Design Engineering:
process, concepts, and model

(1)

]

Scenerio-based
elements

Flow-oriented
elements

Use cases - text
Usecase diagrams
Activity diagrams

Daota flow diagrams
Controlflow diagrams
Processing narratives

Translation: analysis to design

Comranem-
Level Design

v

f ——
T
L‘-__ __._.4

Design Model

Swimlane diagrams

Andlysis Model

Behavioral
elements

Class-based

elements

State diagrams

Class diagrams
Sequence diagrams

Analysis packages
CRC models
Collaboration diagrams

Now you see why we need different elements in requirements modeling?

Each of the elements of the requirements model (Chapters 6 and 7) provides
information that is necessary to create the four design models required for a complete
specification of design.

Data/Class design: transforms analysis classes into implementation classes and data
structures

Architectural design: defines relationships among the major structural elements of the
software, the architectural styles and patterns

Interface design—defines how software elements, hardware elements, and end-users
communicate. Usage scenarios and behavioral models are used

Component-level design—transforms structural elements into procedural descriptions of
software components. Class-based models and behavioral models server as the basis

Only scenario-based elements serve just one design model

Data/class design

* Review: OO0 design concepts

— Design classes
* Entity classes (defining things in the physical world) — analysis classes
* Boundary classes (defining interfaces)
* Controller classes (defining interactions and transactions).

— Inheritance - responsibilities of a superclass are immediately
inherited by all subclasses

Messages

» stimulate some behavior to occur in the receiving object

* Implemented as function calls.
— Polymorphism—a characteristic that greatly reduces the
effort required to extend the design

* E.g., operator overloading

Requirements modeling (also called analysis modeling) focuses primarily on
classes that are extracted directly from the statement of the problem----entity
classes.

Design refines and extends the set of entity classes. Boundary and controller

classes are developed and/or refined during design.

Boundary classes create the interface (e.g., interactive screen and printed
reports) that the user sees and interacts

with as the software is used.
Controller classes are designed with the responsibility

of managing the way entity objects are represented to users.

Data/class design

PieceOfFurniture (superclass)

* |nheritance

subclass

v
/I\\

instances of Chair (objects)

In fact, whenever a new class is to be created, you have a number of options:
® The class can be designed and built from scratch. That is, inheritance is not
used.

* The class hierarchy can be searched to determine if a class higher in the
hierarchy contains most of the required attributes and operations. The new
class inherits from the higher class and additions may then be added, as
required.

* The class hierarchy can be restructured so that the required attributes and
operations can be inherited by the new class.

e Characteristics of an existing class can be overridden, and different versions

of attributes or operations are implemented for the new class.

Data/class design

* Message

:SenderObject

Message (<parameters>)

A message stimulates some behavior to occur in the receiving object. The
behavior is accomplished when an operation is executed.

An operation within SenderObject generates a message of the form message

(<parameters>) where the parameters identify ReceiverObject as the object to
be

stimulated by the message, the operation within ReceiverObject that is to
receive the

message, and the data items that provide information that is required for the
operation

to be successful. The collaboration defined between classes as part of the
requirements

model provides useful guidance in the design of messages.

Data/class design

* Polymorphism
— reduces the effort required to extend the design of an
existing object-oriented system

. | Shape |
case of graphtype: Draw()

if graphtype = linegraph then DrawLineGraph (data):
if graphtype = piechart then DrawPieChart (data);

if graphtype = histogram then DrawHisto (data); Trmaele] [Rectangle] [Cicle]
if graphtype = kiviat then DrawKiviat (data); | Drawg | [Drawo 1 Lorawo |

end case;
Subclass.Draw()

Ideally, once data are collected for a particular type of graph, the graph should
draw itself.

To accomplish this in a conventional application (and maintain module cohesion),
it

would be necessary to develop drawing modules for each type of graph.

in an object-oriented system, all of the graphs become subclasses
of a general class called Graph. Using a concept called overloading [Tay90],

each subclass defines an operation called draw. An object can send a draw
message

to any one of the objects instantiated from any one of the subclasses

Data/class design

* Design classes

Analysis class
describes requirements

1 refine 1 extend

Design class Entity classes
provides design detail for implementation Boundary classes
Controller classes

I Entity classes I

The analysis model defines a set of analysis classes.

