DistlA: A Cost-Effective Dynamic Impact Analysis for
Distributed Programs

Haipeng Cai* and Douglas Thain®

*Electrical Engineering and Computer Science, Washington State University

+Computer Science and Engineering, University of Notre Dame

ASHINGTON STATE UNIVERSITY OF
W@ UNIVERS?TY NOTRE DAME
\/ O

m ONR Award and WSU

Thanks, {whoever introduces}.

And thanks all for being here to attend this talk.

| am haipeng cai from washington state university, this is part of my thesis work done at
notre dame.

The topic of our paper is about one important activity during software evolution, impact
analysis. More specifically, we are interested in the dynamic approach which address
potential impacts of candidate changes for concrete program executions. And
importantly, we target distributed programs that have not been well addressed in
impact analysis.

Problem
S otivation

Besgrain = Chernge 0 Various approaches
release request O Mode: predictive / descriptive
O Technique: static / dynamic / hybrid / repository
&? Software mining / IR / coupling
Evolution O Granularity: statement / method /class / file level

Program Impact 5 . I
update analysis | © Different domains

\ l o Centralized programs (single /multi-threaded)

Change o Distributed programs (multi-process)

verification o Predictive, dynamic, method-level

O Proactive
O More representative of actual behaviors
O Balanced scalability and precision

O Not applicable to distributed programs

Change impact analysis, or simply impact analysis, is an integral and critical step in
software evolution.
Different approaches to impact analysis have been developed over the years.

In terms of the working mode, impact analysis can be predictive, applied before changes
are made, or descriptive, applied with concrete changes available already.

In terms of technique, static, dynamic and hybrid analyses have been proposed,
researchers also have exploited techniques beyond code-based analysis, such as mining
software repositories, computing coupling measures, and leveraging information
retrieval methods.

And impact analysis has been addressed at different levels of granularity, ranging from
fine-grained statement level to coarse level of file.

Impact analysis is not only needed for evolving centralized programs (single or multi-
threaded), but also needed to evolve distributed programs.

We focus on a predictive dynamic analysis at method level, as the predictive analysis
helps developers identify change effects earlier thus stay proactive against change risks;
the dynamic approach produces results more representative of actual behaviors of the
program; and working at method level enables a good balance between scalability and
precision of the analysis.

However, existing such analysis techniques are not applicable to distributed programs.

Run-time setting of distributed programs
3 Motivation
Client component - Service component -
process 1 process 1
-
: ..
...
Client component -) .
process 2 N k Service component -
etwor process N
|~ (LAN/WAN/Internet)
..
/ Scope: common distributed systems
Client component -
process M «+ Computing nodes physically separated
(‘ + Communication by message passing via socket
/,,:b = No global clock/timing across all nodes

In a typical run-time setting, the components of a distributed program execute
concurrently over multiple networked computers, each called a computing node. Some
of these node run the service components while others act as clients, but each runsin a
separate process. That is, the computing nodes are distributed across physically
separated locations; commonly, they communicate through message passing based on
socket. Importantly, there isn’t a global clock or timing mechanism within the entire
distributed system. These three characteristics define the scope of our work: common
distributed systems. (versus event-based, RMI, etc.)

Define the distributed programs we are targeting at: socket-based message passing,
without global clock, etc.

Dynamic impact analysis
"4
Code change locations
I Query set |
Analysis
Program ——s algorithm — Test inputs |
Eaddety be Dependence Analysis Progrotm inputs /
execution data
changed
N
I Impact set |
Potentially impacted
entities
code execution change location (dynamic) impact set

Now, let us look at how a dynamic impact analysis in general.
At the core is analysis algorithm, and a major technique used in the algorithm is
dependence analysis.

It takes a program to be changed, illustrated by a dependence graph here as
dependence analysis works underneath; each node represents a program entity and
each edge the dependence between two nodes.

It also takes a set of test inputs, from which execution data can be obtained; the black
nodes are covered by the inputs.

