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Neural Library Recommendation by Embedding
Project-Library Knowledge Graph

Bo Li®, Haowei Quan ¥, Jiawei Wang “, Pei Liu

Abstract—The prosperity of software applications brings fierce
market competition to developers. Employing third-party li-
braries (TPLs) to add new features to projects under development
and to reduce the time to market has become a popular way in
the community. However, given the tremendous TPLs ready for
use, it is challenging for developers to effectively and efficiently
identify the most suitable TPLs. To tackle this obstacle, we
propose an innovative approach named PyRec to recommend
potentially useful TPLs to developers for their projects. Taking
Python project development as a use case, PyRec embeds Python
projects, TPLs, contextual information, and relations between
those entities into a knowledge graph. Then, it employs a
graph neural network to capture useful information from the
graph to make TPL recommendations. Different from existing
approaches, PyRec can make full use of not only project-library
interaction information but also contextual information to make
more accurate TPL recommendations. Comprehensive evalua-
tions are conducted based on 12,421 Python projects involving
963 TPLs, 9,675 extra entities, 121,474 library usage records,
and 73,277 contextual records. Compared with five representative
approaches, PyRec improves the recommendation performance
significantly in all cases.

Index Terms—Third-party library, recommendation, knowl-
edge graph, graph neural network, Python.

1. INTRODUCTION

ECENT years have witnessed the astonishing growth of
R software applications, especially open-source Python ap-
plications. As reported by IEEE Spectrum', Python has become
the most popular language since 2021. Many popular applica-
tions like Google search engine, YouTube, and Instagram are
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built in Python [1]. One reason that fuels Python’s popularity
could be the large number of third-party libraries (TPLs) readily
to be used by the community [2]. For example, more than
390,000 Python TPLs with over 3 million versions are available
in May 2023 in the Python Package Index (PyPI) repository?.

Compared with programming from scratch, TPLs offer
tailor-made APIs with the same functionalities [3] but less
bugs/deficiencies [4]. Therefore, seeking TPLs with desired
functionalities and integrating them in projects under devel-
opment is much more effective [5], [6], [7], [8]. Indeed, it
has become a common practice for developers to regularly use
TPLs to accelerate their development process and/or deliver
new features [9].

Unfortunately, given the huge number of TPLs available for
use, it is challenging for developers to seek the most suitable
TPLs for their projects [10], [11]. First, manually inspecting
the functionalities, interfaces, performance, etc., of tremendous
TPLs is very time-consuming [12]. It is even more sophisticated
nowadays as TPLs are evolving rapidly [1] and the time-to-
market constraint is becoming tighter [13]. Second, TPL usage
has specific characteristics [9], [14], e.g., combinations and
dependencies. Finding appropriate TPLs fulfilling such char-
acteristics is another time-consuming process [3], [4].

Inspired by the great success of recommender systems in
a variety of domains [15], many TPL recommendation ap-
proaches have been proposed recently to accelerate the TPL
seeking process [4], [13], [16], [17]. Generally, they provide
developers with a short list of TPLs for consideration. For ex-
ample, LibRec [16] and CrossRec [4] are collaborative filtering
(CF)-based approaches that find potentially useful TPLs for
Java projects. The general idea is to recommend TPLs used by
similar projects but not yet by the current project. LibSeek [17]
is designed for recommending TPLs for Android mobile apps.
It embeds features of mobile apps and TPLs into latent vectors
via matrix factorization (MF) to find potentially useful TPLs
for a given Android mobile app. GRec [13] is a deep learning
(DL)-based approach that recommends TPLs for Android apps.
It models mobile apps, TPLs, and their usage relations as a
bipartite graph, and then employs the graph neural network
(GNN) to distill information from the graph to improve the
recommendation performance.

