Requirements Modeling:
Scenarios, information, and analysis classes
(V)

.
Example: SafeHome (FloorPlan class)
FloorPlan
type
name
outsideDimensions
d inaTy
oo e LI
scale()
changs color)
Is placed within "
Is part of
Camera Wall
i eRDimensions
location
FieldView
nAngle
comSelting determineType()
determineTypel | computeDimensions (]
Zal;l:yi{erlj(ocohon(|
3!:,,1‘:,;.”!(]
Spioyccnl) Is used to build . N « Is used 1o build
Is used to build
WallSegment Window Door
mIComdina!es 'sfenCoordinm«:s :LP'ﬂCoordinums
stopCoordinates siopCoordinates siopCoordinates
nexiWallSemant nextWindow naxtDoor
I T :) A : d T
e e =l

In the SafeHome, ACS-DCV use case.

As you can see, there are not only classes but also the communication between them.
This communication is realized through passing messages

Between related classes. This communication can be modeled using the CRC model.

CRC Modeling

|

Class: FloorPlan

Description

Responsibility: Collaborator:

Defines floor plan name/type

Manages floor plan positioning

Scales floor plan for display

Scales floor plan for display

Incorporates walls, doors, and windows Wall

Shows position of video cameras Camera

A simple CRC index card for the FloorPlan class is illustrated

Example: SafeHome (security)

* the ControlPanel class must determine whether any
Sensors are open.
— A responsibility named determine-sensor-status() is
identified for this class
* |f sensors are open, ControlPanel must set a status
attribute to “not ready.”

* Sensor information can be acquired from each
Sensor object.

the responsibility determine-sensor-status() can be
fulfilled only if ControlPanel works in
collaboration with Sensor.

CRC: Collaboration

* Classes fulfill their responsibilities in one of two ways:

— Aclass can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

— aclass can collaborate with other classes.

* Collaborations identify relationships between classes

* Collaborations are identified by determining whether a
class can fulfill each responsibility itself

* three different generic relationships between classes:
— the is-part-of relationship
— the has-knowledge-of relationship
— the depends-upon relationship

Examining these different generic relationships between classes helps with the
identification of collaborators

Is-part-of relationship

» All classes that are part of an aggregate class are
connected to the aggregate class

* Example

Player

| I | |

PlayerHead J| PlayerBody I PlayerArms | Playerlegs

Consider the classes defined for the video game noted earlier, the class PlayerBody is-
part-of Player, as are PlayerArms, PlayerLegs,

and PlayerHead. In UML, these relationships are represented as the aggregation shown
in Figure 6.12.

Has-knowledge-of relationship

* One class must acquire information from another
class.

* Example

— The determine-sensor-status() responsibility in
ControlPanel class, which has knowledge of the Sensor
class

Depends-upon relationship

* Two classes have a dependency that is not achieved
by has-knowledge-of or is-part-of.

* Example

— PlayerHead depends-upon PlayerBody

* PlayerHead must always be connected to PlayerBody yet each
object could exist without direct knowledge of the other

* An attribute of the PlayerHead object called center-position is
determined from the center position of PlayerBody. This
information is obtained via a third object, Player, that acquires it
from PlayerBody.

Is-part-of and has-knowledge-of also imply ‘dependency’; other kinds of
dependency are categorized as ‘depends-upon’

Review a CRC model

1. participants are given a subset of the CRC model index cards.

2. All use-case scenarios (and corresponding use-case
diagrams) are organized into categories.

3. Review leader reads the use-case deliberately, passing a
token to the person holding the corresponding class index
card when coming to a named object

4. the holder of the class card is asked to describe the
responsibilities noted on the card, and the group determines
whether one (or more) of the responsibilities satisfies the
use-case requirement.

5. If the responsibilities and collaborations noted on the index
cards cannot accommodate the use-case, modifications are
made to the cards.

This is how stakeholders would review the CRC model once developed.

The index card contains a list of responsibilities and the corresponding
collaborations that enable the responsibilities to be fulfilled; the collaborator class
name is recorded on the CRC model index card next to the responsibility.

Class-based modeling:
analysis-class relationships

* Associations

. Wall
— Two analysis classes are
related to one another in
some fashion: represented
as associations in UML T
— Can be further refined by T ~Is used to build
indicating multiplicity | . 0" b vsod to buld 0.*
WallSegment]l| Window Door

An association between two classes means that there is a structural relationship
between them.

The class Wall is associated with three classes that allow a wall to be
constructed, WallSegment, Window, and Door.

