Principles that Guide Practice




Knowledge vs. principles

“You often hear people say that software
development knowledge has a 3-year half-life: half of
what you need to know today will be obsolete within 3
years. In the domain of technology-related knowledge,
that’s probably about right. But there is another kind
of software development knowledge—a kind that |
think of as "software engineering principles’— that
does not have a three-year half-life. These software
engineering principles are likely to serve a professional
programmer throughout his or her career. ”

- Steve McConnell




What, Who, and Why

* Software practice

— a broad array of principles, concepts, methods and tools
that you must consider as software is planned and
developed.

— what you do day in and day out as software evolves from
an idea to a reality

* Software process

— aroad map for getting to a successful destination
* Elements

— principles, concepts and methods

* tools supports the application of methods.




Principles guiding software process

Principle #1. Be agile.

— Whether the process model you choose is prescriptive or agile, the
basic tenets of agile development should govern your approach.

Principle #2. Focus on quality at every step.

— The exit condition for every process activity, action, and task should
focus on the quality of the work product that has been produced.

Principle #3. Be ready to adapt.

— Process is not a religious experience and dogma has no place in it.
When necessary, adapt your approach to constraints imposed by the
problem, the people, and the project itself.

Principle #4. Build an effective team.

— Software engineering process and practice are important, but the
bottom line is people. Build a self-organizing team that has mutual
trust and respect.




Principles guiding software process

Principle #5. Establish mechanisms for communication and
coordination.

— Projects fail because important information falls into the cracks and/or
stakeholders fail to coordinate their efforts to create a successful end
product.

Principle #6. Manage change.

— The approach may be either formal or informal, but mechanisms must be
established to manage the way changes are requested, assessed,
approved and implemented.

Principle #7. Assess risk.

— Lots of things can go wrong as software is being developed. It’s essential
that you establish contingency plans.

Principle #8. Create work products that provide value for others.

— Create only those work products that provide value for other process
activities, actions or tasks.




Principles guiding practice

Principle #1. Divide and conquer.

— Stated in a more technical manner, analysis and design
should always emphasize separation of concerns(SoC).

Principle #2. Understand the use of abstraction.

— At it core, an abstraction is a simplification of some
complex element of a system used to communication
meaning in a single phrase.

Principle #3. Strive for consistency.
— A familiar context makes software easier to use.
Principle #4. Focus on the transfer of information.

— Pay special attention to the analysis, design, construction,
and testing of interfaces.




Principles guiding practice

Principle #5.Build software that exhibits effective
modularity.

— Separation of concerns (Principle #1) establishes a philosophy
for software. Modularity provides a mechanism for realizing the
philosophy.

Principle #6.Look for patterns.

— The goal of patterns within the software community is to create
a body of literature to help software developers resolve
recurring problems encountered throughout all of software
development.

Principle #7. When possible, represent the problem and
its solution from a number of different perspectives.

Principle #8. Remember that someone will maintain the
software.




Communication principles

Principle #1. Listen.

— Try to focus on the speaker’s words, rather than formulating your
response to those words.

Principle # 2. Prepare before you communicate.

— Spend the time to understand the problem before you meet with
others.

Principle # 3. Someone should facilitate the activity.

— Every communication meeting should have a leader (a facilitator) to
keep the conversation moving in a productive direction; (2) to mediate
any conflict that does occur, and (3) to ensure than other principles
are followed.

Principle #4. Face-to-face communication is best.

— But it usually works better when some other representation of the
relevant information is present.




Communication principles

Principle # 5. Take notes and document decisions.
— Someone participating in the communication should serve as a “recorder”
and write down all important points and decisions.
Principle # 6. Strive for collaboration.

— Collaboration and consensus occur when the collective knowledge of
members of the team is combined ...

Principle # 7. Stay focused, modularize your discussion.

— The more people involved in any communication, the more likely that

discussion will bounce from one topic to the next.

Principle # 8. If something is unclear, draw a picture.
Principle # 9. (a) Once you agree to something, move on; (b) If you
can’t agree to something, move on; (c) If a feature or function is
unclear and cannot be clarified at the moment, move on.
Principle # 10. Negotiation is not a contest or a game. It works
best when both parties win.




Planning principles

Principle #1. Understand the scope of the project.

— It’s impossible to use a roadmap if you don’t know where you’re going.

Scope provides the software team with a destination.
Principle #2. Involve the customer in the planning activity.
— The customer defines priorities and establishes project constraints.
Principle #3.Recognize that planning is iterative.

— A project plan is never engraved in stone. As work begins, it very likely
that things will change.

Principle #4. Estimate based on what you know.

— The intent of estimation is to provide an indication of effort, cost, and
task duration, based on the team’s current understanding of the work
to be done.

10



Planning principles

Principle #5. Consider risk as you define the plan.