Preliminary user studies have confirmed the usefulness and
effectiveness of recommending TPLs for software application
development [13], [17]. However, the performance of existing

2https://pypi.org/
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approaches needs to be further improved. Specifically, they
treat different projects or TPLs as independent instances and
utilize only project-library interaction information, i.e., which
project has used which TPLs, to make recommendations. This
is acceptable when the developers have determined many TPLs
to be used in a project. However, when the project is at an
early development stage, usually only very limited TPLs have
been determined. In this case, there would be less project-
library interaction information available for recommendation.
As a result, the recommendation performance is much lower.

A potential solution is to utilize contextual information [18]
like the inherent relations between different projects and differ-
ent TPLs, which have been overlooked by existing approaches.
For example, projects with the same topic® on GitHub may
share similar characteristics implemented by the same TPL.
TPLs with the same keywords in a category may have the
same/similar functionalities and interfaces and are exchange-
able to each other [13]. In addition, a TPL usually depends on
some other TPLs and adds more features to the dependency
libraries. Once a dependency TPL is chosen by a project, the
TPLs depending on it may also be of interest to developers.
In practice, the contextual information, including the above-
mentioned ones, is helpful in finding more suitable TPLs [19].
However, existing approaches have unfortunately ignored such
information and thus their performance is constrained.

In this paper, we take the TPL recommendation for Python
projects as a use case of our approach. The reason is that Python
has emerged as the most popular programming language in
recent years. There is already a huge number of Python projects
and the amount of Python libraries available for use [20]. In
addition, Python developers rely on the rich functionalities
offered by the huge collection of TPLs for fast prototyping
[1], [20], [21]. Therefore recommending suitable TPLs can be
beneficial for them. However, the TPL recommendation for
Python projects has been neglected by the community. Please
note that our approach is language agnostic. It can be applied
to projects developed in any programming language, such as
mobile apps and conventional Java projects, wherever the re-
quired contextual information is available. The adaptation to
other languages will be explored in the future.

PyRec is an innovative approach that makes full use of both
project-library interaction information and available contex-
tual information to provide high-accuracy recommendations.
Specifically, we map the Python projects, TPLs, and their in-
teractions into a bipartite graph (BG) in which Python projects
and TPLs are nodes and the project-library interactions are
edges connecting each pair of nodes, as exemplified in Fig. 1.
Then, we extend BG to a knowledge graph (KG) by adding new
nodes and edges according to available contextual information,
as illustrated in Fig. 2. Next, we employ GNN to distill useful
information from the KG to make TPL recommendations. Com-
pared with the state-of-the-art approaches like LibRec [16],
CrossRec [4], LibSeek [17], and GRec [13], PyRec can make
more accurate recommendations. The key contributions of this
research are concluded as follows.

3https://github.com/topics
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Fig. 1. Exemplar project-library bipartite graph BG.
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71 TPL usage
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author; soumith@pytorch.org
TPL topic,; processing
Project topic; pytorch
Fig. 2. Exemplar project-library knowledge graph G.

« We are the first TPL recommendation study that utilizes
both project-library interaction information and contextual
information.

« We model Python projects, TPLs, project-TPL interac-
tions, relations between projects, and relations between
TPLs as a KG, in which comprehensive relations between
different projects and different TPLs are represented. This
allows capturing more information crucial for accurate
TPL recommendation.

« Inspired by KGAT [22], we propose an innovative GNN-
based DL model to distill useful information from the
generated KG for TPL recommendation. While KGAT
is initially designed for commerce recommendation, this
paper is the first attempt at recommending TPLs based
on a knowledge graph. Besides, KGAT can only create
relations between TPLs based on contextual information.
However, our model can model the relations between
different projects and different TPLs. This allows better
utilization of contextual information. In addition, with a
dedicated attention mechanism, our model can automati-
cally identify the usefulness of information possessed by
different neighbor nodes and relations and thus can distill
more useful information and mitigate the negative impact
of unuseful information.

