Architectural Design

(1)

Translation: analysis to design

TR | Flow-oriented comr°nem.
elements elements Level Design

Use cases - text Data flow diagrams

Usecase diagrams Controlflow diagrams “

Activity diagrams Processing narratives ‘ <=
Swimlane diagrams
Andlysis Model -
Class-based [Behavioral .)
elements elements ‘
Class diagrams State diagrams T — .

Analysis packages Sequence diagrams 4
CRC models Data/Class Design

Collaboration diagrams

Design Model

Now you see why we need different elements in requirements modeling?

Each of the elements of the requirements model (Chapters 6 and 7) provides
information that is necessary to create the four design models required for a complete
specification of design.

Data/Class design: transforms analysis classes into implementation classes and data
structures

Architectural design: defines relationships among the major structural elements of the
software, the architectural styles and patterns

Interface design—defines how software elements, hardware elements, and end-users
communicate. Usage scenarios and behavioral models are used

Component-level design—transforms structural elements into procedural descriptions of
software components. Class-based models and behavioral models server as the basis

Only scenario-based elements serve just one design model

Software Architecture

— Structure of software :
+ Components (sub-systems) | _ et |
* Their external properties Byshem
* Their relationships

— Process of identifying these: Packaging

* Architecture design system
— Output: architecture

Conmveyor

ontroller

The architecture of a packing robot control system

Let’s consider the architecture of a building
Simply saying, the architecture is the overall shape of the physical structure

The architecture is the manner in which the various components of the
building are integrated to form a cohesive whole

This is the way in which the building fits into its environment and meshes with
other building in its vicinity

It is the degree to which the building meets its stated purpose and satisfies the
needs of its owner

It is the aesthetic feel of the structure and the way textures, colors, and
materials are combined

It is small details —the design of lighting fixtures, the type of flooring, the
placement of wall hangings

Finally It is art

It is thousands of decisions, both big and small

Software Architecture

* What does it do for us?
— Examine effectiveness of design
— Consider design alternatives
— Reduce risk
* Why is it important?
— Enable communication
— Highlight early yet impactful design decisions
— Offer a graspable mode on structure and workings
— Provide a holistic (gestalt) view

The architecture is not the operational software. Rather, it is a representation
that enables a software engineer to:

(1) analyze the effectiveness of the design in meeting its stated requirements,

(2) consider architectural alternative sat a stage when making design changes
is still relatively easy, and

(3) reduce the risks associated with the construction of the software.

Why important?

1.Representations of software architecture are an enabler for communication
between all parties (stakeholders) interested in the development of a computer-
based system.

2.The architecture highlights early design decisions that will have a profound
impact on all software engineering work that follows and, as important, on the
ultimate success of the system as an operational entity.

3.Architecture “constitutes a relatively small, intellectually graspable mode of
how the system is structured and how its components work together”

4.The architectural model provides a Gestalt view of the system, allowing the
software engineer to examine it as a whole

Software Architecture

* How do we describe it?
a set of work products that reflect different views of

the system

— Blueprint metaphor
— Language metaphor
— Decision metaphor
— Literature metaphor

Blueprint metaphor — developers regard architecture descriptions as a means of
transferring explicit information from architects to designers to software
engineers charged with producing the system components

Language metaphor - Views architecture as a facilitator of communication across
stakeholder groups

Decision metaphor - Represents architecture as the product of decisions
involving trade-offs among properties such as cost, usability, maintainability, and
performance; Stakeholders (project managers) view architectural decisions as the
basis for allocating project resources and work tasks

Literature metaphor
It is used to document architectural solutions constructed in the past

This view supports the construction of artifacts and the transfer of knowledge
between designers and software maintenance staff

It also supports stakeholders whose concern is reuse of components and
designs

An architectural description must exhibit characteristics that combine these
metaphors

Architecture: genre and style

* Genre
— a specific category within the overall software domain
— Examples: Al, communication, content authoring, financial,
game, medical, military, ...
* Style
— Subcategories

— Components, connectors, constraints, semantic models
— Taxonomy: Data-centered architectures
Data flow architectures

Call and return architectures

Object-oriented architectures

Layered architectures

For example, within the genre of buildings, you would encounter the following general
: houses, condos, apartment buildings, office buildings, industrial building,
warehouses, and so on

Each style describes a system category that encompasses: (1) a

(e.g., a database, computational modules) that perform a function
required by a system, (2) a that enable “communication,
coordination and cooperation” among components, (3) that define
how components can be integrated to form the system, and (4)
that enable a designer to understand the overall properties of a system by
analyzing the known properties of its constituent parts.

the architectural style is also a template for construction.

Architecture: genre and style

* Data-centered architecture

Client
software
Client
software

Client
software

Client
software

Data store
[repository or
blackboard)

Client
software

Data-centered architectures promote integrability [Bas03].