Then, it takes a query set which is a set of potential change locations, illustrated by the
red nodes here; finally dynamic impact set is computed, marked by the yellow nodes, as
the eventual output of the analysis.

Dependence in distributed programs
5 | Motivation

public class S {
Server . Socket ssock = null;
3 public S(int port) { ssock = new Socket(port); ssock.accept(); }
char getMax(String s) {...}
void serve() { String s = ssock.readLine();

6 char r = getMax(s); ssock.writeChar(r); }
7 public static int main(String[] a) {
8 S s = new S(33); s.serve(); return 0; }}

i

Networking (Socket)

public class C { ‘

Client , Socket csock = null;
public C(String host,int port) { csock = new Socket(host,port); }
. void shuffle(String s) {...}
Analysis . char compute(String s) { shuffle(s); csock.writeChars(s);

return csock.readChar(); }
public static int main(String[] a) { C ¢ = new C(’localhost’,33);
Dependence Analysis o System.out.println(c.compute(a[0])); return 0; } }

algorithm

As we have seen, the core of the dependence-based impact analysis is to compute the
impacts by navigating dependencies between change locations (red node) and
potentially impacted entities (yellow nodes) among all executed ones.

However, in distributed programs computing the dependencies is challenging, as the
gueries and impacts can be loosely coupled or entirely decoupled, thus this is no explicit
dependencies that existing approaches rely on.

For example, the program consists of a server component and a client that communicate
through networking facilities, commonly via network socket. The server reads a line
from a client and finds the maximal character to send back, while the client simply takes
user inputs and relays such a task to the server. The change at line 6 in the server can
affect lines 6 and 8 in the client, yet the dependencies between them are difficult to
analyze because of their being implicit!

DistlA: a cost-effective solution
e PP roach-

For centralized programs

~
- |Dynamic slicingil
u '
< [Agrawal '?0, Zhang'03]
Q
o
g
-
z
) DiaPro [Cai’16]
W Pathlmpact lLaw03® Per [Cai14]
M InfluenceDynamic| [Breech’06]
[Apiwattanapong,’05]
[Orso, 03] © Ideal
Effectiveness (precision)
o DistlA
o Goadl

m cost-effective (rough-yet-rapid [Jackson’00])

o Strategy

m lightweight dynamic dependence approximation

For this problem, our approach, called DistlA, short for distributed program impact
analysis, aims at a cost-effective solution.

For centralized programs, dynamic impact analysis has been studied extensively.
Previous approaches generally lie at two extremes in this two-dimensional cost-
effectiveness design space, where the X axis represents the effectiveness (for instance,
precision) and the Y axis represents the cost. The ideal case is right here, the closer to it

the better.
We recently developed Diver and DiaPro to fill the gap between the two extremes.

Note that the techniques at the bottom-left here are not precise but highly efficient,
thus still provides attractive cost-effective options, or called rough-rapid solutions.

As a first step, we would like to take a position about here at this red spot, with DistlA,
our goal is to provide such a cost-effective option for distributed programs.

To reach this goal, our strategy is to approximate dynamic dependencies in a very
lightweight manner.

Dependence approximation

o Control flow approximation

O Method execution order (partial ordering)

enter enter M2 return M1 return
""" | M1 [M2 [| return [?|into M1 [Z| return [|into MO [=

O Three method events
m Entry, return, and returned-into

m Suffice for single-process partial ordering [Apiwattanapong,’05]

Send Receive b :
rocess
message message
Receive ,R Send
Process 2
message message

O Two communication events
B Message sending, and message receiving

m Necessary for synchronizing the timing of events across processes

The dependencies between program entities, data or control dependencies, can be
safely approximated through control flow as a feasible control flow path from point A to
point B must exist for the existence of a dependence between them.

Specifically, we capture execution order of methods in the program by recording three
method execution events: entry, return, and returned-into. In fact, for impact analysis,
we are mainly concerned about the ordering between the query set and other methods,
so we only need a partial ordering.