« We prototype PyRec and conduct extensive experi-
ments on a large-scale dataset including 12,421 Python
projects, 963 distinct TPLs, 9,675 extra entities, 121,474
project-library interaction records, and 73,277 pieces of
contextual information. Both PyRec and our dataset are
publicly available* for validation and reproduction of our
experimental results.

“https://github.com/Limber0117/PyRec
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The rest of this paper is organized as follows. Section I mo-
tivates the research of this paper. Section III introduces PyRec
in detail. Section IV evaluates PyRec experimentally. Section V
reviews related work. Then, Section VII concludes this paper
and points out future work.

II. MOTIVATING EXAMPLE

Fig. 1 provides an exemplar bipartite graph (denoted
as BG) modeling the project-library interactions. Specifi-
cally, it has 4 project nodes including p; (SpeakerRecogni-
tion®), py (Torch_audiomentations®), p; (MixNMatch), and p,
(BiSeNet®). Those projects invoke 6 TPLs, including matplotlib,
torchaudio, PyYAML, torchvision, datasets, and scikit-video,
denoted as I3, 1o, ..., lg, respectively. The direct project-library
interactions are represented by edges between the correspond-
ing projects and TPLs. For example, the edge between p; and [
(torchaudio) indicates that Python project p; uses TPL rorchau-
dio. In the following discussions, we use different approaches
to recommend new TPLs for project p;.

CF-based approaches like CrossRec [4] make TPL recom-
mendations based on the similarities between different projects
in terms of TPL usage. For example, project p; invokes two
TPLs, i.e., I1 (matplotlib) and l5 (torchaudio). In the meantime,
project py also invokes these two TPLs. Based on such TPL
usage information, p; and po have a similarity of 2/3. Thus,
TPLs used in ps but not yet in p; will be recommended to p1,
i.e., CrossRec will recommend I3 (PyYAML) to p;. Apparently,
CF-based approaches only utilize part of those direct project-
library interactions in 3G, i.e., interactions involved in projects
similar to pj.

MF-based approaches like LibSeek [17] embed projects and
TPLs into latent vectors to make recommendations. They utilize
all direct project-library interactions in BG to learn those latent
vectors. For example, p;’s latent vector is learned based on
two interactions, i.e., interaction between py and [y (matplotlib)
and interaction between p; and Iy (torchaudio). Similarly, [;’s
latent vector is learned based on the interaction between p; and
l1, and the interaction between ps and [;. After the embed-
ding, LibSeek calculates dot products for p;’s embedding and
embeddings of all other TPLs that have not been used by p;,
i.e., embeddings of l3,l4,l5 and lg. Then, it recommends the
TPL with the largest dot product value, e.g., I3 (PyYAML) in
this example.

In recent years, deep learning has been widely adopted to
solve a variety of technical problems. Many DL-based recom-
mender systems were proposed by the software engineering
(SE) community. GRec [13] is the state-of-the-art DL-based
approach that is capable of exploiting transitive information
in BG to learn the latent vectors. For example, in 3G shown
in Fig. 1, there is a path l3-ps-l2(l1)-p; connecting p; and 3.
Similarly, there is a path l5-p3-I3-pa-l2(l1)-p; connecting [5 and

Shttps://github.com/jymsuper/SpeakerRecognition_tutorial, #936 in the
dataset introduced later in Section IV-Al
Shttps://github.com/asteroid-team/torch-audiomentations, #1063
7https://github.com/Yuheng-Li/MixNMatch, #4416
8https://github.com/CoinCheung/BiSeNet, #11962
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p1. Therefore, GRec recommends both [3 (PyYAML) and 5
(datasets) to p;. The utilization of transitive information boosts
GRec’s TPL recommendation performance.

