Principles that Guide Practice




Knowledge vs. principles

“You often hear people say that software
development knowledge has a 3-year half-life: half of
what you need to know today will be obsolete within 3
years. In the domain of technology-related knowledge,
that’s probably about right. But there is another kind
of software development knowledge—a kind that |
think of as "software engineering principles’— that
does not have a three-year half-life. These software
engineering principles are likely to serve a professional
programmer throughout his or her career. ”

- Steve McConnell




What, Who, and Why

* Software practice

— a broad array of principles, concepts, methods and tools
that you must consider as software is planned and
developed.

— what you do day in and day out as software evolves from
an idea to a reality

* Software process

— aroad map for getting to a successful destination
* Elements

— principles, concepts and methods

* tools supports the application of methods.




Principles guiding software process

Principle #1. Be agile.

— Whether the process model you choose is prescriptive or agile, the
basic tenets of agile development should govern your approach.

Principle #2. Focus on quality at every step.

— The exit condition for every process activity, action, and task should
focus on the quality of the work product that has been produced.

Principle #3. Be ready to adapt.

— Process is not a religious experience and dogma has no place in it.
When necessary, adapt your approach to constraints imposed by the
problem, the people, and the project itself.

Principle #4. Build an effective team.

— Software engineering process and practice are important, but the
bottom line is people. Build a self-organizing team that has mutual
trust and respect.




Principles guiding software process

Principle #5. Establish mechanisms for communication and
coordination.

— Projects fail because important information falls into the cracks and/or
stakeholders fail to coordinate their efforts to create a successful end
product.

Principle #6. Manage change.

— The approach may be either formal or informal, but mechanisms must be
established to manage the way changes are requested, assessed,
approved and implemented.

Principle #7. Assess risk.

— Lots of things can go wrong as software is being developed. It’s essential
that you establish contingency plans.

Principle #8. Create work products that provide value for others.

— Create only those work products that provide value for other process
activities, actions or tasks.




Principles guiding practice

Principle #1. Divide and conquer.

— Stated in a more technical manner, analysis and design
should always emphasize separation of concerns(SoC).

Principle #2. Understand the use of abstraction.

— At it core, an abstraction is a simplification of some
complex element of a system used to communication
meaning in a single phrase.

Principle #3. Strive for consistency.
— A familiar context makes software easier to use.
Principle #4. Focus on the transfer of information.

— Pay special attention to the analysis, design, construction,
and testing of interfaces.




Principles guiding practice

Principle #5.Build software that exhibits effective
modularity.

— Separation of concerns (Principle #1) establishes a philosophy
for software. Modularity provides a mechanism for realizing the
philosophy.

Principle #6.Look for patterns.

— The goal of patterns within the software community is to create
a body of literature to help software developers resolve
recurring problems encountered throughout all of software
development.

Principle #7. When possible, represent the problem and
its solution from a number of different perspectives.

Principle #8. Remember that someone will maintain the
software.




Communication principles

Principle #1. Listen.

— Try to focus on the speaker’s words, rather than formulating your
response to those words.

Principle # 2. Prepare before you communicate.

— Spend the time to understand the problem before you meet with
others.

Principle # 3. Someone should facilitate the activity.

— Every communication meeting should have a leader (a facilitator) to
keep the conversation moving in a productive direction; (2) to mediate
any conflict that does occur, and (3) to ensure than other principles
are followed.

Principle #4. Face-to-face communication is best.

— But it usually works better when some other representation of the
relevant information is present.




Communication principles

Principle # 5. Take notes and document decisions.
— Someone participating in the communication should serve as a “recorder”
and write down all important points and decisions.
Principle # 6. Strive for collaboration.

— Collaboration and consensus occur when the collective knowledge of
members of the team is combined ...

Principle # 7. Stay focused, modularize your discussion.

— The more people involved in any communication, the more likely that

discussion will bounce from one topic to the next.

Principle # 8. If something is unclear, draw a picture.
Principle # 9. (a) Once you agree to something, move on; (b) If you
can’t agree to something, move on; (c) If a feature or function is
unclear and cannot be clarified at the moment, move on.
Principle # 10. Negotiation is not a contest or a game. It works
best when both parties win.




Planning principles

Principle #1. Understand the scope of the project.

— It’s impossible to use a roadmap if you don’t know where you’re going.

Scope provides the software team with a destination.
Principle #2. Involve the customer in the planning activity.
— The customer defines priorities and establishes project constraints.
Principle #3.Recognize that planning is iterative.

— A project plan is never engraved in stone. As work begins, it very likely
that things will change.

Principle #4. Estimate based on what you know.

— The intent of estimation is to provide an indication of effort, cost, and
task duration, based on the team’s current understanding of the work
to be done.
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Planning principles

Principle #5. Consider risk as you define the plan.