Now, recording these events is sufficient for deriving a partial ordering of methods
within a process, as proved before.

However, as mentioned earlier, different processes are concurrently running on
physically separated machines without a global clock. Thus, we also record two types of
communication (message passing) events: message sending and message receiving
event. We use these events to synchronize the timing of method events across all
processes in the distributed system.

Dependence approximation
.84y . Approach]

o Control flow approximation

o Global partial ordering [Lamport, '78]

Method Send Method Receive
Process 1

entry message return messgge

K [|

Tim sih\mp Receive Method \ Send

Process 2
message entry message
Time sta

O Impact inference
m Happens-before -> impact relation
mle < m2. \/ mle < m2; = ml impacts m2
e: entry, x: return, i: returned-into
ISle) = {m | ce < My V ce < m.m}
IS: impact set, c: query

E < FE' < T.E)>T:(E)

T.: timestamp of tirst occurrence, T,: fimestamp ot last occurrence

Put together, we monitor both method execution events and communication events in
each process, and piggyback the current clock value of sending process in the message
being sent. When the receiver process receives the message, distlA retrieves the
sender’s clock and compares the clock with local clock (i.e., the clock of the receiver
process) and updates the local clock to the larger and increments it by 1. This process
follows the Lamport time-stamping algorithm well-known in distributed systems.

By doing so, we obtain traces of method events that are partially ordered globally within
the entire system.

Next, from the this partial ordering, the impact relation between methods can be
inferred from the happens-before relation between them based on their partial order.
Based on this inference, the impact set of a given query is the set of methods that
happens after it.

To determine the happens-before relation between two events, we just need to
compare the timestamps of their first/last occurrences. For example, that event £
happens before E/ implies that the timestamp of the first instance of E, the first entry
event of a method, is smaller than the timestamp of the last instance of E’, the last
return or returned-into event of a method.

Dependence approximation
lodq ___________________________________ Approach

o Data flow approximation

O Message-passing semantics

2 LTo] T35] Proees!
First mess}ge\sending
L4 1011 f44] .0] process 2
Impac

o Control + data flow approximation

T.(P™) > Te(P™), ifi=j
B™ < P7= N ro(p) # null ATL(P™) >
max(Tr(P;™), Ts(P;)), if i # j

IS(c) = {m|ce <m;iVce <mgz}

The approximation based on control flows only is safe, and we know it is also very rough
(imprecise), because apparently being executed after the query does not necessarily
imply being dependent on the query or getting impacted by changes in the query.

We could do better in the precision while still remaining rapid. Yet, we may not do heavy
stuff, expensive data-flow analysis here. Instead, we do a rough data-flow approximation
based on a very simple heuristics.

We slightly leverage message-passing semantics. For example, here based on the
method-event global partial ordering, methods associated with the events time-
stamped with 1, 2, through 10 in process 1 seems to impact methods associated with
events in process 2 that are time-stamped with 11 through 44. However, since process 1
never sent any message to process 2, such impacts are false positive apparently.

In another situation, process 2 sends the first message to process 1 after time 44,
methods in process 1 whose last execution occurred earlier than that time (such as the
method last executed at 35) won’t be impacted by methods in process 2 that first
executed before time 44, although looking the partial ordering alone would derive such
impact relations.

So, put both data and control flow approximation together, this equation provides a
unified determination of happens-before relation. Then, my applying this customized
happens-before relation to the impact-set computation, we can get more precise
results.

DistlA

0 Workflow
User inputs
r o S T ST, ot — — |
|(Distributed i Message-passing : »~Program Query 7 |
_ProgramD /i APILIStL _ “\inputSet/ setm J =
B s, i, o A |) J
l Y. DisTlA output
Instrument D (using L [— .
for monitoring method execution and I Impact Set |
message-passing events while . of M]
transferring logical clocks
Compute -
(Instrumented Program D*) Impacts
Run D’ on |
4— 2.
for generating partially-ordered Centralized
. Traces
method-execution sequence and
message-receiving map per process

@istributed Per-process Yraceg—b for facilitating impoct
computation

o Algorithms
o Communication event monitoring

O Impact computation

[10 | Approach

The following figure shows the overall workflow of our technique. (explain step by
step...)