The level of abstraction of an analysis class is relatively high

Design classes refine the analysis classes

Design class provides design detail that will enable the classes to be implemented,
and implement a software infrastructure that supports the business solution.

Controller classes are designed to manage (1) the creation or update of entity
objects, (2) the instantiation of boundary objects as they obtain information from

entity objects, (3) complex communication between sets of objects, and (4)
validation

of data communicated between objects or between the user and the application.

Data/class design

* Design classes
— User interface classes -

— Business domain classes Entity classes

— Processclasses _ " poundary classes

— Persistent classes

—— Centroller classes

— Systemclasses

This is a finer classification of design classes. (the mapping is my personal
opinion!)

User interface classes define all abstractions that are necessary for human
computer interaction (HCI).

Business domain classes are often refinements of the analysis classes defined
earlier. The classes identify the attributes and services (methods) that are
required to implement some element of the business domain.

Process classes implement lower-level business abstractions required to fully
manage the business domain classes.

Persistent classes represent data stores (e.g., a database) that will persist beyond
the execution of the software.

System classes implement software management and control functions that
enable the system to operate and communicate within its computing
environment and with the outside world.

Data/class design

* Characteristics of well-formed design class
— Complete and sufficient
— Primitiveness
— High cohesion
— Low coupling

A design class should be the complete encapsulation of all attributes and
methods that can reasonably be expected to exist for the class.

*E.g.) the class Scene defined for video-editing software is complete only if it
contains all attributes and methods that can reasonably be associated with the
creation of a video scene. Sufficiencyensures that the design class contains only
those methods that are sufficient to achieve the intent of the class, no more and
no less.

Methods associated with a design class should be focused on accomplishing one
service for the class.

Once the service has been implemented with a method, the class should not
provide another way to accomplish the same thing.

High cohesion.

A cohesive design class has a small, focused set of responsibilities and single-
mindedly applies attributes and methods to implement

*E.g.) The class VideoClipmight contain a set of methods for editing the video
clip. As long as each method focuses solely on attributes associated with the
video clip, cohesion is maintained.

Low coupling.

Within the design model, it is necessary for design classes to collaborate with
one another. However, collaboration should be kept to an acceptable minimum.
In general, design classes within a subsystem should have only limited knowledge

of other classes.

Data/class design
. FloorPlan
Analysis = E——
name
outsideDimensions type Camera
class T
doterminaType/) oddCameral) d
pml:ianfoorplon[) addWdll[) fieldView
S addWindow | panAngle
change color | deleleSegment() zoomSeting
draw| |
i T
Is placed within » | " - Q
Is part of Segment
siariCoordinale
endCoordinate
gefType{]
Camera Wall izl i
co0oo
e Vhormanions [I
afion
fildViow [Wallsegment | | Window |
nAnglo t 1 1 ' |
wmﬁaing dotermineTypel | L 1 ! 1
detormineTypel | computeDimensions (|
rdrunshh%ﬁ:arion[| .
1ISpAa
SEE) Design
Is used to build . i « Is used to build
[Is used o build class
WallSegment Window Door
Gt FerCoord PeCoord
topCoordi topCoord siopCoordinates
nextWallSement nextWindow naxtDoor
' Typel)] Typel) JotormineType()
drawl) draw| | drawl)

Example (SafeHome) - Design class for FloorPlan and composite aggregation for the
class (see sidebar discussion)

The analysis class showed only things in the problem domain, well, actually on
the computer screen, that were visible to the end user, right?

Ed: Yep, but for the FloorPlan design class, I've got to add some things that are
implementation specific. | needed to show that FloorPlan is an aggregation of
segments—hence the Segment class—and that the Segment class is composed
of lists for wall segments, windows, doors, and so on. The class Camera
collaborates with FloorPlan, and obviously, there can be many cameras in the
floor plan.