That is, existing components can be changed and new client components
added to the architecture without concern about other clients

In addition, data can be passed among clients using the blackboard

mechanism

The blackboard component serves to coordinate the transfer of information
between clients

Client components independently execute processes.

Architecture: genre and style

* Data-flow architecture

Pipes —>-| Filter Filter

-
—>{ Filter ‘k% Filter
S —

| Filter FilteJ—_y E—»
> I
— Filter I<—

Pipes and filters

¢

Filter

YYY

L

This architecture is applied when input data are to be transformed through a
series of computational or manipulative components into output data.

If the data flow degenerates into a single line of transformes, it is termed batch
sequential.

This structure accepts a batch of data and then applies a series of sequential
components (filters) to transform it.

Architecture: genre and style

Call-return architecture

Main program

\

Controller Controller Controller
subprogram subprogram subprogram
Application Application Application Application Application
subprogram subprogram subprogram subprogram subprogram
Application Application
subprogram subprogram

This architectural style enables you to achieve a program structure that is
relatively easy to modify and scale.

A number of substyles exist within this category:

(1) Main program/subprogram architectures. This classic program structure
decomposes function into a control hierarchy where a “main” program invokes a
number of program components that in turn may invoke still other components.

(2) Remote procedure call architectures. The components of a main

program/subprogram architecture are distributed across multiple computers on a
network.

Architecture: genre and style

* Object-oriented architecture

GUII - Get/Display
Info

Wt M S

Procedure Call Procedure Call Procedure Call
I 1 I 1 1
"CALCULATE"
"GET" a1t v *SET"a,f. t v in: br, SpaceCraft
out: SpaceCratft
V)

ui] —d
SpaceCratt En_vnronn_qent
Simulation

The components of a system encapsulate data and the operations that must be
applied to manipulate the data.

Communication and coordination between components are accomplished via
message passing.

Architecture: genre and style

* Layered architecture

Components

MODEL PRESENTATION LAYER OpenAccess Enabled
(ENTITIES) ASPNET, Wi Silverlight, WP, e Not Required

OpenAccess Enabled
Data Access,
If executing queries
or lazy loading

OpenAccess Enabled
Data Access,
If executing
queries
OpenAccess
Enabled
P;::zl Class library, C#/VB/CLR, Defines LINQ or OQL queries d Data Access,

< If executing
Mappings
il queries

PERSISTENCE LAYER
Database, Cloud Storage, XML, etc.

A number of different layers are defined, each accomplishing operations that
progressively become closer to the machine instruction set.

Outer layer: components service user interface operations.
Inner layer: components perform operating system interfacing.

Intermediate layers: provide utility services and application software functions.

These architectural styles are only a small subset of those available

11

Architecture patterns

* What are they?
— solutions for common issues in architecture design
— a means of representing, sharing and reusing knowledge

— a stylized description of good design practice, which has
been tried and tested in different environments
* Tabular / graphical

Patterns are a means of representing, sharing and reusing knowledge.

An architectural pattern is a stylized description of good design practice, which has been
tried and tested in different environments.

Patterns should include information about when they are and when the are not useful.

Patterns may be represented using tabular and graphical descriptions.

12

Architecture patterns

* Example: model-view-controller (MVC)

_ MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other. The Model
component manages the system data and associated operations on that data. The
View component defines and manages how the data is presented to the user. The
Controller component manages user interaction (e.g., key presses, mouse clicks,
etc.) and passes these interactions to the View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system organized
using the MVC pattern.
When used Used when there are multiple ways to view and interact with data. Also used when

the future requirements for interaction and presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa.
Supports presentation of the same data in different ways with changes made in one
representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and
interactions are simple.

Maps user actions
to moded updates
Selects view

Architecture patterns

State
change

state

Encapsulates application

Notifies view of state
changes

controller

Sends user events to

notEcabon

Pattern

HTTP request processing

* Example: model-view-controller (MVC)

display Dy page

Forms management

Application-spexific logi generation
Data validation ‘hm s
Cbago
=
Business logic

Y

Redresh request

14

Architectural design

* What do we do?

— define the external entities (other systems, devices,
people) that the software interacts with and the nature of
the interaction

— Identify architectural archetypes

— Define/refine system components implementing
archetypes -> structure

* Archetype

— an abstraction (similar to a class) that represents one
element of system behavior

The software must be placed into context

An archetype is an abstraction (similar to a class) that represents one element of
system behavior

The designer specifies the structure of the system by defining and refining
software components that implement each archetype

Architectural design: step 1

* Representing the system in Context
— Consider architectural context

— Define superordinate systems, subordinate systems, peer-
level systems, actors

At the architectural design level, a software architect uses an architectural
context diagram

(ACD) to model the manner in which software interacts with entities external
to its boundaries.

16

Architectural design: step 1

* Representation: architectural context diagram (ACD)

Superordinate systems

I .