The message-passing API list is an optional input what provides the signatures of APIs
that are invoked for inter-process communication in the distributed program. A default
list has been built in DistlA that cover commonly used APIs including blocking and non-
blocking network 1/0O APl in Java SDK.

The two core modules of the distlA analysis algorithm are a communication event
monitor used for partially ordering method execution events globally, and a post-
processor for impact computation. Due to the time limit, | will skip the details of these
algorithms. If you are interested in those details, please read our paper.

10

Application to real-world distributed programs
ad . Evaluation

o0 Subject programs

Subject Description #SLOC Test inputs
MultiChat (r5) C/S chat app, Socket |/O Stream 470 Integration
NIOEcho (ré9) C/S echo service, Java NIO 412 Integration
OpenChord (v1.0.5) P2P lookup service, hybrid IO 38,084 integration
ZooKeeper (v3.4.6) Coordination service, hybrid 1O 62,450 Integration, system, load
Voldemort (v1.9.6) Key-value store, hybrid 1O 163,601 Integration, system, load
Freenet (v0.7.0) Anonymous data-sharing, hybrid IO 196,281 integration

O Implementation

o Non-intrusive instrumentation dealing with a variety of distributed system
architectures

We have successfully applied DistlA to real-world distributed programs of various sizes
and application domains, including four large distributed software that all adopted
hybrid network 1/O APIs (non-blocking, through Socket I/O stream, and blocking I/Os,
through Java NIO).

For example, Zookeeper is a well-known coordination service, and Voldemort is a
distributed data store adopted at LinkedIn for many critical services.

We used system and load tests that come as part of these open-source software
packages, and integration tests that we created following official guide provided with
these systems. These test inputs help produce execution traces representative of system
behaviors.

The implementation of DistlA is non-trivial, detailed discussion on that, esp. the non-

intrusive instrumentation that accommodates varied distributed system architectures,
can be found in our paper.

11

Research question: effectiveness
2 Evaluation
O How effective is DistlA compared to “existing options”?
o Coverage-based solution (MCov) as baseline
O Metrics

O Impact set size ratio: DistlA over Mcov

® Assuming both are “dynamically” sound /soundy [Livshits et al., '15]

o Whole impact set (all) and two subsets: local impact set, remote impact set

// Local impact

Process
boundary '

Remote impact
o Two DistlA variants

o Basic: control-flow only

O Enhanced: data + control flow

With these subject systems, the first research question is about the effectiveness.
Since there is actually no peer solution that is fairly comparable to DistlA, we assume a
coverage-based solution, which simply reports all covered methods to be impacted, as
the baseline. The goal of course is not to beat the strawman, but to have a reference to
help understand the results.

Specifically we measure the effectiveness by impact set size ratio of DistlA over Mcov.
We took each executed method as a query, computed its impact set, denoted as ‘all’,
and its two subsets, local and remote impact sets. (show the illustration): just for
illustration, the process boundary is the network; local impacts are impacted entities
executed in the same process as the query; otherwise, the impacted entities are remote
impacts.

To examine how much our simple leverage of message-passing semantics help with the
effectiveness, we looked at the results of two variants of distlA: the basic version
exploits the method-level control flows only, and the enhanced version additionally
exploits the simple data-flow heuristics.

