Requirements Modeling:
Flow, behavior, and pattern

(1)

Requirement modeling

Scenario-based
models
e.g.,

use cases
user stories

Class
models

eg.
class diagrams
collaboration diagrams

Software

Requirements

Behavioral
models
e.g.,

state diagrams
sequence diagrams

Flow
models
e.g.,

DFDs

data models

Elements of the analysis model
Scenario-based elements

Functional—processing narratives for software functions
Use-case—descriptions of the interaction between an “actor” and the
system. E.g. UML use-case diagram.

Class-based elements, E.g., UML class
diagram.

Implied by scenarios.
Generalize classes, inheritance, and associations.

Flow-oriented elements

Data flow diagram

Behavioral elements
State diagram. E.g.: UML statechart.

Behavioral modeling

* What is a behavioral model?
— System response to external events

* Why do we need behavioral modeling?
— Application
— Pattern
— Web/mobile apps

* How can we create a behavioral model?
— Events
— State representations

Aren’t scenario-based and class-based modeling representations (static elements
of the requirements model) enough? That depends

- Behavioral modeling is often required

In some situations, complex application requirements may demand an

examination of how an application behave as a consequence of external events

- Pattern is often used

Whether existing domain knowledge can be adopted for the current

problem?

- Functionality of web/mobile apps

In the case of web-based or mobile systems and applications, how content and
functionality meld to provide an end user with the ability to successfully navigate
an application to achieve usage goals?

Behavioral modeling

* |dentify events

— understand system interaction: examining use cases

The homeowner uses the keypad to key in a four-digit password. The password is

compared with the valid password stored in the system. If the password is incorrect, the

control panel will beep once and reset itself for additional input. If the password is
correct, the control panel awaits further action.

* Underlined portions of the use case: events
— E.g., password entered, password compared
— Impact on control flow
* Explicit vs. implicit
— Examples?

To create the model, the analyst must perform the following steps: (1) Evaluate
all use-cases to fully understand the sequence of interaction within the system.

-The use case represents a sequence of activities that involves actors and the
system

-In general, an event occurs whenever the system and an actor exchange
information

-An event is not the information that has been exchanged, but rather the fact
that information has been exchanged

Homeowner transmits an event to the object ControlPanel The event might be
called password entered

The information transferred is the four digits that constitute the password, but
this is not an essential part of the behavioral model.

Impact on the flow of control
Some events have an explicit impact, while others have no direct impact on
the flow of control
E.g.) password entered vs. password compared
The event password compared will have an explicit impact on the

information and control flow of the SafeHomesoftware

Behavioral modeling

* Connect events to objects
— Objects generating events

— Objects recognizing events
¢ which have occurred elsewhere

The homeowner uses the keypad to key in a four-digit password. The password is
compared with the valid password stored in the system. If the password is incorrect, the
control panel will beep once and reset itself for additional input. If the password is
correct, the control panel awaits further action.

e

Which objects generate/recognize
which events?

Once all events have been identified, they are allocated to the objects involved.
Objects can be responsible for
Generating events
¢(e.g., Homeowner generates the password entered event)
Recognizing events that have occurred elsewhere
¢(e.g., ControlPanel recognizes the binary result of the password compared
event)

Behavioral modeling

» State representations

— which states to consider?
* State of each class
— system function
« State of the system

— external observation

state—a set of observable circumstances that characterizes the behavior of a
system at a given time

In the context of behavioral modeling, two different characterizations of states
must be considered:
(1) the state of each class as the system performs its function and

(2) the state of the system as observed from the outside as the system
performs its function

Behavioral modeling

* State of analysis class
— Passive vs. active state
* Examples?
* Elements
— State
— State transition
— Event
— Action

* Representations
* State diagram
* Sequence diagram

The state of a class takes on both passive and active characteristics [CHA93].
A passive stateis simply the current status of all of an object’s attributes.
*E.g.) the class Player: the current position & orientation attributes
The active state of an object indicates the current status of the object as it
undergoes a continuing transformation or processing.
*E.g.) the class Player: moving, at rest, injured, being cured, trapped, lost

state—a set of observable circumstances that characterizes the behavior of a
system at a given time

state transition—the movement from one state to another

event—an occurrence that causes the system to exhibit some predictable form of
behavior

action—process that occurs as a consequence of making a transition

Representation: state diagram

* Class/object’s active states and transitions among them
— Example — the ControlPanel class

Timer < lockedTime

Timer > lockedTime Locked

Password = incorrect
& numberOfiries < maxTries

(Reading I__’ Comparing ‘_| numberOfTries > maxTries

Password
entered

. Key hit

Do: validatePassword
\) Password = correct

Activation successful

A UML state diagram

Represents active states for each class and the events (triggers) that cause
changes between these active states.

Notations

State transition: Each arrow represents a transition from one active state of an
object to another.

Event: The labels shown for each arrow represent the event

Condition for transition: A guard is a Boolean condition that must be satisfied
in order for the transition to occur.
oE.g.) if (password input = 4 digits) then compare to stored password
*The guard depends on the passive state of the object

Action: An action occurs concurrently with the state transition or as a
consequence of it and generally involves one or more operations
(responsibilities) of the object.
*E.g.) an operation named validatePassword() performs a digit-by-digit
comparison to validate the entered password.