However, the 3G used by the above-mentioned approaches
cannot reflect all the relationships between those projects and
TPLs. Therefore, based on BG, they make TPL recommen-
dations based solely on the direct/transitive project-library in-
teractions possessed by BG. Unfortunately, the overlook of
real-world project relations and TPL relations inevitably under-
mined their TPL recommendation performance. Indeed, such
relations can be identified based on contextual information rel-
evant to Python projects or TPLs. For example, the information
on developers, categories, introductions, and keywords can help
identify the relationships between two TPLs. As demonstrated
by Fig. 2, projects p; and p» are described by the same topic
keyword project topicy (pytorch) on GitHub, and thus have
similarities. Therefore, p4 may contribute to the learning of p;’s
latent vector. However, it is not utilized by existing approaches
(e.g., there is no interaction between p; and py represented
in Fig. 1). This also applies to TPLs Il (forchvision) and lg
(scikit-sound).

To model these project relations and TPL relations, we add
new entities, e.g., authors and keywords, into 5G. Then, we
create edges between the original project/TPL nodes and newly
added entity nodes. In this case, BG is converted to KG (de-
noted as KCG) shown in Fig. 2. Different from BG in which
all edges have the same type, KG has different types of edges.
For example, an edge between p; and [; represents the TPL
usage interactions (denoted as 7i), the edge between [, and
node of entity T'PL topic; (processing) indicates that torchau-
dio belongs to category media processor on PyPl (denoted
as r3), etc. Dependency is a unique characteristic of TPLs.
To model such information, we add new edges between each
pair of involved TPLs in BG. For example, l5 (datasets) has a
dependency relationship with Iy (forchaudio), we have an edge
between /5 and [3 with the type of r5.

With G, we can recommend more TPLs beneficial for p;.
For example, there is a new path I4(torchvision)-author:-
I3 (torchaudio)-p; between Iy and p;. Then, in addition to I3
and /5 that have been recommended by GRec, l4 can further
be recommended to p;. Such a recommendation is useful in
practice because p; is a speaker recognition project that ex-
tracts the speaker’s features based on ResNet [23] - a famous
computer vision model. Therefore, both voice processing and
image/video processing functionalities are important for p;.
Here, ls (torchaudio) and ly (torchvision) fulfill this require-
ment. Moreover, both /5 and l5 are proposed by the same
developer identified by the email soumith@pytorch.org. They
usually have similar conventions, coding styles, design patterns,
and shared APIs. Compared with other TPLs providing similar
functionalities to l5 (torchvision), developers can integrate
torchvision into their mobile apps more easily. The second ex-
ample is the recommendation of /5 (datasets). Although GRec
can also recommend 5, using G can further prioritize [5
in the recommendation list, because an extra path l5-l3-p; is
created between [ and p; in KG. This is meaningful in practice.
Considering that l5; depends on ls, it usually provides extra
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Fig. 3. General process flow of PyRec.

features than [, and thus the inclusion of /5 could be beneficial
for p;. Based on the above examples we can find that extending
GB to KG with contextual information is practical and useful.

However, it is challenging to incorporate contextual informa-
tion into TPL recommendations. Indeed, there are many signif-
icant differences between implementing recommender systems
based on KG, e.g., PyRec, and implementing recommender
systems based on 53, e.g., GRec. First, there are much more
nodes and edges in G than that in BG, determined by the
total number of entities involved in the contextual information.
The KG-based recommendation approach should be able to
handle those extra and usually large volumes of nodes and
edges. Second, different from 3G which has only project nodes
and library nodes, KG contains many different types of nodes,
determined by the types of involved entities in the contextual
information. Hence, the KG-based recommendation approach
should be capable of handling more node types. Third, all
edges in BG have the same type and thus such edges do not
need to be embedded by the DL model. In contrast, edges
in G have many different types. Therefore, the KG-based
recommendation approach must embed those edges by the DL
model. Fourth, nodes in different paths in G usually do not
contribute information evenly. For example, l4, [5, and g all
connect to lo. However, l4 connects to [, as they have the
same developer soumith, lg connects to [, as they have the
same topic keyword in PyPi, and /5 connects to I due to the
dependency relationship. As there are many different types of
nodes and edges, it is hard to empirically set up their weights,
i.e., how much information a node can contribute through a
specific path in KG. Therefore, new attention mechanisms are
needed to automatically formulate the usefulness of different
types of relations. Finally, at the model optimization stage, in
addition to optimizing the project-library interactions, we also
need to optimize the embeddings of extra nodes and all edges,

which is referred to as Graph Embedding Optimization in this
paper. Thus, a new model optimization strategy is needed.

