-level design occurs after the first iteration of architectural design has
been completed. At this stage, the overall data and program

structure of the software has been established. The intent is to translate the
design model into operational software.

We have talked about component quite a bit, without a clear definition.
The true meaning of the term component will differ depending on the point of

view

of the software engineer who uses it

The view of component: OO

* Component: a set of collaborating classes
* Design:

— Begin with requirements model, elaborate analysis class
and infrastructure class

* Recall: how did we do data/class design?

* Case study:
PrintShop software

s The overall intent is to collect the customer’s requirements at the front
counter, cost a print job, and then pass the job on to an automated
production facility.

Each class within a component has been fully elaborated to include all
attributes and operations that are relevant to its implementation.

All interfaces that enable the classes to communicate and collaborate with
other design classes must also be defined.

To define a component, we begin with the requirements model and elaborate
analysis classes (for components that relate to the problem domain) and
infrastructure classes (for components that provide support services for the
problem domain).

Component level design: OO view

Requirements

model

Architectural

Analysis class dESign
Printiob

numberOfPages
numberOfSides
e poperType
SompiProdCond e - maognification
productionFeatures

compusTorliobCost | I,

computejobCosH)
pazslobtcPrinter|)

posslobis Froduction! |

During architectural design, PrintJob is defined as a component within the
software architecture and is represented using the shorthand UML notation
shown in the middle right of the figure.

Printlob has two interfaces, computelob, which provides job costing capability,
and initiateJob, which passes the job along to the production facility.

Represented using the “lollipop” symbols shown to the left of the component
box.

Component level design: OO view

-~
cuinterfacen s Boborated design class
compeselod Printlob

computePageCost) " =
compusePaperCost | ::: :ggc;a:'
computeProdCost{) S g
computeTotallobCest|) il ym bs
\ poperWeig
\ poperSize
‘\ poperolor
\ mogﬁif:calioc
colorRequirements
productionfegtures
: J colletionOptions
bindingOptions
ccinterfaces s coverSioc
initiatejob blead
buildWorkOrder) |o|:r|{-c:.zzo:'
chackPriceity] | WOnumber
passjobto Production|)
1 _computePogeCost|)
| _JcomputePaperCozt])
computeProdCost{ |
computeTotaljobCosH{)
buildWorkOrder|)

checiaricu'iry()
passjobio Production()

Component-level

design

Component-level design begins at this point. The details of the component
Printlob must be elaborated to provide sufficient information to guide
implementation. The original analysis class is elaborated to flesh out all
attributes and operations required to implement the class as the component
Printlob

the elaborated design class Printlob contains more detailed attribute

information as well as an expanded description of operations required to
implement

the component. The interfaces computelJob and initiateJob imply communication
and

collaboration with other components (not shown here).

For example, the operation computePageCost() (part of the computelob
interface) might collaborate with a

PricingTable component that contains job pricing information. The checkPriority()

operation (part of the initiateJob interface) might collaborate with a JobQueue
component

to determine the types and priorities of jobs currently awaiting production.

cxinterfocen s
compuielob

Eoborowd design cfoss

computePageCost{)
computePaperCosi |
compueProdCost{ |
computelotallcbCost |

<< ll'fCl'#OCCf' >
in !IiQN:JOE

buildWorkOrder)
chackPriceiny)

pu'.'._]cE?o ?ro-c.;c!ior[)

Printjob

numberOfPoges
numberOfSides
poperlype
paperWeight
paperSize
poperColor
rrc;'“;‘co"ol‘
colorRequirements
productionfeatures

] collationOpfions

bindingOptions

coverStock

bleed

pnornty
totallobCost
WOnumber

1_computePogeCost|)
_JcomputePaperCost|)

computeProdCost(|
computeTotaljobCos)
buildWorkOrder|)
checx:’nou'lry—: '
pazsjobio Production(|

Component level design: OO view

e

This elaboration
activity is applied to
every component as
part of the
architectural design.

further elaboration
is applied to each
attribute, operation,
and interface

Data structures

Algorithmic details

The data structures appropriate for each attribute must be specified.

