Requirements Modeling:
Flow, behavior, and pattern

(111)

Behavioral modeling

* State of analysis class
— Passive vs. active state
* Examples?
* Elements
— State
— State transition
— Event
— Action

* Representations
* State diagram
* Sequence diagram

The state of a class takes on both passive and active characteristics [CHA93].
A passive stateis simply the current status of all of an object’s attributes.
*E.g.) the class Player: the current position & orientation attributes
The active state of an object indicates the current status of the object as it
undergoes a continuing transformation or processing.
*E.g.) the class Player: moving, at rest, injured, being cured, trapped, lost

state—a set of observable circumstances that characterizes the behavior of a
system at a given time

state transition—the movement from one state to another

event—an occurrence that causes the system to exhibit some predictable form of
behavior

action—process that occurs as a consequence of making a transition

Communication (collaboration) diagram

» Relationship between objects/classes with temporal
order info

* 1: mouseClicked(point)

1.2: highlight(graphics)

2

1.1: gefFigureAt{point)

y's

/ 1.2.1: setColor(red)
/ 1.2.2: drawRect(x,y,w,h)
/ 1.2.3: drawString(s)

interacting objects are represented by rectangles.

Associations between objects are represented by lines connecting the rectangles.
There is typically an incoming arrow to one object in the diagram that starts the
sequence of message passing. That arrow is labeled with a number and a
message name.

If the incoming message is labeled with the number 1 and if it causes the
receiving object to invoke other messages on other objects, then those messages
are represented by arrows from the sender to the receiver along an association
line and are given numbers 1.1, 1.2, and so forth, in the order they are called

The numbering in each label shows the nesting as well as the sequential nature
of each message.

Sequence vs. communication diagram

| Momwm.l |Qm_m| |u.=.gm. Figml }G_mpzwl

mouseClicked|point]) |
P |

* 1: mouseClicked(point)

Mouselistener

1 |
] I
: :

; | [1.1: getFigureAt(point] 1.2: highlight(graphics)
afigure JJ ! !

-t ! ! 2 A
highlightigraphics) | H
' e {_Ffigure]

/ 1.2.1: setColor{red)
/ 1.2.2: drawRect{x,y,w,h)
/ 1.2.3: drawString(s)

getFigureAt{point]

drawRect [x,y,w,h) |

drowStringls) |

* Temporal order of * Relationship + message
messaging exchange

If you are interested in showing the relationships among the objects in addition
to the messages being sent between them, the communication diagram is
probably a better option than the sequence diagram.

If you are more interested in the temporal order of the message passing, then a
sequence diagram is probably better.

Patterns for requirements modeling

* Capture domain knowledge

— Such that it can be reapplied for new problem
* In the same domain
* In a different domain (by analogy)

* Discover -> document -> reuse

-domain knowledge can be applied to a new problem within the same
application domain

-the domain knowledge captured by a pattern can be applied by analogy to a
completely different application domain.

The original author of an analysis pattern does not “create” the pattern, but
rather, discovers it as

requirements engineering work is being conducted.

Once the pattern has been discovered, it is documented

Discover analysis pattern

* How?
— Basis: a coherent set of use cases
— semantic analysis pattern (SAP)

Use case: Monitor reverse motion

Description: When the vehicle is placed in reverse gear, the control software
enables a video feed from a rear-placed video camera to the dashboard display.
The control software superimposes a variety of distance and orientation lines on
the dashboard display so that the vehicle operator can It will automatically
break the vehicle if the proximity sensor indicates an object within 3 feet of the
rear of the vehicle.

* Actuator-Sensor pattern
— Which other software application may reuse this pattern?

The most basic element in the description of a requirements model is the use
case.

A coherent set of use cases may serve as the basis for discovering one or more
analysis patterns.

A semantic analysis pattern (SAP) “is a pattern that describes a small set of
coherent use cases that together describe a basic generic application.”

This use case implies a variety of functionality that would be refined and
elaborated (into a coherent set of use cases).

Regardless of how much elaboration is accomplished, the use case(s) suggest(s) a
simple, yet widely applicable SAP—the software-based monitoring and control of
sensors and actuators in a physical system.

the “sensors” provide information about proximity and video information. The
“actuator” is the breaking system of the vehicle (invoked if an object is very close
to the vehicle. The pattern, called Actuator-Sensor, would be applicable as part
of the requirements model for SafeHome

Discover analysis pattern

* The pattern (in terms of data model)

; Computin
Passive sensor LU Actuator
component

Passive boolean 1 Passive real Boolean]| Real

sensor sensor actuator actuator
Active sensor

Passiveinteger J | | Passive complex Integer 1 Complex

sensor sensor actuator actuator

Aclive boolean |} | Active real
sensor Sensor
Active integer Active complex
sensor sensor

Applicability: Useful in any system in which multiple sensors and actuators are
present.