Used by

|

j—_ Target system - >
Uses
Uses Peers
{ —

Actors

Depends on

Subordinate systems

Systems that interoperate with the target system

Superordinate systems—those systems that use the target system as part of
some higher-level processing scheme.

Subordinate systems—those systems that are used by the target system and
provide data or processing that are necessary to complete target system
functionality.

Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,

information is either produced or consumed by the peers and the target system.

Actors—entities (people, devices) that interact with the target system by
producing or consuming information that is necessary for requisite processing

17

Architectural design: step 1

* Representation: architectural context diagram (ACD)

SafeHome Internet-based
product system
— —
Control
anel =
P Target system: Surveillance
security function function
A Uses
Homeowner T Peers

| 1 | L

J
Uses

Y

Sensors Sensors

The overall SafeHome product controller and the Internet-based system are both
superordinate to the security function

The surveillance function is a peer system and uses (is used by) the home
security function in later versions of the product.

The homeowner and control panels are actors that are both producers and
consumers of information used/produced by the security software.

Finally, sensors are used by the security software and are shown as
subordinate to it.

Architectural design: step 2

* Defining archetypes

— The target system architecture is composed of these
archetypes, which represent stable elements of the
architecture

— may be instantiated many different ways based on the
behavior of the system

Archetype Is a class or pattern that represents a core abstraction that is critical to
the design of an architecture for the target system.

Archetypes are the abstract building blocks of an architectural design

In general, a relatively small set of archetypes is required to design even
relatively complex systems

19

Architectural design: step 2

* Representation: class diagrams

Controller

T I Communicates with

Node

7Y
| |

Detector Indicator

Node. Represents a cohesive collection of input and output elements of the
home security function.

For example a node might be comprised of (1) various sensors and (2) a variety
of alarm (output) indicators

Detector. An abstraction that encompasses all sensing equipment that feeds
information into the target system.

Indicator. An abstraction that represents all mechanisms (e.g., alarm siren,
flashing lights, bell) for indicating that an alarm condition is occurring.

Controller. An abstraction that depicts the mechanism that allows the arming
or disarming of a node. If controllers reside on a network, they have the ability to
communicate with one another.

20

Architectural design: step 3

* Refining the Architecture into Components
— Analysis classes -> Components

— Consider domains for choosing components
* Application domain
* Infrastructure domain

How are these components chosen? We need to refer to two sources domains
1) The application domain

Describes application-relevant entities in analysis classes within the application
(business) domain

2) The infrastructure domain
Many infrastructure components that enable application components
But have no business connection to the application domain.

*E.g.) memory management components, communication components,
database components, and task management components

21

Architectural design: step 3

* Representation: component diagrams

__1 SafeHome
|1 executive

> Function
- N ~ .o .

-7 sooos T ~o_ selection

- - \\ R S~
— A Y ~ -~ S
A} . Swl
External " T T
-
communication ‘\\ T See
~ S~
management e .. LT
~ S

’ \ \‘ -~ -

. .
o s Security Surveillance eee dinies
2 management
GUI Internet i Y =
interface ‘ v e
’ v Y
| i) \ S

Control panel Detector Alarm
processing management processing

External communication management—coordinates communication of the
security function with external entities such as other Internet-based systems and
external alarm notification.

Control panel processing—manages all control panel functionality.

Detector management—coordinates access to all detectors attached to the
system.

Alarm processing—verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and
then positioned within the overall SafeHome architecture.

Design classes (with appropriate attributes and operations) would be defined
for each.

It is important to note, however, that the design details of all attributes and
operations would not be specified until component-level design

22

Architectural design: step 4

* Describing Instantiations of the System
— Further refine the architectural design

— Develop an actual instantiation of the architecture
* Apply it to specific problem

The architectural design that has been modeled to this point is still relatively high
level.

Further refinement (recall that all design is iterative) is still necessary.
To accomplish this, an actual instantiation of the architecture is developed.

The architecture is applied to a specific problem with the intent of
demonstrating that the structure and components are appropriate.

23

Architectural design: step 4

* Representation: (refined) component diagrams

SafeHome
executive
.’ A Ty
- - -
External *

communication
management

= =
el A % Security eee
Internet ~
% Gu % interface o ' YRy
Control
ranel Detector Norm
processing = e

‘‘‘‘‘‘ 4 - 4 'Y

- . - - v
Keypad . \
g processing . % Scheduler % Phone |
L’ communication | 1
v

CP display ‘e‘ !
functions i Al
:% Sensor

Figure 9.9 illustrates an instantiation of the SafeHome architecture for the
security

system. Components shown in Figure 9.8 are elaborated to show additional
detail.

For example, the detector management component interacts with a scheduler
infrastructure

component that implements polling of each sensor object used by the security
system. Similar elaboration is performed for each of the components

represented in Figure 9.8.

24

Summary

* Architecture genres and styles
— Many genres
— Five common styles
* Architectural design pattern
- MVC
* Design steps
— Four steps of architectural design