The algorithmic detail required to implement the processing logic associated
with each operation is designed.

Finally, the mechanisms required to implement the interface are designed

For object-oriented software, this may encompass the description of all
messaging that is required to effect communication between objects within the

system.

The view of component: traditional

* is a functional element of a program (module) that
incorporates a component contains
— processing logic

— the internal data structures that are required to implement
the processing logic, and

— an interface that enables the component to be invoked
and data to be passed to it

* Component roles
— Control / problem domain / infrastructure

A traditional component, also called a module, resides within the software
architecture and serves one of three important roles:

(1) a control component that coordinates the invocation of all other problem
domain components,

(2) a problem domain component that implements a complete or partial function
that is required by the customer, or

(3) an infrastructure component that is responsible for functions that support the
processing required in the problem domain.

Component design: traditional view
Job
Analysis dlass anagement :
= ydem Architectural
Pri ntobd - v v, R .
m.f'"-b-eropage' 4,4' ‘\\ dESIgn
numberOfSices
paperlype Read Select
magnification print job iobmgmt
productionFeatures data function
‘ ~
L 1
computejobCosH) I ’ 1
passjobtcPrinter]|) P '
Develop Build Send job
job cost work order o
0 production
Requirements ——— o
model PO T ,
Compute Compute Compute Check Pass job to
page cost paper cost prod cost priority production

components are derived from the analysis model, like in OO view.

the component elaboration element of the analysis model serves as the basis
for the derivation

Each component represented in the component hierarchy is mapped into a
module hierarchy;

Control components(modules) reside near the top of the hierarchy (program
architecture), and

problem domain components tend to reside toward the bottom of the hierarchy.

Each box represents a software component.

Note that the shaded boxes are equivalent in function to the operations
defined for the PrintJob class

In this case, however, each operation is represented as a separate module that
is invoked.

Other modules are used to control processing and are therefore control
components.

Component design: traditional view

geUOchﬂo Design component
o
$ ComputePageCost
o
accessCostsDB
Bessloass Component-level
PageCost .
design
in: numberPages
in: numberDocs
in: sides= 1, 2

in: color=1, 2, 3, 4
in: page size=A, B, C, D

out: page cost

in: job size

in: color=1,2,3, 4

in: pageSize=A, B, C, D

out: BPC

out: SF job size (JS) = B
numberPages * numberDocs;
getlobData (numberPages, numberDocs, lookup base page cost (BPC) ->

sides, color, pageSize, pageCost) -
accessCostsDB(jobSize, color, pageSize, I 0:;::‘;2:?:?&}{2’,;)‘:?10”'
BPC, SF)P Costl] =mmmmmmmmmemefem e accessCostDB (IS, color, size)
computePageCost() job complexity factor (JCF) =

1 + [(sides-1)*sideCost + SF]
pagecost = BPC * JCF

During component-level design, each module is elaborated

The module interface is defined explicitly. That is, each data or control object
that flows across the interface is represented.

The data structures that are used internal to the module are defined.

The algorithm that allows the module to accomplish its intended function is
designed using the stepwise refinement approach

The behavior of the module is sometimes represented using a state diagram

consider the module ComputePageCost. The intent of this

module is to compute the printing cost per page based on specifications
provided by

the customer. Data required to perform this function are: number of pages in the
document,

total number of documents to be produced, one- or two-side printing, color
requirements,

and size requirements. These data are passed to ComputePageCost via the
module’s interface.

ComputePageCost uses these data to determine a page cost that is based on

the size and complexity of the job—a function of all data passed to the module

10

via
the interface. Page cost is inversely proportional to the size of the job and directly

proportional to the complexity of the job.

