
1



In the SafeHome, ACS-DCV use case. 

As you can see, there are not only classes but also the communication between them. 
This communication is realized through passing messages 

Between related classes. This communication can be modeled using the CRC model.

2



A simple CRC index card for the FloorPlan class is illustrated

3



4



Examining these different generic relationships between classes helps with the 
identification of collaborators

5



Consider the classes defined for the video game noted earlier, the class PlayerBody is-
part-of Player, as are PlayerArms, PlayerLegs,

and PlayerHead. In UML, these relationships are represented as the aggregation shown 
in Figure 6.12.

6



7



Is-part-of and has-knowledge-of also imply ‘dependency’; other kinds of 
dependency are categorized as ‘depends-upon’

8



This is how stakeholders would review the CRC model once developed.

The index card contains a list of responsibilities and the corresponding 
collaborations that enable the responsibilities to be fulfilled; the collaborator class 
name is recorded on the CRC model index card next to the responsibility.

9



An association between two classes means that there is a structural relationship 
between them.

The class Wall is associated with three classes that allow a wall to be 
constructed, WallSegment, Window, and Door.

In some cases, an association may be further defined by indicating multiplicity.

a Wall object is constructed from one or more WallSegment objects. In addition, 
the Wall object may contain 0 or more Window objects and 0

or more Door objects. These multiplicity constraints are illustrated in Figure 6.13, 
where “one or more” is represented using 1. .*, and “0 or more” by 0 . .*. In UML, 
the asterisk indicates an unlimited upper bound on the range.

10



In a use case written for surveillance (not shown), you learn that a special 
password must be provided in order to view specific camera locations. One way 
to achieve this is to have Camera request a password and then grant permission 
to the DisplayWindow to produce the video display.

11



12



In a video game, Some focus on the game environment—the visual scenes that 
the user sees as the game is played;

Others focus on the characters within the game, describing their physical 
features, actions, and constraints.

Still others describe the rules of the game—how a player navigates through the 
environment

The plus sign preceding the analysis class name in each package indicates that 
the classes have public visibility and are therefore accessible from other 
packages.

　

Other symbols can precede an element within a package. A minus sign indicates 
that an element is hidden from all other packages and a # symbol indicates that 
an element is accessible only to packages contained within a given package.

13



Shows the structure of your software

References: http://msdn.microsoft.com/en-
us/library/dd409437.aspx

a simple example of a Thoroughbred class that models thoroughbred horses.

Each attribute can have a name, a type, and a level of visibility. The type and 
visibility are optional

can also specify that an attribute is a static or class attribute by underlining it. 

Each operation can also be displayed with a level of visibility, parameters with 
names and types, and a return type.

14



An abstract class or abstract method is indicated by the use of italics for the 
name in the class diagram.

An interface is indicated by adding the phrase “«interface»” (called a stereotype) 
above the name. An interface can also be represented graphically by a hollow 
circle.

The arrow points from the subclass to the superclass. In UML, such a 
relationship is called a generalization

An arrow with a dashed line for the arrow shaft indicates implementation of an 
interface. In UML, such a relationship is called a realization.

a fourth section at the bottom of the class box can be used to list the 
responsibilities of the class. This section is particularly useful when transitioning

from CRC cards (Chapter 6) to class diagrams

15



An association between two classes means that there is a structural relationship 
between them

Associations are represented by solid lines, there is an association between 
OwnedObject and Person in which the Person plays the role of owner. Arrows 
on either or both ends of an association line indicate navigability. An association 
with no arrows usually indicates a two-way association, but it could also just 
mean that the navigability is not important and so was left off.

Also, each end of the association line can have a multiplicity value displayed. The 
multiplicity of one end of an association means the number of objects of that 
class associated with the other class. A multiplicity is specified by a nonnegative 
integer or by a range of integers. A multiplicity specified by “0..1” means that 
there are 0 or 1 objects on that end of the association.

16



An aggregation is a special kind of association indicated by a hollow diamond, 
indicating a “whole/part” relationship.

A composition is an aggregation indicating strong ownership of the parts, in a 
composition, the parts live and die with the owner because they have no role in 
the software system independent of the owner. 

Another common element of a class diagram is a note, which is represented by a 
box with a dog-eared corner and is connected to other icons by a dashed line. It 
can have arbitrary content (text and graphics) and is similar to comments in 
programming languages.

17



A dependency relationship represents another connection between classes and 
is indicated by a dashed line (with optional arrows at the ends and with optional 
labels). One class depends on another if changes to the second class might 
require changes to the first class. 

An association from one class to another automatically indicates a dependency.

the Thoroughbred class uses the Date class whenever its getCurrentAge() 
method is invoked, and so the dependency is labeled “uses.”

No dashed line is needed between classes if there is already an association 
between them.

An association almost always implies that one object has the other object as a 
field/property/attribute (terminology differs). A dependency typically (but not 
always) implies that an object accepts another object as a method parameter, 
instantiates, or uses another object. A dependency is very much implied by an 
association.

18



No aggregation, composition for n-ary association

An association might also connect a class with itself, using a loop. Such an 
association indicates the connection of an object of the class with other objects of 
the same class.

19



Aggregation

Is a form of association 

That specifies a whole-part relationship

Composition

Is a form of aggregation

With strong ownership and coincident lifetime of parts by the whole

Differences? Ownership; Lifetime.

20



Generation: “A-kind-of” relationship (A ‘is a’ B)

Interface: No attributes, only operations

21



22



Association with different multiplicity indications;

Aggregation and composition

More on these relationships: https://vaughnvernon.co/?page_id=31 

23



Implementation level class diagram are probably most commonly used. But 
sometimes specification level is adequate or even better for communication

24



25



26



27



28



29



30


