Requirements Modeling:
Scenarios, information, and analysis classes
(IV)




Object-Oriented Concepts

* Underlying OO analysis and design
— 0O0: objects + classification + inheritance + communication

* Key concepts:
— Classes and objects
— Attributes and operations
— Encapsulation and instantiation
— Inheritance




Class

* Object-oriented thinking begins with the definition of
a class, often defined as:
— Template

— Generalized description
— “Blueprint” ... describing a collection of similar items

* Objects are instances of a specific class

By definition, objects are instances of a specific class and inherit its attributes and
the operations that are available to manipulate the attributes.

A class is an OO concept that encapsulates the data and procedural abstractions
required to describe the content and behavior of some real-world entity.



Attributes |

aaad
aaag
aoao

Method,()

Method, ()

* Methods form a ‘wall’ through which attributes can
be accessed from outside

In a well-designed class, the only way to reach the attributes (and operate on them)
is to go through one of the methods that form the “wall” illustrated in the figure.



Attributes |

aaad
aaag
aaa

MB'I'IOdA“

Method, ()

* [Information hiding

— The class encapsulates data (inside the wall) and the
processing that manipulates the data (the methods that
make up the wall).

This achieves information hiding (Chapter 8) and reduces the impact of side
effects associated with change. Since the methods tend to manipulate a limited
number of attributes, their cohesion is improved, and because communication
occurs only through the methods that make up the “wall,” the class tends to be less
strongly coupled from other elements of a system.1



Class

* Attributes
— attached to classes to describe the class in some way
— Can be classes!

* Methods (operations/services)

— executable procedure that is encapsulated in a class
and is designed to operate on one or more data
attributes that are defined as part of the class.

An object encapsulates data (represented as a collection of attributes) and the
algorithms that process the data. These algorithms are called operations, methods,
or services2 and can be viewed as processing components.



Class hierarchy

* Asuperclass (or base class) a generalization of a set

of classes that are related to it

* Asubclass is a specialization of the superclass

Inheritance

— A subclass inherits all of the attributes and operations
associated with its superclass




v
(

Class hierarchy




Class hierarchy

* Polymorphism

— reduces the effort required to extend the design of an

existing object-oriented system

case of graphtype:
if graphtype = linegraph then DrawLineGraph (data);
if graphtype = piechart then DrawPieChart (data);

Draw()

| Circle

if graphtype = histogram then DrawHisto (data); Trme—1s Meens]
| Draw() |

| Drawo |

LDrawo

if graphtype = kiviat then DrawKiviat (data);

end case;

Subclass.Draw()




Elements of a requirement analysis model

Scenario-based
models
e.g.,

use cases
user stories

Class
models
e.g.
class diagrams

collaboration diagrams

Software

Requirements

Behavioral Flow
models models
e.g., eg.,

state diagrams DFDs
sequence diagrams data models

Each element of the requirements model (Figure 6.3) presents the problem from
a different point of view. Scenario-based elements depict how the user interacts
with the system and the specific sequence of activities that occur as the software
Is used.

Class-based elements model the objects that the system will manipulate, the
operations that will be applied to the objects to effect the manipulation,
relationships (some hierarchical) between the objects, and the collaborations that
occur between the classes that are defined.

Behavioral elements depict how external events change the state of the system
or the classes that reside within it.

Finally, flow-oriented elements represent the system as an information transform,
depicting how data objects are transformed as they flow through various system
functions.

10



* Represent objects, operations, relationships, and

Class-based modeling

collaborations

Elements

— Classes / Objects
* Attributes
* Operations

— CRC model
— Collaboration diagrams
— packages

11



Class-based modeling

* |ldentify analysis classes by examining the problem
statement

* |dentify the attributes of each class
* |ldentify operations that manipulate the attributes

Core tasks in class-based modeling



Ildentify classes

* Use a “grammatical parse” to isolate potential classes
— Perform a grammatical parse on the use cases

* Classes are determined by underlining each noun or
noun phrase.

* Synonyms should be noted.

* |n general, a class should never have an “imperative
procedural name”

If the class (noun) is required to implement a solution, then it is part of the solution
space; otherwise, if a class is necessary only to describe a solution, it is part of the
problem space.

13



Analysis classes (basic types)

External entities (e.g., other systems, devices, people) that produce
or consume information to be used by a computer-based system.
Things (e.g, reports, displays, letters, signals) that are part of the
information domain for the problem.

Occurrences or events (e.g., a property transfer or the completion
of a series of robot movements) that occur within the context of
system operation.

Roles (e.g., manager, engineer, salesperson) played by people who
interact with the system.

Organizational units (e.g., division, group, team) that are relevant to
an application.

Places (e.g., manufacturing floor or loading dock) that establish the
context of the problem and the overall function of the system.

Structures (e.g., sensors, four-wheeled vehicles, or computers) that
define a class of objects or related classes of objects.