Structure: A UML class diagram for the Actuator-Sensor Pattern is shown in
Figure. Actuator, PassiveSensor and ActiveSensor are abstract classes and
denoted in italics. There are four different types of sensors and actuators in this
pattern. The Boolean, integer, and real classes represent the most common
types of sensors and actuators. The complex classes are sensors or actuators
that use values that cannot be easily represented in terms of primitive data
types, such as a radar device. Nonetheless, these devices should still inherit the
interface from the abstract classes since they should have basic functionalities
such as querying the operation states.

Discover analysis pattern

* The pattern (in terms of behavioral model)

PanControl Senor S
A InputDevice OutputDevice
| FauntHandler I |Posi1ionSensorI | ControlPanel I cluator PositionSensor PanControl
| | | |
i Get operation state { { :
| ! ! !
! Get valve
Get physical value
(PositionSensor. Py
OpState = 1) Get operation state
Set value

Set physical valve

Get operation siate

Store error

(PositionSensor.

OpState = 0)

4,

Figure presents a UML sequence diagram for an example of the Actuator-Sensor
pattern as it might be applied for the SafeHome function that
controls the positioning (e.g., pan, zoom) of a security camera.

the ControlPanel (ComputingComponent) queries a sensor (a passive position
sensor) and an actuator (pan control) to check the operation state for diagnostic
purposes before reading or setting a value. The messages Set Physical Value and
Get Physical Value are not messages between objects. Instead, they describe the
interaction between the physical devices of the system and their software
counterparts. In the lower part of the diagram, below the horizontal line, the
PositionSensorreports that the operation state is zero. The
ComputingComponent(represented as ControlPanel) then sends the error code
for a position sensor failure to the FaultHandlerthat will decide how this error
affects the system and what actions are required. It gets the data from the
sensors and computes the required response for the actuators.

Discover analysis pattern

* Document the pattern
— Pattern Name.
— Intent.
— Motivation.
— Constraints
— Applicability.
— Structure. (e.g., the data model)
— Behavior. (e.g., the behavior model)
— Participants.
— Collaborations
— Consequences.

Pattern Name: Actuator-Sensor
Intent:Specify various kinds of sensors and actuators in an embedded system.

Motivation: Embedded systems usually have various kinds of sensors and
actuators. These sensors and actuators are all either directly or indirectly
connected to a control unit. Although many of the sensors and actuators look
quite different, their behavior is similar enough to structure them into a pattern.
The pattern shows how to specify the sensors and actuators for a system,
including attributes and operations. The Actuator-Sensorpattern uses a
pullmechanism (explicit request for information) for PassiveSensorsand a
pushmechanism (broadcast of information) for the ActiveSensors.

Constraints:

Each passive sensor must have some method to read sensor input and
attributesthat represent the sensor value.

Each active sensor must have capabilities to broadcast update messageswhen its
value changes.

Each active sensor should send a life tick, a status message issued within a
specified time frame, to detect malfunctions.

Each actuator must have some method to invoke the appropriate response
determined by theComputingComponent.

Each sensor and actuator should have a function implemented to check its own
operation state.

Each sensor and actuator should be able to test the validity of the values received
or sent and set its operation state if the values are outside of the specifications.

Applicability:Useful in any system in which multiple sensors and actuators are
present.

Structure:A UML class diagram for the Actuator-SensorPattern is shown in Figure.
Actuator, PassiveSensorand ActiveSensorare abstract classes and denoted in
italics. There are four different types of sensors and actuators in this pattern. The
Boolean, integer, and real classes represent the most common types of sensors
and actuators. The complex classes are sensors or actuators that use values that
cannot be easily represented in terms of primitive data types, such as a radar
device. Nonetheless, these devices should still inherit the interface from the
abstract classes since they should have basic functionalities such as querying the
operation states.

Behavior. Here, the ControlPanelqueries a sensor (a passive position sensor) and
an actuator (pan control) to check the operation state for diagnostic purposes
before reading or setting a value. The messages Set Physical Value and Get
Physical Value are not messages between objects. Instead, they describe the
interaction between the physical devices of the system and their software
counterparts. In the lower part of the diagram, below the horizontal line, the
PositionSensorreports that the operation state is zero. The
ComputingComponent(represented as ControlPanel) then sends the error code
for a position sensor failure to the FaultHandlerthat will decide how this error
affects the system and what actions are required. It gets the data from the sensors
and computes the required response for the actuators.

Summary

* Behavioral modeling
— Communication diagram
* Patterns in Requirements modeling
— What is this pattern
— How do we discover the pattern
— How do we document it

Behavioral modeling depicts dynamic behavior. The behavioral model uses input
from scenario-based and class-based elements to represent the states of analysis
classes and the system as a whole.

Analysis patterns enable a software engineer to use existing domain knowledge
to facilitate the creation of a requirements model.

10