12

Result: effectiveness

13 | Evaluation

MultiChat (25) NioEcho (27) Open Chord (663) ZooKeeper-integration (838) ZooKeeper-system (1150)
1 - 11 1 1 — — — 1
| mal =gy == =
07 o)A nEa [TOe
05 | | | 10.5 05 : | 1 0.5 | I ! 0.5 | n i
1 | n | | A
0 L 1o ol L L L ol L L =E 0
local remote all local remote all local remote all local remote all local remote all
ZooKeeper-load (1129) Voldemort-integration (2395) Voldemort-system (1552) Voldemort-load (3875) Freenet (4887)
1 Q i 11 ﬁ lil 1 - — 1 - 1
QM_SI I | @B e = =
., 1 H 1 | [| i [i
0 {0 of £+ L+ L Joof L L]o L
local remote all local remote all local remote all local remote all local remote all

Distribution of impact set size ratios of DistlA-basic/Mcoy, the lower the better

Mean impact-set reduction: 31%

The effectiveness result of the basic version is depicted here by boxplots showing the

distribution of the metric values (that is, the impact set size ratios, the lower the better).

The X axis lists the three impact sets (all, local and remote), and the Y axis shows the
effectiveness of each query.

For subjects having multiple test cases, the figure shows the result per test case, as you
can see here from the chart title. The number in the parentheses are the total numbers
of queries.

As shown, DistlA performs always noticeably better than the baseline, as expected.
Also, in terms of average effectiveness, DistlA works generally better on larger systems.
In fact, it worked the best for the largest program Freenet, achieving a steady impact-set
reduction of almost 50%.

(Show the banner) Overall, the mean impact set reduction relative to the baseline is
31%.

13

Result: effectiveness

Basic Enhanced

100% -

90% [[{ |

80% - I T {

0% 80.20% 79.49% (78.49% I

. 71.20% 70.78% I

60% 64.29% 63.20% 62.26% T

i 56.87% 56.79%
40% -

30% -

20% 24.43%

10% -

0% T

NS goB C“"'d- xS per-oS o 1e9 ﬂ-s‘fs mo\"—\oc\d ereene! | overe%®
Jookee?™" oo \ceep 1o oKee *yemort " c\eﬂ‘° o\de over®

Mean impact set size ratios of DistlA-basic versus DistlA-enhanced, the lower the better

Overall mean impact-set reduction: 43%

[14 | Evaluation

To compare the two versions of DistlA, this figure shows the average effectiveness, on
the Y axis, of the enhanced version versus the basic one, for each program and test
shown on the X axis.

The data labels are the numbers of the enhanced version.

We can see that in some cases the improvement was significant.

(show the banner) Overall, the mean impact-set reduction achieved by utilizing both
partial ordering method events and the simple message-passing semantics heuristics is
43%, which is 12% further down when compared to the basic control-flow
approximation.

14

Research question: costs
a4 . Evaluation

o0 How efficient and scalable would DistlA be?

O Practicality of using it in terms of overheads

O Metrics
O Time cost
O Storage cost

O Run-time slowdown

Our second research question concerns the efficiency of our analysis.
(Show the metrics) including the time and storage costs, as well as the run-time
slowdown caused by the instrumentation.

15

Results: costs
6!l _______ Evaluation |

Phase Range Mean
Instrumentation 12~165 seconds 62 seconds
Run-time slowdown 1~21% 8%

Impact-set querying 4~114 milliseconds 66 milliseconds

Time costs of DistlA enhanced; the basic version costs even less

*Storage cost < TMB

Given its lightweight nature, we expected the high efficiency of DistlA, regardless which
version is considered.

Typically, the entire analysis can be finished in about one minute, causing 8% run-time
overhead and negligible storage space of 1MB (for the execution traces).

Research question: impact distribution

O How are the impacts distributed across process boundaries?

o Component-level structure of distributed programs

O Metrics

O Impact-set breakdown: local, remote, common impact sets

We also wanted to explore how the DistlA results may help with distributed program
understanding.

We thus examined the impact distribution across process boundaries,
(show the metrics) looking at the breakdown of each impact set into local and remote
impact sets, and their intersection, we call common impact set.