14



Example: SafeHome (security)

The SafeHome security function enables the homeowner to configure the security svstem
when it is installed, monitors all sensors connected to the security system, and interacts
with the homeowner through the Internet, a PC, or a control panel.

During installation, the SafeHome PC is used to program and configure the system.
Each sensor is assigned a number and type, a master password is programmed for arming
and disarming the system, and lelephone number(s) are input for dialing when a sensor

event occurs.
Potential Class
homeowner
Sensor
control panel
installation
system [clias security system)
number, type
master password
telephone number

sensor event

General Classification
role or external entity

external entity

external entity

occurrence

thing

not objects, atiributes of sensor
thing

thing

occurrence

15



Potential classes

* 1. Retained information. The potential class will be useful during analysis
only if information about it must be remembered so that the system can
function.

* 2. Needed services. The potential class must have a set of identifiable
operations that can change the value of its attributes in some way.

* 3. Multiple attributes. During requirement analysis, the focus should be on
"major" information; a class with a single attribute may, in fact, be useful
during design, but is probably better represented as an attribute of
another class during the analysis activity.

* 4. Common attributes. A set of attributes can be defined for the potential
class and these attributes apply to all instances of the class.

* 5. Common operations. A set of operations can be defined for the
potential class and these operations apply to all instances of the class.

* 6. Essential requirements. External entities that appear in the problem
space and produce or consume information essential to the operation of
any solution for the system will almost always be defined as classes in the
requirements model.

To be considered a legitimate class for inclusion in the requirements model, a
potential object should satisfy all (or almost all) of these characteristics.



Potential classes

The SafeHome security function enables the homeowner to configure the security system
when it is installed, monitors all sensors connected to the security system, and interacts
with the homeowner through the Internet, a PC, or a control panel.

During installation, the SafeHome PC is used to program and configure the system.

Potential Class

Each sensor is assigned a number and type, a master password is programmed for arming

and disarming the system, and lelephone number(s) are input for dialing when a sensor
event occurs.

Characteristic Number That Applies

rejected: 1, 2 fail even though 6 applies

acc all apply

: oll apply

(1) the preceding list is not all-inclusive, additional classes would have to be
added to complete the model;

(2) some of the rejected potential classes will become attributes for those classes
that were accepted (e.g., number and

type are attributes of Sensor, and master password and telephone number may

become attributes of System);

(3) different statements of the problem might cause different “accept or reject”

decisions to be made (e.qg., if each homeowner had an individual

password or was identified by voice print, the Homeowner class would satisfy

characteristics 1 and 2 and would have been accepted).

17



|dentify attributes

» Attributes describe a class that has been selected for
inclusion in the analysis model.

* Define the class in the context of problem space

— build two different classes for professional baseball players

* For Playing Statistics software: name, position, batting average,
fielding percentage, years played, and games played might be

relevant

* For Pension Fund software: average salary, credit toward full
vesting, pension plan options chosen, mailing address, and the

like.

18



Example: SafeHome (System class)

System

system|D
verificationPhoneNumber
systemStatus

delayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries

program|( )
display( )
resel( )
query(
arm( )
disarm()

Sensors are part of the overall SafeHome system, and yet they are not listed as

data items or as attributes in Figure 6.9. Sensor has already been defined as a
class,

and multiple Sensor objects will be associated with the System class.

In general, we avoid defining an item as an attribute if more than one of the items
IS to be associated

with the class.



|dentify operations

* Do a grammatical parse of a processing narrative and
look at the verbs

* Operations can be divided into four broad categories:

— (1) operations that manipulate data in some way (e.g.,
adding, deleting, reformatting, selecting)

— (2) operations that perform a computation

— (3) operations that inquire about the state of an object,
and

— (4) operations that monitor an object for the occurrence of
a controlling event.

20



Example: SafeHome

The SafeHome security function enables the homeowner to configure the security system
when it is installed, monitors all sensors connected to the security system, and interacts
with the homeowner through the Internet, a PC, or a control panel.

During installation, the SafeHome PC is used to program and configure the system.
Each sensor is assigned a number and type, a master password is programmed for arming
and disarming the system, and lelephone number(s) are input for dialing when a sensor
event occurs.

* That an assign() operation is relevant for the Sensor
class.

* That a program() operation will be applied to the System
class.

* That arm() and disarm() are operations that apply to
System class.

21



Example: SafeHome (System class)

System

system|D
verificationPhoneNumber
systemStatus

delayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries

program] |
display( )
resel( )
query( |
arm( )
disarm()

In addition to the grammatical parse, you can gain additional insight into other
operations by considering the communication that occurs between objects.

Objects communicate by passing messages to one another.

