Architectural Design

(1)

Translation: analysis to design

Scenerio-based | 7 ow-oriented Comranenf—
elements ; elements Level Design
Use cases - text { Data flow diagrams
Usecase diagrams Controlflow dicgroms
Activity diagrams ’ kegcessing narratives .
Swimlane diagrams ‘ Interface Design
Andlysis Model

Class-based Behavioral
elements elements Architectural Design
Class diagrams State diagrams "._‘ —

Analysis packages Sequence diagrams 4
CRC models Data/Class Design

Collaboration diagrams

Design Model

Now you see why we need different elements in requirements modeling?

Each of the elements of the requirements model (Chapters 6 and 7) provides
information that is necessary to create the four design models required for a complete
specification of design.

Data/Class design: transforms analysis classes into implementation classes and data
structures

Architectural design: defines relationships among the major structural elements of the
software, the architectural styles and patterns

Interface design—defines how software elements, hardware elements, and end-users
communicate. Usage scenarios and behavioral models are used

Component-level design—transforms structural elements into procedural descriptions of
software components. Class-based models and behavioral models server as the basis

Only scenario-based elements serve just one design model

Assessing alternative
architectural design

* How do you know your architecture design is right?

| Collect scenarios: A set of use cases is developed I

N
| Elicit requirements, constraints, and environment description | =

Model view
2
Describe the architectural styles/patterns that have been chosento | J process view
address the scenarios and requirements
i Data-flow view

Evaluate quality attributes by considering each attribute in isolation I =
——

A 4
Identify the sensitivity of quality attributes to various architectural m

attributes for a specific architectural style

J

Critigue candidate architectures using the sensitivity analysis |

Design results in a number of architectural alternatives that are each assessed to
determine which is the most appropriate for the problem to be solved

e Module view for analysis of work assignments with components and the degree
to which information hiding has been achieved.

eProcess view for analysis of system performance.

eData flow view for analysis of the degree to which the architecture meets
functional requirements

FURPS - Quality attributes of a design : Functionality Usability Reliability Performance
Supportability

Sensitivity analysis

« Make small changes to
architecture design and
observe the deviation of

guality attributes.

Changes cause big variation
on quality attributes are
sensitivity points.

Assessing alternative
architectural design

* Architectural Complexity

— Sharing / flow/ constrained dependencies

* Architecture description language (ADL)

— semantics and syntax for describing a software
architecture

A useful technique for assessing the overall complexity of a proposed
architecture is

to consider dependencies between components within the architecture

Although the software architect can draw on UML notation, other diagrammatic
forms, and a few related tools, there is a need for a more formal approach to the
specification of an architectural design.

Architectural mapping using data flow

o @ 9©-
~
e — o

analysis model .

“Ma into

design model

The architectural styles discussed in Section 9.3.1 represent radically different
architectures.

It should come as no surprise that a comprehensive mapping that accomplishes
the transition from the requirements model to a variety of architectural styles
does not exist

Architectural mapping using data flow

* Data-flow oriented design

— DFD -> software architecture: data-flow mapping
* Step 1. Review the fundamental system model
— Context DFD (level 0 DFD)
« Step 2. Review and refine data flow diagrams for the software
— Detailed levels of DFD

A mapping technique, called structured design, is often characterized as a data
flow-oriented design method because it provides a convenient transition from a
data flow diagram (Chapter 7) to software architecture

Architectural mapping using data flow

» SafeHome Example (level-0/1/2 DFDs)

Control
Control User commands Display panel
panel and data information display

Alarm

-
~ . % Telephone Telephone
e ~o Sensors status number tones ke
User commands 1 fystgr:e s

- Q0 ...UkJ 7

I'4 = -
I
1 request
|
1 Activate/
| leactivate
system
|
| Process. ay Control
1 password messages B J)anel
\ and status inf \spiay isplar Telephone
- information number
\ a
. Alarm I
Monitor
| Sensors sensors Te
Telephone

number fones

Each bubble is refined until it does just one thing
The expansion ratio decreases as the number of levels increase
Most systems require between 3 and 7 levels for an adequate flow model

A single data flow item may be expanded as levels increase.

Architectural mapping using data flow

Sensor
information
Format

for

display

jata
i
Sensor ID,
Read frpe
sensors
e

status

Conliguration information Formated Sensor
ID, type, [Generate) information
Telephone' Cyhguruhon data location \ display

number tones
Format
display
: Generate\ 4~
alarm
/ signal hype
Alarm

e k
data
/ o
condition code; i Select
sensor ID, timing List of phone
information numbers \ number
Set up
Telephone’ connection
number to phone
el Generate
Tone i
ready \” line
telephone
number Telephone

number fones

the level 2 DFD for monitor sensors (Figure 9.12) is examined, and a level 3

data flow diagram is derived as shown in Figure 9.13. At level 3, each transform
in the data flow diagram exhibits relatively high cohesion;

That is, the process implied by a transform performs a single, distinct function
that can be implemented as a component in the SafeHome software

Architectural mapping using data flow

— DFD -> software architecture: data-flow mapping
¢ Step 3. Determine whether the DFD has transform or transaction
flowcharacteristics
— Transform flow: linear / sequential
— Transaction flow: branching at transaction center

* Step 4. Isolate the transform center by specifying incoming and
outgoing flow boundaries.