— If you have identified risks that have high impact and high probability,
contingency planning is necessary.

Principle #6. Be realistic.
— People don’t work 100 percent of every day.
Principle #7. Adjust granularity as you define the plan.

— Granularity refers to the level of detail that is introduced as a project plan
is developed.

Principle #8. Define how you intend to ensure quality.

— The plan should identify how the software team intends to ensure quality.
Principle #9. Describe how you intend to accommodate change.

— Even the best planning can be obviated by uncontrolled change.
Principle #10. Track the plan frequently and make adjustments as
required.

— Software projects fall behind schedule one day at a time.
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Modeling principles

* Requirement modeling principles
— Principle #1. The information domain of a problem must
be represented and understood.
— Principle #2. The functions that the software performs
must be defined.
— Principle #3. The behavior of the software (as a
consequence of external events) must be represented.

— Principle #4. The models that depict information,
function, and behavior must be partitioned in a manner
that uncovers detail in a layered (or hierarchical) fashion.

— Principle #5. The analysis task should move from essential
information toward implementation detail.

In software engineering work, two classes of models can be created:
Requirements models(also called analysis models) represent the customer
requirements by depicting the software in three different domains: the information
domain, the functional domain, and the behavioral domain.
Design modelsrepresent characteristics of the software that help practitioners
to construct it effectively: the architecture, the user interface, and component-
level detall.
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Modeling principles

* Design modeling principles

Principle #1. Design should be traceable to the requirements model.

Principle #2. Always consider the architecture of the system to be
built.

Principle #3. Design of data is as important as design of processing
functions.

Principle #5. User interface design should be tuned to the needs of
the end-user. However, in every case, it should stress ease of use.
Principle #6. Component-level design should be functionally
independent.

Principle #7. Components should be loosely coupled to one another
and to the external environment.

Principle #8. Design representations (models) should be easily
understandable.

Principle #9. The design should be developed iteratively. With each
iteration, the designer should strive for greater simplicity.
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Modeling principles

Agile modeling principles

Principle #1. The primary goal of the software team is to build software,
not create models.

Principle #2. Travel light—don’t create more models than you need.

Principle #3. Strive to produce the simplest model that will describe the
problem or the software.

Principle #4. Build models in a way that makes them amenable to
change.

Principle #5. Be able to state an explicit purpose for each model that is
created.

Principle #6. Adapt the models you develop to the system at hand.

Principle #7. Try to build useful models, but forget about building perfect
models.

Principle #8. Don’t become dogmatic about the syntax of the model. If it
communicates content successfully, representation is secondary.

Principle #9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned.

Principle #10. Get feedback as soon as you can.
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Construction principles

* Preparation principles
— Understand of the problem you’re trying to solve.
— Understand basic design principles and concepts.

— Pick a programming language that meets the needs of the
software to be built and the environment in which it will
operate.

— Select a programming environment that provides tools
that will make your work easier.

— Create a set of unit tests that will be applied once the
component you code is completed.

The construction activity encompasses a set of coding and testing tasks that lead
to operational software that is ready for delivery to the customer or end-user.



Construction principles

* Coding principles - as you start

— Constrain your algorithms by following structured programming
[Boh0OQ] practice.

— Consider the use of pair programming
— Select data structures that will meet the needs of the design.

— Understand the software architecture and create interfaces that
are consistent with it.

— Keep conditional logic as simple as possible.
— Create nested loops in a way that makes them easily testable.

— Select meaningful variable names and follow other local coding
standards.

— Write code that is self-documenting.

— Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

Coding principles and concepts are closely aligned programming style,
programming languages, and programming methods.



Construction principles

* Coding principles — after finishing first pass
(validation principles)
— Conduct a code walkthrough when appropriate.
— Perform unit tests and correct errors you’ve uncovered.
— Refactor the code.
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Construction principles

* Testing principles
— Principle #1. All tests should be traceable to customer
requirements.
— Principle #2. Tests should be planned long before testing
begins.
— Principle #3. The Pareto principle applies to software
testing.

— Principle #4. Testing should begin “in the small” and
progress toward testing “in the large.”

— Principle #5. Exhaustive testing is not possible.
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Deployment principles

Principle #1. Customer expectations for the software must be
managed.
— Too often, the customer expects more than the team has promised to
deliver, and disappointment occurs immediately.
Principle #2. A complete delivery package should be
assembled and tested.

Principle #3. A support regime must be established before
the software is delivered.

— An end-user expects responsiveness and accurate information when a
guestion or praoblem arises.

Principle #4. Appropriate instructional materials must be
provided to end-users.

Principle #5. Buggy software should be fixed first, delivered
later.
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Summary

» Software process vs. software practice
* Principles
— that guide software process
— That guide software practice
— That guide each of the framework activities
* Communication
* Planning
* Modeling

* Construction

* Deployement

20