In some cases, an association may be further defined by indicating multiplicity.

a Wall object is constructed from one or more WallSegment objects. In addition,
the Wall object may contain O or more Window objects and 0

or more Door objects. These multiplicity constraints are illustrated in Figure 6.13,
where “one or more” is represented using 1. .*, and “0O or more” by 0 . .*. In UML,
the asterisk indicates an unlimited upper bound on the range.

10

Class-based modeling:
analysis-class relationships

* Dependencies
— aclient-server relationship between two analysis classes
¢ client-class depends on the server-class in some way
— defined by a stereotype

* an “extensibility mechanism” within UML that allows you to define
a special modeling element whose semantics are custom defined.

DisplayWindow Camera

<<qQCCess>>

{password}

— <<access>> implies that the use of the camera output is controlled
by a special password.

In a use case written for surveillance (not shown), you learn that a special
password must be provided in order to view specific camera locations. One way
to achieve this is to have Camera request a password and then grant permission

to the DisplayWindow to produce the video display.

11

* Represent objects, operations, relationships, and

Class-based modeling

collaborations

Elements

— Classes / Objects
* Attributes
* Operations

— CRC model
— Collaboration diagrams

— packages

12

Analysis package

* A package is used to e P°I;kgige nome
assemble a collection of +Tres i
+landscape i \
related classes Iﬁf e e
+8ri H
— Various elements of the j{’,i”;L;FE o e ton
analysis model (e.g., use- s f
cases, analysis classes) e |
are categorized in a el
manner that packages ek
them as a grouping

Symbols: + (visible from external packages), - (hidden to outside) ,
(accessible for packages within a specific package)

In a video game, Some focus on the game environment—the visual scenes that
the user sees as the game is played;

Others focus on the characters within the game, describing their physical
features, actions, and constraints.

Still others describe the rules of the game—how a player navigates through the
environment

The plus sign preceding the analysis class name in each package indicates that
the classes have public visibility and are therefore accessible from other
packages.

Other symbols can precede an element within a package. A minus sign indicates
that an element is hidden from all other packages and a # symbol indicates that
an element is accessible only to packages contained within a given package.

13

Class-based modeling in UML

* Class diagram: representing analysis classes in UML
— Elements: attribute, operation
— Visibility: public(+), package(~), private(-), protected(#).

Thoroughbred

father: Thoroughbred
-mother: Thoroughbred
birthyear: int

+getFather(): Thoroughbred
+getMother(): Thoroughbred

+getCurrentAgelcurrentYear:Date}: int

Shows the structure of your software

References: http://msdn.microsoft.com/en-
us/library/dd409437.aspx

a simple example of a Thoroughbred class that models thoroughbred horses.

Each attribute can have a name, a type, and a level of visibility. The type and
visibility are optional

can also specify that an attribute is a static or class attribute by underlining it.

Each operation can also be displayed with a level of visibility, parameters with
names and types, and a return type.

14

Class-based modeling in UML

* Class diagram: representing analysis classes in UML
— Special types: abstract class, interface
— Relationships: generalization, realization

<< interface >>

OwnedObject

+getOwner().Person

7aY

I
I
i

Horse

-name:String

+getName():String
l I
-'J—Sis-—lﬁomughbredl |QuarferHorse|

An abstract class or abstract method is indicated by the use of italics for the
name in the class diagram.

An interface is indicated by adding the phrase “«interface»” (called a stereotype)
above the name. An interface can also be represented graphically by a hollow
circle.

The arrow points from the subclass to the superclass. In UML, such a
relationship is called a generalization

An arrow with a dashed line for the arrow shaft indicates implementation of an
interface. In UML, such a relationship is called a realization.

a fourth section at the bottom of the class box can be used to list the
responsibilities of the class. This section is particularly useful when transitioning

from CRC cards (Chapter 6) to class diagrams

15

Class-based modeling in UML

* Class diagram: representing analysis classes in UML

— Relationships
» Association: unidirectional, bidirectional (navigability)

“An attribute of a ;::':jo;:i:; P
class is very much ~gerOwner] Person

the same thing as an Q

association of the mes':f";

class with the class +geNome[Sting

type of the

attribute.” [[oare f-==-thorovghbred| [Quarterorse]

An association between two classes means that there is a structural relationship
between them

Associations are represented by solid lines, there is an association between
OwnedObject and Person in which the Person plays the role of owner. Arrows
on either or both ends of an association line indicate navigability. An association
with no arrows usually indicates a two-way association, but it could also just
mean that the navigability is not important and so was left off.