To summarise, new approaches that can make precise use
of both contextual information and project-library interaction
information are needed by the SE community to help developers
effectively find useful TPLs.

III. PYREC APPROACH
A. Process Overview

Given a Python project, say p; in Fig. 2, PyRec takes three
pieces of data as input, including TPL usage records of ex-
isting projects, p;’s current TPLs, and contextual information,
i.e., project-project and TPL-TPL relationships. It goes through
five phases to recommend potentially useful TPLs for p;, as
shown in Fig. 3. In Phase 1 (Graph Generation), PyRec
builds up G based on given TPL usage records and contextual
information. Different from GRec [13] that has only project
nodes and TPL nodes, PyRec identifies new entity nodes, e.g.,
project topici, authory, and T PL topic, in Fig. 2, based on
contextual information. Then, it creates edges between those
entity nodes and existing project/TPL nodes to supplement KG.
In Phase 2 (Graph Embedding), PyRec embeds each node
and edge in /G into an individual latent vector. This is different
from GRec [13] in which only nodes are embedded. In Phase 3
(Information Distillation), PyRec employs a multi-layer GNN
to distill useful information from XG. Specifically, it uses the
first GNN layer to distill information from neighbor nodes one
hop away, it uses the second layer to distill information from
neighbor nodes two hop away, and so on. PyRec implements
unique attention mechanisms to help identify more useful in-
formation. With a m-layer GNN, PyRec can eventually explore
useful information for p; from its neighbor nodes within m hops
in the £G. In Phase 4 (Embedding Aggregation), for each
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project/TPL node, its latent vector and information collected by
GNN are concatenated into a new vector. Finally, after training
in Phase 5 (TPL Prediction), PyRec predicts the usefulness
of each TPL to p; and recommends the top n useful TPLs that
have not been used by p;. Different from GRec [13], the train-
ing process of PyRec consists of two parts: graph embedding
optimization and project-library interaction optimization.

Usage Example: Alice is seeking new TPLs for her Python
project. Without PyRec, she explores a large number of TPLs
hosted on PyPI and spends a long time reading the documents
and testing the functionalities, interfaces, dependencies, and
performance of each individual TPL. With PyRec, Alice
chooses a few keywords that can sketch her project and lists
the TPLs currently used or to be used in the project if any.
Then, PyRec gives out a list of (say, 10) TPLs, that are
potentially useful for her project. Now, Alice can focus on
inspecting the usefulness of those recommended TPLs. Please
note that PyRec is designed to recommend potentially useful
TPLs for Alice to accelerate her TPL-seeking process. It is
Alice who makes the final decisions. Alice can iteratively
use the trained PyRec to find new TPLs from KG until she
completes her project.

The same as modern GNN-based recommender systems like
[13], [24], [25], PyRec can be periodically retrained [26] to
incorporate new TPLs, contextual information, and projects.
The overall process can take several minutes to a few hours, de-
pending on the scale of the dataset. For example, given a graph
with 13,000 nodes and 200,000 edges, it takes less than two
hours (Section IV-G) on our testbed (Section IV-A2). Firstly, the
training dataset is updated to include the new TPLs, projects,
and contextual information. Secondly, the G is generated ac-
cording to the methods provided later in Section III-B. Thirdly,
PyRec is trained based on the updated graph. The retraining
helps PyRec include emerging TPLs and achieve even higher
recommendation accuracy.