10

High
Analysis model

Class diugroms
Analysis pgckages
CRC 'models
Collaboration
diagrams
Dofoao diagrams

Design model

* Two dimensions

Use cases - text
Use<ase diagroms
Activity diagrams
Swimlane iograms

Class diagrams
éEa!ysis ckages
els
Coﬁ'cglomiion diograms
ata -qow dlc rams

C ontrol-.qow Iﬂg rams
pl'OCE 35 iﬂg narratives

Requirements
Constraints

InleroFero ility
s

Torgets an

£
.0
“
] ;
rati configuration
E ControlHow diograms Co !gb«r:c.’c;;on State diagrams g
= Processing narratives Siate %Ec}grums Sequence diagrcms
g -------------------- qUEnce dlcgl’ﬂmi
- R N N R T
g Designclass | | | O TTtvtvtceeespeeeallll
- .. °r ¥ 1 1 Tieeqemccsan..
.3 realizations Toch | = g cenadl
A 5yifem5 iechnical intertace Componenl iograms o "
< C%o ration sign 4 asige closses 9 g:sssg;;;!'«::s reclizations
iagrams N ti i oo z
— 2 Gﬁ}"g;’,.g',‘. - gﬁ:xi‘o P Collaboration diagrams
Design model g Component diagrams
Eesagn closses
Refinements fo: ! ctivity diagrams
DI |'7 Refinements fo: Sequence diagrams
se 0 Co Component diagrams
S realizations DESigﬂ classes
Low ylsystoms Activity diagroms
Collaboration Deployment diagram
diograms Sequence diagrams leployment diagrams
Architecture Inferface Componentlevel Dep!onemJevd
elements elements elements elements

Process dimension

Now we already there are two kinds of models to build during the modeling
activity;

The design model can be viewed in two different dimensions

The process dimension indicates the evolution of the design model as design
tasks are executed as part of the software process

The abstraction dimension represents the level of detail as each element of the
analysis model is transformed into a design equivalent and then refined
iteratively.

model elements indicated along the horizontal axis are not always developed in a
sequential fashion. In most cases preliminary architectural

design sets the stage and is followed by interface design and component-level
design, which often occur in parallel. The deployment model is usually delayed
until the design has been fully developed.

11

Design model

* versus analysis model

The elements of the design model use many of
the same UML diagrams that were used in the
analysis model.

the difference is that these diagrams are
refined and elaborated as part of design

The difference is that these diagrams are refined and elaborated as part of
design; more implementation-specific detail is provided,

and architectural structure and style, components that reside within the

architecture, and interfaces between the components and with the outside world
are all emphasized.

12

Design model

* Model Elements
— Data elements
— Architectural elements
— Interface elements
— Component elements
— Deployment elements

13

Design model — data elements

» Data design / data architecting

— Data model ->
* Data structures [component level]
* Database/file architecture [architectural level]

Data design (sometimes referred to as data architecting) creates a model of data
and/or information that is represented at a high level of abstraction (the
customer/user’s view of data).

This data model is then refined into progressively more implementation-specific
representations that can be processed by the computer-based system.

At the architectural level, data design focuses on files or databases

At the component level, data design considers the data structures that are
required to implement local data objects

14

Design model — architectural elements

* Architectural modeling
— Application domain

— Analysis classes, their relationships, collaborations and
behaviors are transformed into design realizations

— Patterns and “styles”

The architectural design for software is the equivalent to the floor plan of a
house.

The floor plan depicts the overall layout of the rooms; their size, shape, and
relationship to one another; and the doors and windows that allow movement
into and out of the rooms. The floor plan gives us an overall view of the house.

Architectural design elements give us an overall view of the software.

The architectural model [Sha96] is derived from three sources:
1) information about the application domain for the software to be built;

2) specific requirements model elements such as data flow diagrams or
analysis classes, their relationships and collaborations for the problem at hand,
and

3) the availability of architectural patterns (Chapter 12) and styles(Chapter 9).

15

Design model — interface elements

* Interface modeling
— the user interface (Ul)

— external interfaces to other systems, devices, networks or
other producers or consumers of information

— internal interfaces between various desigh components.