One type of information flow is called transform flow and exhibits a linear
quality. Data flows into the system along an incoming flow path where it is
transformed from an external world representation into internalized form. Once
it has been internalized, it is processed at a transform center. Finally, it flows out
of the system along an outgoing flow path that transforms the data into external
world form

In transaction flow, a single data item, called a transaction, causes the data flow
to branch along one of a number of flow paths defined by the nature of the
transaction.

Some DFDs may include both types of information flow.

Architectural mapping using data flow

Sensor

Configuration information] ~ Formated
information

ID, type, [Generate
display

Configuration data, _location

Se$

status

Format

Sensor

response
ID, setting

condition code’
sensor ID, timing
information

connection
pulses to

number Telephone
number tones

we see data entering the software along one incoming path and exiting along
three outgoing paths

Incoming data flows along a path in which information is converted from external
to internal form; outgoing flow converts internalized data

to external form.

different designers may select slightly different points in the flow as boundary
locations. In fact, alternative design solutions can be derived by varying the
placement of flow boundaries

10

Architectural mapping using data flow

— DFD -> software architecture: data-flow mapping
* Step 5. Perform “first-level factoring.”
— Top level: decision making
— Low level: perform input, computation, and output
— Middle level: control and moderate

Factoring leads to a program structure in which top-level components perform
decision making and lowlevel components perform most input, computation,
and output work. Middle-level components perform some control and do
moderate amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure (a
call and return architecture)

11

Architectural mapping using data flow

—— e,
\O‘i :
i
——
Monitor
SeNsors
executive
- \ -
Y Sensor h | A!frm Y Alarm
in'?uﬁ conditipns outpyt
confroller controller controller

An incoming information processing controller, called sensor input controller,
coordinates receipt of all incoming data

A transform flow controller, called alarm conditions controller, supervises all
operations on data in internalized form (e.g., a module that invokes various data
transformation procedures).

An outgoing information processing controller, called alarm output controller,
coordinates production of output information

12

Architectural mapping using data flow

— DFD -> software architecture: data-flow mapping

* Step 6. Perform “second-level factoring.”
— Mapping individual transforms into modules

Second-level factoring is accomplished by mapping individual transforms
(bubbles) of a DFD into appropriate modules within the architecture.

Beginning at the transform center boundary and moving outward along incoming
and then outgoing paths, transforms are mapped into subordinate levels of the
software structure

13

Architectural mapping using data flow
~ Format
=

Monitor
sensors enerate
executive pulses to
Transform line
flow boundary
Sensor Alarm Alarm
input conditions outpyt
controller confroller confroller
Generate Setup /
E?;T;" alarm connection
Peay signal to phone net
Generate Generate
isplay pulses to line

Although Figure 9.15 illustrates a one-to-one mapping between DFD transforms
and software modules, different mappings frequently occur. Two or even three
bubbles can be combined and represented as one component, or a single bubble
may be expanded to two or more components.

14

Architectural mapping using data flow

Conivgumlion information Formated

D, type,
Configuration data location
Sek 2 S
tatu 3
| - display
<
data

condition code

sensor |D, timing List of | phone

information
Monitor
sensors
executive
Sensor Alarm Alarm
input conditions output
controller controller controller
Acquire Establish Select - Generate Set up
response alarm phone it alarm connection
info conditions number signa 1o phone net
Read Generate Generate
sensors \ display pulses fo line
e

Second-level factoring for incoming flow follows in the same manner. Factoring is

again accomplished by moving outward from the transform center boundary on
the incoming flow side.

Architectural mapping using data flow

— DFD -> software architecture: data-flow mapping

* Step 7. Refine the first-iteration architecture using design
heuristics for improved software quality.

— Mapping individual transforms into modules

A first-iteration architecture can always be refined by applying concepts of
functional independence

Components are exploded or imploded to produce sensible factoring, separation
of concerns, good cohesion, minimal coupling, and most important, a structure
that can be implemented without difficulty, tested without confusion, and
maintained without grief

16

Architectural mapping using data flow

Monitor
sensors
executive

Sensor Alarm Alarm
input conditions output
controller controller controller
Acquire Establish Select T Generate Set up
response alarm ne display alorm connection
info conditions number signal to phone net
Read Generate Generate -
sensors display pulses to line Monitor
sensors
executive
Acquire Establish Alarm
response alarm output
ini conditions controller
Read ot Gelnerale Set up
alarm connection
S disploy signal fo phone net

Generate
pulses to line

- why did you use the sensor input controller component?
- Because you need a controller for the mapping

- Not really. The controller doesn’t do much, since we’re managing a single flow
path for incoming data. We can eliminate the controller with no ill effects.

- We can also implode the components establish alarm conditions and select
phone number. The transform controller you show isn’t really necessary, and the
small decrease in cohesion is tolerable

- And while we’re making refinements, it would be a good idea to implode the
components format display and generate display. Display formatting for the
control panel is simple. We can define a new module called produce display.

17

