UNIVERSITY OF

5) NOTRE DAME

Supported by ONR award N000141410037

DIVER: Precise Dynamic Impact Analysis
Using
Dependence-based Trace Pruning

Haipeng Cai and Raul Santelices
U. of Notre Dame, U.S.A.

10/30/2014 ASE 2014

Problem
PII

= = = -

e Change-impact analysis (or, simply, impact analysis)
 Many types of impact analyses

— Static,[dynamic‘ hybrid, repository-based, information retrieval

— Granularity: files,(methods, statements

e Dynamic and method-level: scalable and representative
of actual behavior

10/30/2014 ASE 2014 2

Dynamic Impact Analysis

Pl PII

= = = -

* Forward dynamic slicing [Korel-Laski ‘8]
— Statement level = expensive but precise
— Would need to analyze all statements in method(s)

 Coverage based with static reachability [0Orso et al. ‘03]

— Cheap but imprecise [Orso et al. ‘04]

10/30/2014 ASE 2014

Dynamic Impact Analysis

Pl PII

= = =

 Trace based [Law-Rothermel ‘03], control flow [ren et al. 04]

— More precise than coverage based [Orso et al. ‘04]
— A bit more expensive after optimization [Apiwattanapong et al. ‘05]

 Trace based with influence mechanisms [Breech et al. ‘06]

— Only marginally better, more expensive

10/30/2014 ASE 2014 4

Dynamic Impact Analysis

 Problem: trace-based technique is imprecise! [caiet al. ‘14]

— Large fraction of “impacted” methods not really impacted

. dynamic

/ slicing

cost

?
? /
/)
‘ trace based

precision

e Huge gap with dynamic slicing [Jiang et al. “14]

— There is considerable room for intermediate solutions

10/30/2014 ASE 2014

Dynamic Impact Analysis

e What is missing from trace-based?

— Data & control dependencies not considered (only control flow)
— Cost is a concern = need method-level dependencies

/

. dynamic

/ slicing

cost

?
? /
/)
. trace based

precision

10/30/2014 ASE 2014

Dynamic Impact Analysis

e What is missing from trace-based?

— Data & control dependencies not considered (only control flow)
— Cost is a concern = need method-level dependencies

. dynamic
slicing

cost

| @ over |

‘ trace based

precision

e Solution: one-time static dependence analysis to prune
method traces = DIVER

10/30/2014 ASE 2014

static method-level
dependencies

method = entry dependence -

& map exit dependence

— data dependence p: parameter
r: return value
- - » control dependence . heap variable

e Example trace: MO M1|M2/ M5 ry,c ry, M3 ryys g M4 s Fuo

e Trace-based impact set of M2: {M0, M1JM2,(M3, M4 M5}
— All methods called or returned into after M2 \ definitely not

* DIVER impact set of M2: {M2, M5} (just two methods) dependent!

— Down from six methods when using just traces (control flow)

10/30/2014 ASE 2014 8

static method-level
dependencies

method = entry dependence -

& map exit dependence

— data dependence p: parameter
r: return value
- - » control dependence . heap variable

e Step 1: statically identify escaping variables and conditional call sites
e Step 2: collect compressed method trace(s)

e Step 3: traverse trace(s) using rules to prune non-dependent methods
— Ex: M2 can impact only M5
— Ex: MO impacts M1 only if M1 occurs immediately after
— Also: keep track of which dependencies carry an impact

10/30/2014 ASE 2014 9

Evaluation (latest!)

e 7 Java applications Subject | KLOC | Methods | Tests
0.3 20

— Up from 4 in paper schedule 2630

" nanoxml 3.5 172 214

e Open-source toolset ot 18.8 B

e All executed methods xml-sec. 22.4 632 92
. @

— Impact set for each using | jmeter 35.5 732 /9

trace-based and Diver jaba 37.9 1,129 70

kargouml 102.4 1,098 211)

* http://nd.edu/~hcai/diver and http://nd.edu/~rsanteli/duaf [Santelices et al. ‘13]

10/30/2014 ASE 2014 10

Average
Impact set
sizes

Average
Size ratios

10/30/2014

Results (latest!)

schedule
nanoxml|
ant
xml-sec.
jmeter
jaba

argouml|

Methods

20
172
607
632
732

1,129
1,098

average:

18.0

82.6
159.5
199.8
149.6
677.0
151.0
291.4

12.8
37.1
17.9
45.1
12.3
471.9
27.6
141.4

71.3%
51.7%
25.7%
28.8%
18.8%
66.9%
31.5%

38.3%

- a0 o - .
DIVER Ratio

S

ASE 2014

1

1

Res u ItS (lateSt !) PI/EASc = trace based

NanoXML Ant
200 800
- W PI/EASC Diver o M PI/EASC Diver
N N 600
(7] (7]
1] T
b w» 400
3] ©
S 8 200
£ E
0
= <t ™~ O M O O NN O A < N O
A AN <t 1N OMNN OO A M < 1N~
Query ™ e e - o
XML-Security JMeter
800 800
" M PI/EASC Diver o W PI/EASC Diver
N 600 N 600
(7] v
& 400 8 400
" |
a 200 a 200
£ le | £
£ M £,
= I~ M O W A ~NmM N " ™~ N O
T O MO0 M NN OWH WO WL O
T AN ANOYND T T NN W
Query

10/30/2014 ASE 2014 12

ReS u ItS (lateSt !) PI/EASc = trace based

Jaba ArgoUML
W PI/EAS Di - W PI/EASC Diver
C ver
1000
9 [}
@ 8 800
(7]
@ + 600
2 a
- 2 400
© Q
g. ® 200
— g O I T kil T v
- N M n WO M~ I N N
SBILNSHBLIISGRA IR I S Y SR S
HNM##U’)\DI\OOOOCDS =T AN N < 1N O MNMNOO O
Query Query -

e Costs of DIVER
— Step 1: average 2K seconds per subject (one-time analysis)

e <41 MB dependence information

— Step 2: average 11.6 seconds (vs 8.6 sec. trace based)

e <15 MB compressed traces

— Step 3: average|26.4/sec/query (vs 0.1 sec/query trace based)

10/30/2014 ASE 2014 13

Conclusion | Questions?

 Huge cost-precision gap in previous techniques
— New idea: method-level dependencies (DIVER)

/
. dynamic
slicing
o next:
§ O DIVER*?
. DIVER «,
. trace based R
precision

UNIVERSITY OF

=) NOTRE DAME

-

Supported by ONR award N000141410037
10/30/2014

ASE 2014 14

