
1



2



By definition, objects are instances of a specific class and inherit its attributes and 
the operations that are available to manipulate the attributes. 

A class is an OO concept that encapsulates the data and procedural abstractions 
required to describe the content and behavior of some real-world entity.

3



In a well-designed class, the only way to reach the attributes (and operate on them) 
is to go through one of the methods that form the “wall” illustrated in the figure. 

4



This achieves information hiding (Chapter 8) and reduces the impact of side 
effects associated with change. Since the methods tend to manipulate a limited 
number of attributes, their cohesion is improved, and because communication 
occurs only through the methods that make up the “wall,” the class tends to be less 
strongly coupled from other elements of a system.1

5



An object encapsulates data (represented as a collection of attributes) and the 
algorithms that process the data. These algorithms are called operations, methods, 
or services2 and can be viewed as processing components.

6



7



8



9



Each element of the requirements model (Figure 6.3) presents the problem from 
a different point of view. Scenario-based elements depict how the user interacts 
with the system and the specific sequence of activities that occur as the software 
is used.

Class-based elements model the objects that the system will manipulate, the 
operations that will be applied to the objects to effect the manipulation, 
relationships (some hierarchical) between the objects, and the collaborations that 
occur between the classes that are defined. 

Behavioral elements depict how external events change the state of the system 
or the classes that reside within it. 

Finally, flow-oriented elements represent the system as an information transform, 
depicting how data objects are transformed as they flow through various system 
functions.

10



11



Core tasks in class-based modeling

12



If the class (noun) is required to implement a solution, then it is part of the solution 
space; otherwise, if a class is necessary only to describe a solution, it is part of the 
problem space. 

13



14



15



To be considered a legitimate class for inclusion in the requirements model, a 
potential object should satisfy all (or almost all) of these characteristics.

16



(1) the preceding list is not all-inclusive, additional classes would have to be 
added to complete the model; 

(2) some of the rejected potential classes will become attributes for those classes 
that were accepted (e.g., number and

type are attributes of Sensor, and master password and telephone number may 
become attributes of System); 

(3) different statements of the problem might cause different “accept or reject” 
decisions to be made (e.g., if each homeowner had an individual

password or was identified by voice print, the Homeowner class would satisfy 
characteristics 1 and 2 and would have been accepted).

17



18



Sensors are part of the overall SafeHome system, and yet they are not listed as

data items or as attributes in Figure 6.9. Sensor has already been defined as a 
class,

and multiple Sensor objects will be associated with the System class. 

In general, we avoid defining an item as an attribute if more than one of the items 
is to be associated

with the class.

19



20



21



In addition to the grammatical parse, you can gain additional insight into other 
operations by considering the communication that occurs between objects. 

Objects communicate by passing messages to one another.

22



In the SafeHome, ACS-DCV use case. In this diagram, shown is not only classes but 
relationships between classes.

In addition, there are also the communication between classes. This communication is 
realized through passing messages 

Between related classes. This communication can be modeled using the CRC model.

23



A simple CRC index card for the FloorPlan class is illustrated

24



Responsibilities are the attributes and operations that are relevant for the class. 
Stated simply, a responsibility is “anything the class knows or does”

25



26



See slide 14 for basic types of classes. 

Entity class: typically represent things that are to be stored in a database and persist 
throughout the duration of the application

Boundary classes are designed with the responsibility of managing the way entity 
objects are represented to users. For example, a boundary class called 
CameraWindow would have the responsibility of displaying surveillance camera 
output for the SafeHome system

In general, controller classes are not considered until the design activity has 
begun.

27



Basic guidelines for identifying responsibilities (attributes and operations) have 
been presented in previous slides.

Every application encompasses a certain degree of intelligence; that is, what the 
system knows and what it can do.

If system intelligence is more evenly distributed across the classes in an 
application, each object knows about and does only a few things (that are

generally well focused), the cohesiveness of the system is improved. This 
enhances the maintainability of the software and reduces the impact of side effects 
due to change.

This guideline implies that general responsibilities (both attributes and operations) 
should reside high in the class hierarchy (because they are generic, they will apply 
to all subclasses).

As an example, consider a video game that must display the following classes: 
Player, PlayerBody, PlayerArms, PlayerLegs, PlayerHead. Each of these 
classes has its own attributes (e.g., position, orientation, color, speed) and all must 
be updated and displayed as the user manipulates a joystick. The responsibilities 
update() and display() must therefore be shared by each of the objects.

28



29



30