Representation: sequence diagram

* Event-object interaction over time
— One SD per use case

. S Reading
Password entered J

ystem
ready

—

Reques! lookup

Result

|
|
|
|
T
Password = correct b
|
|
|
|
|
|
|
|
I
|
|
1

Request acfivafion

|
I
|
|
|
I
|
|
i i
Activation successful “
I

numberOfiries > maxTries
Timer > lockedTime

Selecting
Activation successhul

sequence diagram in UML, indicates how events cause transitions from object to
object as a function of time.

sequence diagram is used to show the dynamic communications between objects
during execution of a task. It shows the temporal order

in which messages are sent between the objects to accomplish that task. One
might use a sequence diagram to show the interactions in one use case or in one
scenario of a software system.

A shows step by step what must happen to accomplish a piece of
functionality provided by the system.

Shows object interactions arranged in sequence. In particular, it shows the
participating in an interaction and the exchanged.

A SD captures the behavior of a scenario. There will be a SD for each use

case in the system.

We draw SDs in order to document how objects to produce the
functionality of each use case.

The SDs show which pass across the system boundary
and the being sent from one object to another in order to achieve the
overall functionality of the use case.

10

Sequence diagram: notations

* 1. Object (w/ or wo/ class) ¥,
objectName : : ClassName objectName : Driver ~Car .
ClassName
) oper() :
& . — D
» 2. lifeline — 1
— Possibly ending with an ‘X’ 4 : 2) 3
e 3. activation bar object1 : | | object2 : | | object3:
c1 c2 Cc3
operi() \
* 4. method call (message) M|

;

Activation can be nested

1. Objects: appear at the top of the
column
Different with “classes”

2. Lifeline: A dashed line that shows the
existence of an object over a period of

time.
Put a “X” at the end to indicate destruction.
(optional)

11

3. A symbol that shows the period of
time during which an object is
performing an action, either directly or
through a subordinate procedure.

When an object is executing a method (that is, when it has an activation frame on
the stack), you can optionally display a white bar, called an activation bar, down
the object’s lifeline.

4. A sequence diagram shows method calls using horizontal arrows from the caller
to the callee, labeled with the method name and optionally including its
parameters, their types, and the return type.

11

Sequence diagram: notations

* 5. return (return message)

* 6. found message Mouslsoon] [Dmwing] [dfgusfious] [Gumelic]

mouseClicked|point) | :
getFigureAt(point] |

1
|
|
I
1
|
|
]
|
1

I | highlightlgraphics)

.setColor(red)

drawRect [x,y,w,h] |

drawStringls) |

I
T |
I

5. The diagram can also optionally show the return from a method call with a
dashed arrow and an optional label with the name of the object

that was returned

-- A common practice is to leave off the return arrow when a void method has
been called, since it clutters up the diagram while providing little information of
importance

6. A black circle with an arrow coming from it indicates a found message whose
source is unknown or irrelevant.

Sequence diagram: notations

* 7.interaction frame

‘Mouselistenar - E
* 8. guards _ E=q [E=]
_ rectDrogged(rect] ;
b highlightFiguresin(rect) 3 1
loop { | 1
for all Figures in the Drawing | -
opt J 1
[Figure intersects highlightlg) !
rect]

f]

|
|
|
T H \ !

*** 1f logical control structures are required, it is probably best to draw a
separate sequence diagram for each case. That is, if the message flow can take
two different paths depending on a condition, then draw two separate sequence
diagrams, one for each possibility.

7. If you insist on including loops, conditionals, and other control structures in a
sequence diagram, you can use interaction frames, which are rectangles that
surround parts of the diagram and that are labeled with the type of control
structures they represent.

8. The phrases in square brackets are called guards, which are Boolean conditions
that must be true if the action inside the interaction frame is to continue.

13

Sequence diagram: notations

* More

— 9. Synchronous vs. asynchronous message

— 10. Self message - instance2 : Object?
— 11. object creation ! '
— 12 object destruction | synchronoushesszge(
%
| : I -
"] .I 4
P Thing?“ . : asynchronousMg;ssage() E
K< create > :m'mgz 3 ‘ I
ol destroy() ;o
11 pum 2 S |
P ~(10

9.Synchronous mess ages are shown with solid arrowheads while asynchronous
messages are shown with stick arrowheads.

10.You can show an object sending itself a message with an arrow going out from
the object, turning downward, and then pointing back to the same object.

11.You can show object creation by drawing an arrow appropriately labeled (for
example, with a «create» label) to an object’s box. In this case, the box will
appear lower in the diagram than the boxes corresponding to objects already in
existence when the action begins.

12.You can show object destruction by a big X at the end of the object’s lifeline.

Other objects can destroy an object, in which case an arrow points from the
other object to the X.

14

Sequence diagram: notations

* More

: C1 zC2

— Time constraint

. a i
— Recursive calls \@jq;} ;

:C1 :C2 :C3

1.1. oper2()
P

' E]%ero |:? 1.1.1. oper1() }

15

Exercise
* The interaction of an exam!

The instructor first informs the students the time,
location and content of the exam. Then he prepares the
exam and the solution, and print out enough copies, to
be distributed at the appointed time and location. The
students take and return the exams. The instructor
then give the solution to the TAs, who give him back
the grades. Finally, he submit both the grades and
exams to the department.

16

:Instructor

:Student ZTA

Staff

Administrato

1z setlbxam(date, mallterial) U

2: pq_epare(exam)

PR

[
T

3: nrakeCopies(eanm)
T T

6: [Tim

47*handOut(exa

7T*matk(papers,

5!

eUp?]*handin(e

|
)
\nswers(exarrr)

=N

xam) [

|
|

exam, soluti on%)

8: *return(pg

per, marks)

9: record(marks) |

10: *inform(mark)

11: submit(paper)

[

|
[

— e

Li
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k
|

17

Summary

* Behavioral modeling
— What is a behavioral model
— Why do we need it
— How do we do the modeling
* Representations
— UML state diagram
— UML sequence diagram

18