The ComputePageCost module accesses data by invoking the module getJobData,
which allows all relevant data to be passed to the component, and a database
interface, accessCostsDB, which enables the module to access a database that
contains all printing costs.

As design continues, the ComputePageCost module is elaborated to provide
algorithm detail and interface detail

Algorithm detail can be represented using the pseudocode text shown in the
figure or with a UML activity diagram.

The interfaces are represented as a collection of input and output data objects
or items.

Design elaboration continues until sufficient detail is provided to guide
construction of the component.

10

The view of component:
process-related view

* Make use of existing components or design patterns

* Choose them as needed from catalog to populate the
architecture design

The object-oriented and traditional views of component-level design assume that
the component is being designed from scratch.

That is, we have to create a new component based on specifications derived
from the requirements model.

Over the past two decades, the software engineering community has emphasized
the need to build systems that make use of existing software components or
design patterns. In essence, a catalog of proven design or code-level
components is made available to us as design work proceeds.

We choose components or design patterns from the catalog and use them to
populate the architecture.

11

Design class-based components

* Focus on:
— the elaboration of problem domain specific classes

— the definition and refinement of infrastructure classes
contained in the requirements model

Component-level design draws on information developed as part of the
requirements model and represented as part of the architectural model

For OO software engineering approach, component-level design focuses on the
elaboration of problem domain specific classes and the definition and refinement
of infrastructure classes contained in the requirements model.

The detailed description of the attributes, operations, and interfaces used by
these classes is the design detail required as a precursor to the construction
activity.

12

Design class-based components:
principles

The Open-Closed Principle (OCP).

— “A module [component] should be open for extension but
closed for modification.

The Liskov Substitution Principle (LSP).
— “Subclasses should be substitutable for their base classes.

Dependency Inversion Principle (DIP).
— “Depend on abstractions. Do not depend on concretions.”

The Interface Segregation Principle (ISP).

— “Many client-specific interfaces are better than one
general purpose interface.

LSP: a component that uses a base class should continue to function properly if a
class derived from the base class is passed to the component instead.

DIP: As we have seen in the discussion of the OCP, abstractions are the place
where a design can be extended without great complication. The more

a component depends on other concrete components (rather than on
abstractions such as an interface), the more difficult it will be to extend.

13

Design class-based components:
principles
* The Open-Closed Principle (OCP).

<<interface>> Detector
Sensor fa------TT
read()

enable()
disable()
test{)

doorSensor

Window/ | SmokeSensorl MotionDetector HeatSensor CO2Sensor

Seems to be a contradiction, but it represents one of the most important
characteristics of a good component-level design.

Stated simply, you should specify the component in a way that allows it to be
extended (within the functional domain that it addresses) without

the need to make internal (code or logic-level) modifications to the component
itself.

To accomplish this, you create abstractions that serve as a buffer between the
functionality that is likely to be extended and the design class itself.

For example, assume that the SafeHome security function makes use of a
Detector

class that must check the status of each type of security sensor. It is likely that as
time

passes, the number and types of security sensors will grow. If internal processing
logic

is implemented as a sequence of if-then-else constructs, each addressing a
different

sensor type, the addition of a new sensor type will require additional internal

14

processing
logic (still another if-then-else). This is a violation of OCP.
One way to accomplish OCP for the Detector class is illustrated in Figure 10.4.

The sensor interface presents a consistent view of sensors to the detector
component.

If a new type of sensor is added no change is required for the Detector class

(component). The OCP is preserved.

14

Design class-based components:
principles

* The Interface Segregation Principle (ISP).

» SafeHome security
— Needs Floorplan for
* placeDevice(), showDevice(), groupDevice(), and removeDevice().
e SafeHome surveillance

— Needs Floorplan for

» placeDevice(), showDevice(), groupDevice(), and removeDevice(),
along with showFOV() and showDevicelD().

ISP: you should create a specialized interface to serve each major category of
clients. Only those operations that are relevant to a particular category of clients
should be specified in the interface for that client.