Also, each end of the association line can have a multiplicity value displayed. The
multiplicity of one end of an association means the number of objects of that
class associated with the other class. A multiplicity is specified by a nonnegative
integer or by a range of integers. A multiplicity specified by “0..1” means that
there are O or 1 objects on that end of the association.

16

Class-based modeling in UML

* Class diagram: representing analysis classes in UML

— Relationships
* Association: unidirectional, bidirectional
— Special type: Aggregation,
» Special type: composition

| College H Course

{must take place in a Bui|ding}lﬁ

An aggregation is a special kind of association indicated by a hollow diamond,
indicating a “whole/part” relationship.

A composition is an aggregation indicating strong ownership of the parts, in a
composition, the parts live and die with the owner because they have no role in
the software system independent of the owner.

Another common element of a class diagram is a note, which is represented by a
box with a dog-eared corner and is connected to other icons by a dashed line. It
can have arbitrary content (text and graphics) and is similar to comments in
programming languages.

17

Class-based modeling in UML

* Class diagram: representing analysis classes in UML

— Relationships
* Dependency

— a dependency exists between two elements if changes to the
definition of one element (the supplier) may cause changes to the
other (the client)

<< interface >>

OwnedObject ﬂ[ml

+getOwner().Person

7a)

HOI'SB

-name: String

+getName():String

use:

I Date I(———S——IThoroughbredl IQuaﬂerHorseI

A dependency relationship represents another connection between classes and
is indicated by a dashed line (with optional arrows at the ends and with optional
labels). One class depends on another if changes to the second class might
require changes to the first class.

An association from one class to another automatically indicates a dependency.

the Thoroughbred class uses the Date class whenever its getCurrentAge()
method is invoked, and so the dependency is labeled “uses.”

No dashed line is needed between classes if there is already an association
between them.

An association almost always implies that one object has the other object as a
field/property/attribute (terminology differs). A dependency typically (but not
always) implies that an object accepts another object as a method parameter,
instantiates, or uses another object. A dependency is very much implied by an
association.

18

UML class diagram: more examples

* Association (uni/bi-directional) Publicclass A Public class B

A B A B public B b; public £2()
public £1() }
Eapay Zemployer +employee saan }
&companyName : String : : &personName : String }
Contract
@salary : Double
Year
Season | n
Company [+employer #employee| Person
1 0.n Team | team AN goalkeeper | Player
n n

EnginePart

1 Record
0..n T

No aggregation, composition for n-ary association

An association might also connect a class with itself, using a loop. Such an
association indicates the connection of an object of the class with other objects of

the same class.

UML class diagram: more examples

* Aggregation ;‘a’;'i

Q

Style

&color
&isFilled

* Composition

Circle
&radius

!

Point

EAggregation
HIs a form of association
BThat specifies a whole-part relationship
EComposition
HIs a form of aggregation
E\With strong ownership and coincident lifetime of parts by the whole

Differences? Ownership; Lifetime.

20

BulletManagerTask

+execute()

Catalog Management

«interfaces

UML class diagram: more examples
* Generalization Task
+execute()
PlayerTask
+execute()
* Interface
<<Interface>> O
Inle?ace inieifaces Interface 3
¥ «interfaces ¥
Catalog Management
. : [
* Realization 3! .
[¥) Menu Manager [¥]

Menu Manager

Generation: “A-kind-of” relationship (A ‘is a’ B)

Interface: No attributes, only operations

21

UML class diagram: more examples

* DEF)endenCV Schedule

Course

*add(c : Course)
*remove(c : Course)

* Abstract class

Letter

-body: String
-cursor: Integer

+getiNextSentence(): String|

+resetCursor()
EncryptedLetter NonEncryptedLetter

-encoding: Codeke
9 Y +getNextSentence(): String

+getNextSentence(): String

22

UML class diagram: more examples

* Put together

School
Ename : Name
ress : String M
- Number h ﬁname: Name
as 0.1
Student() @ —— ——|Baddinstructor(e
emoveStudent() 1 1.n oelnstnctor) [‘
Student() tinstructor() 5 |
Department() tAlllnst ructors() i 1
moveDepartment() # |
[®getDepartment() \ |
[BgetAllDepartment() assignedTd
A1 ||
‘\;1 n ‘I |
| [| |
member |
I‘. | |+chairperson
| n | 1.n 0__1"“1..n
St'::lent attends _mcq_us-e—teache Instructor
&name : Name : Name -
BstudentD : Nuber | Ecousein : Number [, [Riname : Name