17

Result: impact distribution

MultiChat NioEcho Open Chord
25
20
15
10

5

0 50 100 0 50 100
ZooKeeper-load Voldemort-integration Voldemort-system

1500 1500
1000 1000
200

- Iocal |mpact set

600
400
200
0 50 100

100
remote impact set - common impact set

ZooKeeper—integration

800
600
400
200

o

Voldemort-load

Evaluation

ZooKeeper-system

1000
800
600
400

200

50 100 0 50 100

Freenet

4000
3000

2000
1000

0 50 100 0 50 100

Breakdown of each impact set (given by DistlA-basic) into three disjoint subsets

In each chart, the Y axis shows the no. of each query and X axis is the percentage
breakdown of corresponding impact set.

Note here to show the distribution, the common impacts are removed from local and
remote impact sets, thus the three subsets are disjoint.

One interesting observation is that impacts commonly propagate beyond local processes
and the propagation can be quite significant.

Another observation is that common impact sets are extensive, implying that
component-level functionality reuse is pretty common and significant in distributed

program executions. The common impact set sizes here could be potentially used as a
measure of inter-component couplings.

18

Summing up
19y Conclusion
o Contributions

O The first dynamic impact analysis for common distributed programs with socket-
based message passing

o Open-source implementation of the analysis working on real-world, large
distributed systems of various architectures

O Empirical evidences showing its promising effectiveness and scalability
0 Future work
o Explore other cost-effectiveness options (with better precision)

O Exploit its use in distributed system testing and understanding

To sum up, DistlA provides the first dynamic impact analysis for common distributed
programs, with an open-source implementation that actually works with real-world,
large distributed systems of different architectures. We showed its promising cost-
effectiveness through extensive empirical evidences.

In the future, we are interested in exploring other cost-effectiveness options based on
DistlA, pushing the precision at reasonably higher costs. We are also planning to exploit
how it can be used for testing and understanding distributed systems and their run-time
behaviors.

19

Acknowledgements
20

o ONR grant to Notre Dame and WSU faculty startup fund for
financial support

0 Anonymous reviewers for very valuable comments

O Your attendance and attention

[
“Thanks.
5O

This work has been supported by an ONR grant given to Notre Dame and faculty startup
fund given by WSU.

| am grateful to the anonymous reviewers for their very valuable comments. And thank
you all again for being here and your attention.

Q&A
24 |

DistlA: A Cost-Effective Dynamic Impact Analysis for Distributed Programs

Drawing on partial ordering of lightweight dynamic information (method
execution events) and simple message-passing semantics heuristics to
offer a cost-effective impact-analysis option for real-world distributed
programs.

Haipeng Cai
http://eecs.wsu.edu/~hcai/
hcai@eecs.wsu.edu

Now | would like to take your questions.

21

Case study |
224

O How precise are the DistlA impact sets relative to actual dynamic

impacts?
DISTEA IS (precision) | Manual true IS| MCov IS
Subject & input Tocal remole Tocal | remote | local [remote
MultiChat 1 (100%) 13 (69.2%) 1 9 3 21
MultuChat 13 (76.9%) 2 (50%) 10 | 22 3
Voldemort-system 4 (100%) 23 (56.5%) 4 13| 740 809
Voldemort-system 3 (33.3%) 0(-) | 0| 811 440
Voldemort-load 13 (46.1%) 41 (41.4%) 6 17| 288 500
Overall average | 6.8 (71.2%) | 15.8 (51.7%)| 4.7 8| 373| 354.6

o Overall mean precision
o DistEA-basic: ~60%
o DistEA-enhanced: ~70%

22

Case study 2

O How may DistlA results help with understanding inter-process
interaction in distributed programs?
o NioEcho

u clearly showing the request initiation from client and server’s response by echoing the
message received, followed by client’s steps in receiving the reply and processing it
O ZooKeeper
m Helped identify the coordination server relays the client request to a worker threat
that interacts with database to carry out the client inquiries
o In particular: the appearance of communication events in the trace and the

timestamp (ordering) of method events are very helpful with sorting out the
interactions

23