— If you have identified risks that have high impact and high probability,
contingency planning is necessary.

Principle #6. Be realistic.
— People don’t work 100 percent of every day.
Principle #7. Adjust granularity as you define the plan.

— Granularity refers to the level of detail that is introduced as a project plan
is developed.

Principle #8. Define how you intend to ensure quality.

— The plan should identify how the software team intends to ensure quality.
Principle #9. Describe how you intend to accommodate change.

— Even the best planning can be obviated by uncontrolled change.
Principle #10. Track the plan frequently and make adjustments as
required.

— Software projects fall behind schedule one day at a time.

11



Modeling principles

* Requirement modeling principles
— Principle #1. The information domain of a problem must
be represented and understood.
— Principle #2. The functions that the software performs
must be defined.
— Principle #3. The behavior of the software (as a
consequence of external events) must be represented.

— Principle #4. The models that depict information,
function, and behavior must be partitioned in a manner
that uncovers detail in a layered (or hierarchical) fashion.

— Principle #5. The analysis task should move from essential
information toward implementation detail.

In software engineering work, two classes of models can be created:
Requirements models(also called analysis models) represent the customer
requirements by depicting the software in three different domains: the information
domain, the functional domain, and the behavioral domain.
Design modelsrepresent characteristics of the software that help practitioners
to construct it effectively: the architecture, the user interface, and component-
level detall.

12



Modeling principles

* Design modeling principles

Principle #1. Design should be traceable to the requirements model.

Principle #2. Always consider the architecture of the system to be
built.

Principle #3. Design of data is as important as design of processing
functions.

Principle #5. User interface design should be tuned to the needs of
the end-user. However, in every case, it should stress ease of use.
Principle #6. Component-level design should be functionally
independent.

Principle #7. Components should be loosely coupled to one another
and to the external environment.

Principle #8. Design representations (models) should be easily
understandable.

Principle #9. The design should be developed iteratively. With each
iteration, the designer should strive for greater simplicity.

13



Modeling principles

Agile modeling principles

Principle #1. The primary goal of the software team is to build software,
not create models.

Principle #2. Travel light—don’t create more models than you need.

Principle #3. Strive to produce the simplest model that will describe the
problem or the software.

Principle #4. Build models in a way that makes them amenable to
change.

Principle #5. Be able to state an explicit purpose for each model that is
created.

Principle #6. Adapt the models you develop to the system at hand.

Principle #7. Try to build useful models, but forget about building perfect
models.

Principle #8. Don’t become dogmatic about the syntax of the model. If it
communicates content successfully, representation is secondary.

Principle #9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned.

Principle #10. Get feedback as soon as you can.

14



Construction principles

* Preparation principles
— Understand of the problem you’re trying to solve.
— Understand basic design principles and concepts.

— Pick a programming language that meets the needs of the
software to be built and the environment in which it will
operate.

— Select a programming environment that provides tools
that will make your work easier.

— Create a set of unit tests that will be applied once the
component you code is completed.

The construction activity encompasses a set of coding and testing tasks that lead
to operational software that is ready for delivery to the customer or end-user.



Construction principles

* Coding principles - as you start

— Constrain your algorithms by following structured programming
[Boh0OQ] practice.

— Consider the use of pair programming
— Select data structures that will meet the needs of the design.

— Understand the software architecture and create interfaces that
are consistent with it.

— Keep conditional logic as simple as possible.
— Create nested loops in a way that makes them easily testable.

— Select meaningful variable names and follow other local coding
standards.

— Write code that is self-documenting.

— Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

Coding principles and concepts are closely aligned programming style,
programming languages, and programming methods.



Construction principles

* Coding principles — after finishing first pass
(validation principles)
— Conduct a code walkthrough when appropriate.
— Perform unit tests and correct errors you’ve uncovered.
— Refactor the code.

17



Construction principles

* Testing principles
— Principle #1. All tests should be traceable to customer
requirements.
— Principle #2. Tests should be planned long before testing
begins.
— Principle #3. The Pareto principle applies to software
testing.

— Principle #4. Testing should begin “in the small” and
progress toward testing “in the large.”

— Principle #5. Exhaustive testing is not possible.

18



Deployment principles

Principle #1. Customer expectations for the software must be
managed.
— Too often, the customer expects more than the team has promised to
deliver, and disappointment occurs immediately.
Principle #2. A complete delivery package should be
assembled and tested.

Principle #3. A support regime must be established before
the software is delivered.

— An end-user expects responsiveness and accurate information when a
guestion or praoblem arises.

Principle #4. Appropriate instructional materials must be
provided to end-users.

Principle #5. Buggy software should be fixed first, delivered
later.

19



Summary

» Software process vs. software practice
* Principles
— that guide software process
— That guide software practice
— That guide each of the framework activities
* Communication
* Planning
* Modeling

* Construction

* Deployement

20