22



Example: SafeHome (FloorPlan class)

FloorPlan

type

name
outsideDimensions

determinaTypal
sl o ac Y
alef )

%
change color )

Is placed within ,. | "

Is part of
Camera Wall
I'Hn xﬁﬁmmmm
location
fil|$wv‘v
ngle
‘oom Settin determineTypel )
defermineTypel | computeDimensions ( }
transkatelocation| |
AT
splayView
d
poyiel) Is used to build . < |s used to build

A
Is used to build

WallSegment Window Door
:’:53(‘ d m d :y!g:lcocrdina!ns
stopCoordinates stopCoordinates siopCoordinates
nextWallSement nextWindow nexiDoor
determineType| | d Typel | d: Type|
drawl) drowd) drawl)

In the SafeHome, ACS-DCV use case. In this diagram, shown is not only classes but
relationships between classes.

In addition, there are also the communication between classes. This communication is
realized through passing messages

Between related classes. This communication can be modeled using the CRC model.

23



CRC modeling

* Class-responsibility-collaborator (CRC)

— A CRC model is a collection of standard index cards that
represent classes. The cards are divided into three
sections. Along the top of the card you write the name of
the class. In the body of the card you list the class
responsibilities on the left and the collaborators on the
right. , N

Class: FloorPlan

| I |

T 11T

Description

Responsibility: Collaborator:
Defines floor plan name/type

Manages floor plan positioning

Scales floor plan for display
Scales floor plan for display

Incorporates walls, doors, and windows Wall

Shows posifion of video cameras Camera

A simple CRC index card for the FloorPlan class is illustrated

24



CRC modeling

» Analysis classes have “responsibilities”

— Responsibilities are the attributes and operations
encapsulated by the class

Class: FloorPlan

Description

Responsibility: Collaborator:
Defines floor plan name/type
Manages floor plan positioning
Scales floor plan for display
Scales floor plan for display
Incorporates walls, doors, and windows Wall

Shows position of video cameras Camera

Responsibilities are the attributes and operations that are relevant for the class.
Stated simply, a responsibility is “anything the class knows or does”

25



CRC modeling

* Analysis classes collaborate with one another

— Collaborators are those classes that are required to
provide a class with the information needed to complete a
responsibility.

* |In general, a collaboration implies either a request
for information or a request for some action.

2
Class: FloorPlan
Description

TT1TT

T ITT

Responsibility: Collaborater:
Detines floor plan name/type

Manages floor plan positioning

Scales floor plan for display

Scales floor plan for display

Incorporates walls, doors, and windows Wall

Shows position of video cameras Camera




CRC: Class (extended types)

* Entity classes, also called model or business classes, are
extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor).

* Boundary classes are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and
interacts with as the software is used.

* Controller classes manage a “unit of work” from start to finish.
That is, controller classes can be designed to manage
— the creation or update of entity objects;
— the instantiation of boundary objects as they obtain information from
entity objects;
— complex communication between sets of objects;

— validation of data communicated between objects or between the
user and the application.

See slide 14 for basic types of classes.

Entity class: typically represent things that are to be stored in a database and persist
throughout the duration of the application

Boundary classes are designed with the responsibility of managing the way entity
objects are represented to users. For example, a boundary class called
CameraWindow would have the responsibility of displaying surveillance camera
output for the SafeHome system

In general, controller classes are not considered until the design activity has
begun.

27



CRC: Responsibility

* How to assign responsibilities to classes

— System intelligence should be distributed across classes to
best address the needs of the problem

— Each responsibility should be stated as generally as
possible

— Information and the behavior related to it should reside
within the same class

— Information about one thing should be localized with a
single class, not distributed across multiple classes.

— Responsibilities should be shared among related classes,
when appropriate.

Basic guidelines for identifying responsibilities (attributes and operations) have
been presented in previous slides.

Every application encompasses a certain degree of intelligence; that is, what the
system knows and what it can do.

If system intelligence is more evenly distributed across the classes in an
application, each object knows about and does only a few things (that are

generally well focused), the cohesiveness of the system is improved. This
enhances the maintainability of the software and reduces the impact of side effects
due to change.

This guideline implies that general responsibilities (both attributes and operations)
should reside high in the class hierarchy (because they are generic, they will apply
to all subclasses).

As an example, consider a video game that must display the following classes:
Player, PlayerBody, PlayerArms, PlayerLegs, PlayerHead. Each of these
classes has its own attributes (e.g., position, orientation, color, speed) and all must
be updated and displayed as the user manipulates a joystick. The responsibilities
update() and display() must therefore be shared by each of the objects.

28



CRC: Collaboration

Classes fulfill their responsibilities in one of two ways:

— Aclass can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

— aclass can collaborate with other classes.
Collaborations identify relationships between classes
Collaborations are identified by determining whether a
class can fulfill each responsibility itself
three different generic relationships between classes:
— the is-part-of relationship
— the has-knowledge-of relationship
— the depends-upon relationship

29



Summary

* Object-oriented design and analysis
— Class / Class hierarchy
* Class-based modeling
— ldentify classes / operations / attributes
* CRC modeling
— Class / responsibility / collaboration

30