Interface is a set of operations that describes the externally observable behavior
of a class and provides access to its public operations

Modeled using UML communication/collaboration diagrams

an interface is a set of operations that describes some part of the behavior of a
class and provides access to these operations.

16

Design model — interface elements

* Interface modeling

MobilePhone I
WirelessPDA —-I

ControlPanel \

/
LCDdisplay ‘o
LEDindicators 45 KeyPad
keyPadCharacteristics
speaker
wirelessinterface
readKeyStroke|()
decodeKey(
displayStatus(B <<Interface>>
lightlEDs{) | KeyPad

sendConirolM: .
SQ[) O = rec,di(eystroke()

decodeKey()

In some cases, an interface is modeled in much the same way as a class;

What other diagram does this diagram look like? (class diagram)

Understand the relationships between the single diagrams [dependence,
realization]: wirelessPDA and MobilePhone depend on ControlPanel (as they
both use the KeyPad function of ControlPanel), using the circle to show the
dependency is reflected by ‘using the KeyPad’

Design model —
component-level elements

* Component modeling

— Internal details of each component
» Data structures for all local data objects

* Algorithmic detail for all component processing that occurs within
a component

* Interface that allows access to all component operations

The component-level design for software is the equivalent to a set of detailed
drawings (and specifications) for each room in a house.

Fully describes the internal detail of each software component;

Modeled using UML component diagrams, UML activity diagrams, pseudocode
(PDL), and sometimes flowcharts

18

Design model —
component-level elements

* Component modeling with component diagram

ensorManagement Sensor |

In this figure, a component named SensorManagement (part of the SafeHome
security function) is

represented. A dashed arrow connects the component to a class named Sensor
that is assigned to it.

The SensorManagement component performs all functions associated with
SafeHome sensors including monitoring and configuring them.

19

Desigh model —
deployment-level elements

* Deployment modeling
— Descriptor form deployment SR CPliserver

— —
Security HomeownerAccess

— Instance form deployment s

Personal computer

ExternalAccess

Security Surveillance

— —
HomeManagement] [Communication

Indicates how software functionality and subsystems will be allocated within the
physical computing environment

Modeled using UML deployment diagrams

Descriptor form deployment diagrams show the computing environment but
does not indicate configuration details

Instance form deployment diagrams identifying specific named hardware
configurations are developed during the latter stages of design

This figure is a descriptor form deployment diagram (SafeHome product are
configured to operate within three primary computing environments—a home-
based PC, the SafeHome control panel, and a server housed at CPI Corp.

three computing environments are shown, The subsystems (functionality)
housed within each computing element are indicated

the personal computer houses subsystems that implement security, surveillance,
home management, and communications features. In addition, an external

access subsystem has been designed to manage all attempts to access the

20

SafeHome system from an external source.

This form of deployment does not explicitly indicate configuration details. For
example, the “personal computer” is not further identified.

It could be a Mac or a Windows-based PC, a Sun workstation, or a Linux-box.
These

details are provided when the deployment diagram is revisited in instance form

during the latter stages of design or as construction begins.

20

Desigh model —
deployment-level elements

* Deployment modeling with deployment diagram

<<device>> <<device>>
Browser Client http/Internet Web Server
<<artifact>> {web server = apache}
web brower {OS = linux}
http/LAN

<<device>>
Render engine

useful for showing the physical distribution of a software system among
hardware platforms and execution environments.

three hardware devices involved in your system: the Web client (the users’
computer running a browser), the computer hosting the Web server, and the
computer hosting the rendering engine.

hardware components are drawn in boxes labeled with “«device»”.

Communication paths between hardware components are drawn with lines with
optional labels (e.g., showing communication protocol and the type of network
used to connect the devices)

Each node in a deployment diagram can also be annotated with details about the
device.

Deployment diagrams can also display execution environment nodes, which are
drawn as boxes containing the label “«execution environment»”. These nodes
represent systems, such as operating systems, that can host other software.

21

Summary

* 0O design concepts
» Data/class design

— In relation to analysis classes
* Design model

— Dimensions

— Model elements

22