Association with different multiplicity indications;
Aggregation and composition

More on these relationships: https://vaughnvernon.co/?page_id=31

23

UML class diagram:
various detail levels

* Conceptual

Circle

Circle
* Specification &radius

area()
Srmove()
¥scale)

* Implementation Circle

¢re : float
&radius : float

SCircle)

Sccquery>> area() : float

$<<cupdate>> move(loaction : Point) : void
‘<<update>> scale(ratio : float) : void

Implementation level class diagram are probably most commonly used. But
sometimes specification level is adequate or even better for communication

Exercise — requirements (narrative)

A computer manufacturer provides opportunities for online purchasing
through Internet.

Customers can visit their website and select a computer to buy.
Computers are defined in three categories: server, PC, laptop.

Customers can choose default configurations, or customize their own by
selecting configurable parts (memories, hard drives, etc.) from a list.

For each configuration, the system calculates the price.

To submit an order, the customer has to provide shipping and billing
information, credit card or checks are both accepted.

Once the order has been submitted, the system sends a confirmation
email to the customer with details.

Customer can check the status of an order before it is delivered.

The sales team manages the orders that have been submitted. The
process includes the following steps: verify the billing information, send

the configuration to the warehouse, print receipt, and request shipment.

25

Exercise — requirements (narrative)

A computer manufacturer provides opportunities for online purchasing
through Internet.

Customers can visit their website and select a computer to buy.
Computers are defined in three categories: server, PC, laptop.

Customers can choose default configurations, or customize their own by
selecting configurable parts (memories, hard drives, etc.) from a list.

For each configuration, the system calculates the price.

To submit an order, the customer has to provide shipping and billing
information, credit card or checks are both accepted.

Once the order has been submitted, the system sends a confirmation
email to the customer with details.

Customer can check the status of an order before it is delivered.

The sales team manages the orders that have been submitted. The
process includes the following steps: verify the billing information, send

the configuration to the warehouse, print receipt, and request shipment.

26

Exercise — analysis classes

<<Actor>>
Customer
(from Use Case View)

ustomer_date : String
hone_number : String
mail_address : String

ustomer_name : String|

Configurationtem
Bitem_type : String
&item_descr : String

Computer

omputer_name : String
tandard_price : Currency

Order

der_number : String
rder_date : Date
hip_address : String
rder_total : Currency
&order_status : String
&salesperson_name : String

ConfiguredComputer

omputer_name : String
onfigured_price : Curmrency

Payment

BSpayment_method : String
B5date_received : Date
&Jamount_received : Currency

Invoice

&inwice_number : String
Binwice_date : Date
&Jinwice_total : Currency

27

Exercise — classes with relationships

<<Actor>>
Customer
(from Use Case View)

Bcustomer_name : String
&customer_date : String

hone_number : String
mail_address : String

Computer

omputer_name : String
tandard_price : Currency

0..n

I\

Order

ConfiguredComputer

omputer_name : String
onfigured_price : Currency

rder_number : String
rder_date : Date
hip_address : String
rder_total : Currency
rder_status : String

alesperson_name : String

Configurationitem
em_type : String
em_descr : String

Payment !

B payment_method : String
E8date_received : Date

&3amount_received : Curmrent...

i

-

0.1

Invoice

BSinwice_number : String
BSinwice_date : Date
Binwice_total - Cumency

28

<<Actor>>
Customer

(fom Use Case View)

ustomer_name : String
ustomer_date : String
hone_number : String
mail_address : String

Exercise — class relationship refined

Configurationitem
Bitem_type : String
&item_descr : String

&pinwice_total : Curency

T
| i |
|
o.n Q
Order Con'pu?er 7
rder_number - String &computer_name : String
rder_date : Date = il
hip_address : String in 00
rder_total : Currency - \
rder_status : String
alesperson_name : String
1 0.1
\ 1
Payment ' Invoice
ayment_method : String pinwice_number : String Cort g.redComputer
ate_recei\ed : Dae inwice_date : Date
mount_received : Curency

omputer_name : String

onfigured_price : Currency

StandardC omputer

B¥standard_price : Cumency

29

* CRC modeling (Il)
— Class relationship

Summary

— Model review procedure

* Class-based modeling

— Analysis package
— class diagrams

* Class relationship

» UML notations (see also http://www.uml-diagrams.org/)

* Examples

30

