Requirements Modeling:
Flow, behavior, and pattern

(1)

Requirement modeling

* Elements of the analysis model
— Scenario-based elements

Scenario-based Class * Functional—processing narratives for
meodels models é

o o0 software functions

use cases class diagrams

Wox phries S » Use-case—descriptions of the

interaction between an “actor” and the
system. E.g. UML use-case diagram.

Software

Requirements

Behavioral
models
eg.,

state diagrams
sequence diograms

Flow — Class-based elements, E.g., UML class
meodels S
eg, diagram.
DFDs

data models

* Implied by scenarios.

* Generalize classes, inheritance, and
associations.

— Behavioral elements
* State diagram. E.g.: UML statechart.
— Flow-oriented elements

* Data flow diagram

Aren’t those requirements modeling representations enough?”

For some types of software, the use case may be the only requirements
modeling representation that is required.

For others, an object-oriented approach is chosen and class-based
models may be developed.

But in other situations, complex application requirements may demand an
examination of how data objects are transformed as they move through a
system; how an application behaves as a consequence of external events;

Requirements analysis approach

* Structured analysis

— Considers data and the processes that transform the data
as separate entities

— Data objects are modeled in a way that defines their
attributes and relationships

— Processes that manipulate data objects are modeled in a
manner that shows how they transform data as data
objects flow through the system

* Object-oriented analysis

— Focuses on the definition of classes and the manner in
which they collaborate with one another to effect
customer requirements

structured analysis, considers data and the processes that transform the
data as separate entities.

object-oriented analysis, focuses on the definition of classes and the
manner in which they collaborate with one another to effect customer
requirements

The question is not which is best, but rather, what combination of
representations will provide stakeholders with the best model of software

requirements and the most effective bridge to software design.

Flow-oriented modeling

* Address flow-oriented elements in requirements

model
computer
m based
system

* Flow-oriented models
— Data-flow model

— Control-flow model

Information is transformed as it flows through a computer-based system.
The system accepts input in a variety of forms, applies functions to
transform it, and produces output in a variety of forms.

Every computer-based system is an information transformer ..

Considered by many to be an ‘old school’ approach, flow-oriented modeling
continues to provide a view of the system that is unique—it should be used to
supplement other analysis model elements

Data-flow modeling

* Represents how data objects are transformed as they
move through the system
— Using data flow diagram (DFD) external entity

» Data objects

* Transformations

transformation

/ data objects

data store

Data flow modeling is a core modeling activity in structured analysis.

data flow diagram (DFD) and related diagrams and information are not a
formal part of UML, they can be used to complement UML diagrams and
provide additional insight into system requirements and flow.

Data-flow modeling

* External entity

— A producer or consumer of data
* E.g., aperson, a device, a sensor, a computer-based system

Data must always originate somewhere
and must always be sent to something
* Transformation
— A data transformer changing input to output

* E.g., format a report, display a graph, process other data
Data must always be processed in some
way to achieve system function

Data-flow modeling

* Data objects
— Data that flows through a system

base
compute
triangle |kl
height geca
sensor #
sensor #, type,
look-up location, age
* Data store S —
report required data

— Data stored _—

type,
location, age
for later use sensor numbe\ ?

sensor data

Data-flow modeling

* Steps
— review the data model to isolate data objects and use a
grammatical parse to determine transformations
— determine external entities
* producers and consumers of data
— Create the level-0 (context-level) DFD

* Also known as context diagram

processing
request requested
o video
digital signal

video [N
processor

video
source

NTSC
video signal

The DFD is presented in a hierarchical fashion. That is, the first data flow
model (sometimes called a level 0 DFD or context diagram) represents the
system as a whole.

Data-flow modeling

* Steps
— write a narrative describing the higher-level
transformations

— Apply grammatical parse to use case describing higher-
level transformations to develop next level DFDs

Subsequent data flow diagrams refine the context diagram, providing
increasing detail with each subsequent level.

Data-flow modeling

* Guidelines
— All notations are text-labeled with meaningful names
— The DFD evolves through a number of levels of detail
— Always begin with a context level diagram (also called level
0)
— Always show external entities at level O
— Always label data flow arrows
— Do NOT represent procedural logic
— Maintain information flow continuity

Continuity: the data objects that flow into the system or into any
transformation at one level must be the same data objects (or their
constituent parts) that flow into the transformation at a more refined level.

10

Data-flow modeling

» SafeHome Example (level-0/1/2 DFDs)

Control User commands. Display
panel and data information

SafeHome

software

- -
-~ % Telephone
Y Sensors sdatus number tones
User commands e
~ I

. and ‘ala J

rd -
! \
: I
! !
1 Activate/ Conf(\ﬂ;;:)lion !
! ot ! onfiguration mformotr
system
| g I
ll P Disp!uy :
alid IV msg. messages - ne
* and s!nglus Display d?:lla
\ Configuration information

-

= >
Q

3

——

1 /
Sensors IS—’—‘
ensor
status N, » Telephone

- number fones i

Control

panel
display

Alarm

Telephone

ine

Telephone
number tones

Each bubble is refined until it does just one thing
The expansion ratio decreases as the number of levels increase

Most systems require between 3 and 7 levels for an adequate flow model

A single data flow item may be expanded as levels increase.