The design of PyRec is inspired by the state-of-the-art neural
recommender system - KGAT [22]. However, there are funda-
mental differences between KGAT and PyRec. Firstly, KGAT
is a recommender designed to recommend e-commerce prod-
ucts. It utilizes contextual information about products to model
the relationship between those products. In contrast, PyRec not
only models the relationship between projects but also models
the relationship between TPLs. This allows PyRec to better
utilize the contextual information. Secondly, KGAT forms the
relationships between products by adding new entities extracted
from contextual information into G. However, the relation-
ships between TPLs are more complicated. For example, two
TPLs may have the same author(s). Then, an author entity is
created in the knowledge graph to establish the relationship
between the two TPLs, similar to KGAT. However, a TPL
may be designed based on another TPL. Such a dependency
relationship does not involve any new entity in KG. Instead,
there is an edge in G between the two TPLs. Therefore,
PyRec has unique design to accommodate such TPL feature.
Thirdly, as more complicated relationships are included in
KG, it is essential to automatically determine the usefulness of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

each piece of information distilled from KCG. Therefore, PyRec
has a dedicated attention mechanism to enable the usefulness
identification for different neighbor nodes and relations. Based
on it, PyRec can distill more useful information and mitigate
the negative impact of unuseful information.

B. Phase 1: Graph Generation

In this phase, PyRec generates the knowledge graph KG
according to given TPL usage records (i.e., project-library in-
teraction information) and contextual information.

Library Usage Records. These records represent the
project-TPL interactions of all Python projects. To model such
information by graph, PyRec maps each Python project and
TPL to an individual node in the bipartite graph BG. Let us
denote the set of Python projects as P and the set of TPLs
as L. Then, we have BG = (P, Rpr, L), in which Rp, =
{(p,r0,)|p€P,ro=1,1€ L}. A triple (p,70,l) represents
the edge between project p and TPL [ in BG, i.e., the project-
library interaction between p and [. Note that we use triple
(p,70,1) rather than couple (p,!) here for the ease of combi-
nation with contextual information later.

Contextual Information. The contextual information is
used to supplement the overlooked relationships between nodes
in the BG. Theoretically, it can include any real-world informa-
tion like developers, project categories, TPL categories, topics,
etc. [27]. First, PyRec identifies new entities from contextual in-
formation and creates the corresponding entity nodes in the BG.
For example, given two topic keywords Education and Speech
Recognition, PyRec creates two nodes, one for each. Second,
PyRec creates edges in BG between newly added entity nodes
and existing nodes. It is worth noting that the dependencies
between TPLs incur only new edges between the corresponding
TPLs. Finally, the BG becomes a knowledge graph KG.

As introduced in Section II, each edge in G has a specific
type determined by the nodes it connects. We denote the set of
newly added entity nodes that are related to projects as Ep, the
set of newly added entity nodes that are related to TPLs as &,
the set of newly added edges as R¢. Now, with contextual infor-
mation, KG can be represented as (7, R, T'), in which the node
setsH,T CPUEp UE,, theedgeset R = Rp, U Re termed
{(h,r,t)lh e H,r € R,t € T}. A triple (h,r,t) describes the
relation r between head entity node h and tail entity node t.
Please note that we treat those relations as bidirectional rela-
tions in this paper, e.g., lo (torchaudio) is developed by author,
(soumith) and authory (soumith) develops ls (torchaudio) for
a relation (authory,ry,ls).

C. Phase 2: Graph Embedding

Graph Embedding has been well-studied in the past years.
Many techniques like TransH, TransE, TransD, DistMult, and
ComplEx were proposed to learn the latent features of entities
in a given knowledge graph [28]. The embedding process is to
learn the latent vectors for nodes and edges in G, putting sim-
ilar entities, e.g., projects with similar functionalities, close to
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each other in the latent space [29]. Please note that theoretically
any graph embedding technique can be employed by PyRec
to embed XG. However, TransR [30] has a better performance
when handling complex knowledge graphs consisting of a large
scale of nodes and various kinds of edges [31]. Besides, TransR
has been widely used to implement knowledge graph-based rec-
ommender systems [32]. Considering its popularity, maturity,
and fitness, PyRec employs TransR to implement the graph
embedding, the same as KGAT [22]. We will study the impact
of different embedding techniques on PyRec’s performance in
the future.