The SafeHome surveillance function uses the four operations noted for security,
but also requires special operations to manage cameras: showFOV() and
showDevicelD(). The ISP suggests that client components from the two
SafeHome functions have specialized interfaces defined for them.

15

Design class-based components:
principles

* The Release Reuse Equivalency Principle (REP).
— “The granule of reuse is the granule of release.”

* The Common Closure Principle (CCP).
— “Classes that change together belong together.”

* The Common Reuse Principle (CRP).

— “Classes that aren’t reused together should not be grouped
together.”

In many cases, individual components or classes are organized into subsystgems
or packages

REP: When classes or components are designed for reuse, Rather than addressing
each class individually, it is often advisable to group reusable classes into
packages that can be managed and controlled as newer versions evolve.

CCP: Classes should be packaged cohesively; when classes are packaged as part
of a design, they should address the same functional or behavioral

area. When some characteristic of that area must change, it is likely that only
those classes within the package will require modification

CRP: only classes that are reused together should be included within a package.

16

Design class-based components:
pragmatic guidelines

* Components

— Naming conventions should be established for
components that are specified as part of the architectural
model and then refined and elaborated as part of the
component-level model

* |nterfaces

— Interfaces provide important information about
communication and collaboration (as well as helping us to
achieve the OCP)

* Dependencies and Inheritance

— itis a good idea to model dependencies from left to right
and inheritance from bottom (derived classes) to top (base
classes).

The names of architecture components including control component and
problem domain component shall come from problem domain.

Infrastructure components can come for a technical background.

17

Cohesion in component level design

* What does it mean?

— Conventional view: the “single-mindedness” of a
component

— OO view: a component or class encapsulates only
attributes and operations that are closely related to one
another and to the class or component itself.

* Level of cohesion

— Functional

— Layer

— Communicational

In Chapter 8, | described cohesion as the “single-mindedness” of a component.

Within the context of component-level design for object-oriented systems,
cohesion implies that a component or class encapsulates only attributes and
operations that are closely related to one another and to the class or component
itself.

Functional: Exhibited primarily by operations, this level of cohesion occurs when
a component performs a targeted computation and then returns a result.

Layer: Exhibited by packages, components, and classes, this type of cohesion
occurs when a higher layer accesses the services of a lower layer, but lower layers
do not access higher layers.

Communicational: All operations that access the same data are defined within
one class. In general, such classes focus solely on the data in question, accessing
and storing it.

18

Cohesion in component level design

* Layer cohesion
— Access is only Control panel
downward
— =
Detector I Phone I
| — L
Modem I
]
'

Tcom

this type of cohesion occurs when a higher layer accesses the services of a lower
layer, but lower layers do not access higher layers.

The SafeHome security function requirement to make an outgoing phone call if
an alarm is sensed.

The shaded packages contain infrastructure components.

Access is from the control panel package downward.

19

Coupling in component level design

* Whatiis it?
— Conventional view: The degree to which a component is
connected to other components and to the external world
— OO view: a qualitative measure of the degree to which
classes are connected to one another
* Level of coupling
— Content
— Control
— External

Content coupling: Occurs when one component “surreptitiously modifies data
that is internal to another component”

This violates information hiding—a basic design concept.

Control coupling: Occurs when operation A() invokes operation B() and passes a
control flag to B.

The control flag then “directs” logical flow within B.

The problem with this form of coupling is that an unrelated change in B can
result in the necessity to change the meaning of the control flag that A passes

External coupling: Occurs when a component communicates or collaborates with
infrastructure components

(e.g., operating system functions, database capability, telecommunication
functions).

Although this type of coupling is necessary, it should be limited to a small
number of components or classes within a system

20

Summary

* The concept of Component
— Traditional view
— 00 view
— Process-related view
* Component design
— 0O approach
— Traditional approach
— Process-related approach

21