11

Control flow modeling

* Used for systems driven by events (rather than data)

— event or control item is implemented as a Boolean value (e.g., true or
false, on or off, 1 or 0) or a discrete list of conditions (e.g., empty,
jammed, full)

* |dentify events
— listing all “sensors” that are "read" by the software.
— listing all interrupt conditions.
— listing all "switches" that are actuated by an operator.
— listing all data conditions.

— recalling the noun/verb parse that was applied to the processing
narrative, review all "control items" as possible CSPEC inputs/outputs.

— describe the behavior of a system by identifying its states, how each
state is related, and define the transitions between states.

— focus on possible omissions

For some types of applications, the data model and the data flow diagram
are all that is necessary to obtain meaningful insight into software
requirements.

applications are “driven” by events rather than data, produce control
information rather than reports or displays, and process information with
heavy concern for time and performance. Such applications require also
the use of control flow modeling

Among the many events and control items that are part of SafeHome
software are sensor event (i.e., a sensor has been tripped), blink flag (a
signal to blink the display), and start/stop switch (a signal to turn the
system on or off).

12

Control specification (CSPEC)

* Describes system behavior

* Representations
— A state diagram—a sequential specification of behavior

— A process activation table (PAT)—a combinatorial
specification of behavior.

13

Control specification (CSPEC)

* SafeHome Example: state diagram (for level-1 DFD)

(Resetting) (Idle w
systemOK
Start/stop switch Entry/set systemStatus "inactive" Entry/set systemStatus "inactive”
"on® | Entry/set displayMsg1 "Starting system" Entry/set displayMsg1 "Ready”
power "on % . e Reset
Entry/set displayMsg2 "Please wait Entry/set displayMsg2 ™"
Entry/set displayStatus slowBlinking Entry/set displayStatus steady
Do: run diagnostics) \ KeyHit/handleKey
: off/powerOff I
Activate
failureDetected/
set disployMsg2 "contact Vendor” I deactivatePassword decdticaioPsswcid @
(Monitoring$: S/ 3 (ActingOnAlarm 1
onitoringSystemStatus fidsaAlsa g
Entry/set systemSatus "monitoring” 7 Entry/set systemStofus "mcnilon:mdAlarm"
Entry/set displayMsg1 "Armed" timeOut Entry/set displayMsg] "ALARM'
Entry/set displayMsg2 ™ Entry/set displayMsg?2 triggeringSensor
Entry/set displayStatus steady [E)rcl)ny/sal diﬂzycsmtuslgastﬁiinking
: . : monitor, oniroldystem
o Tomwmﬂdccnmls)’s‘em sensorTriggered/ | Do: soundAlarm
stortTimer Do: notifyAlarmResponders

\ KeyHit/handleKey

|

sensorTriggered/
restoriTimer

The diagram indicates how the system responds to events as it traverses
the four states defined at this level.

e.g., when the system is activated, a transition to the Monitoring-
SystemStatus state occurs, display messages are changed as shown,
and the process monitorAndControlSystem is invoked.

We will study more details of state diagram in the next lecture (for behavior
modeling)

Control specification (CSPEC)

* SafeHome Example: PAT (for level-1 DFD)

input events

sensor event 0o 0 0 0 1 O
blink flag 0O 01 1 0 O
start stop switch 0 1 0 0 0 O
display action statuscomplete 0 0 0 1 0 0
in-progress 0O 01 0 0 O
time out 0O 0 0 0 0 1
output

alarm signal O 0 0 0 1 O
process activation

monitor and control system 0O 1 0 0 1 1
activate/deactivate system 0O 1 0 0 0 O
display messages and status 1 o 1 1 1 1
interact with user 1 0 0 1 0 1

The PAT represents information contained in the state diagram in the
context of processes (transformations), not states. That is, the table
indicates which processes (bubbles) in the flow model will be invoked
when an event occurs

CSPEC describes the behavior of the system, but it gives us no

information about the inner working of the processes (transformations).

Process specification (PSPEC)

15

Process specification (PSPEC)

* Describe all flow model processes that appear at the
final level of refinement
— Details on inner workings of the transformation

include narrative text, a program design language (PDL) description5 of
the process algorithm, mathematical equations, tables, or UML activity
diagrams.

By providing a PSPEC to accompany each bubble in the flow model, you
can create a “mini-spec” that serves as a guide for design of the software
component that will the bubble

Program design language (PDL) mixes programming language syntax with
narrative text to provide procedural design detail.

16

Looking ahead

_0-0@-
o« ©
lysi del .\;._.

analysis mode -

Mapks into

design model E

17

Summary

* Flow-oriented modeling

— Data flow modeling
- DFD

— Control flow modeling

» Control specification
— State diagram
— Process activation table

* Process specification

18