There are different types of nodes and different types of
edges in the graph KG. Given a triple (h,r,t) € KG, PyRec
embeds nodes h and t into a d-dimensional node space [30].
The corresponding latent vectors are denoted as e; € R? and
e; € RY, respectively. The latent vector of a node can be in-
terpreted as its features [13], [17]. For example, an embedding
of TPL may represent its functionality, performance, popular-
ity, compatibility, reliability, interface, etc. An embedding of a
project may represent how much it is interested in each feature.
Besides, PyRec embeds the relation r in triple (h,r,t) into a
k-dimensional relation space [30]. The corresponding latent
vector is denoted as e, € RF. The latent vector of a relation
(edge) can be interpreted as its type, impact, importance, and
usefulness of ¢ to h, etc. Please note that d is not necessarily
equal to k in practice.

PyRec employs the widely used TransR [30] to learn the
latent vectors relevant to each triple (h, r, t) in KG. Specifically,
it projects e;, and e; from the d-dimension node space to the
k-dimension relation space. This can be done with the help of
a trainable matrix M; € R**? e, e} = Mye;, where €}, is the
projected embedding of h. Similarly, we have e} = Mje;. The
learning process of e, is to put the projected e} and ej close to
e, in the relation space of 7. In other words, it tries to minimize
the following equation.

fr(h,t) = |lef, + er — €73 1

where symbol || - |2 represents the Euclidean distance.
All embeddings are initialized with random values and
learned during the training process (see Section III-G).

D. Phase 3: Information Distillation

In this phase, for each node h € kG, e.g., Python project node
p1 and TPL node [ in Fig. 3, PyRec distills useful information
from its neighbor nodes for subsequent TPL recommendation.
This is done by GNN’s message propagation mechanism which
can capture information for a target node from its neighbor
nodes in a graph [15], [33]. More importantly, different neigh-
bor nodes may contribute different information of different
levels of usefulness. Thus, PyRec applies attention mechanisms
[29] to automatically adjust the importance of each neighbor
node. We first discuss how to distill information from A’s one-
hop neighbor nodes, and then expand it to multiple hops.

Step 1: One-hop Information Distillation. PyRec employs
N () to denote all relations in KG that take h as head node, i.e.,
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N(h)={(h,r,t)|3(h,r,t) € R,Vt € T}. Indeed, N'(h) indi-
cates the direct interactions between h and its one-hop neighbor
nodes. Then, h’s one-hop information, denoted as e N (h)» €an be
gathered as follows.

EN(h) = wy(h,t)e (2
V(h,r,t)eN (h)

Function w,.(h,t) calculates the decay factor which controls
how much information can be gathered from ¢ along relation
r. It is defined as follows.

Wy (h7 t) = etr : fact (6; + er) (3)

where symbol (-) denotes the inner product, fqc+() is the non-
linear activation function like tanh [29] used in this paper.

Remark: PyRec applies an attention mechanism by including
fact(e}, +er) in Eq. (3) to discriminate the importance of
h’s neighbors [29], i.e, allowing node t to contribute more
information to h if it is close to h in the relation space of r.

Given all relations in A/(h), PyRec adopts the Softmax func-
tion [22] shown below to normalize all decay factors.

exp(wy(h,t))
Zv(har*ﬁt*)GN(h) exp(wr* (h7 t*))

Now, PyRec generates a vector with both the original em-
bedding e;, and the information gathered from h’s one-hop
neighbors, i.e., exr(n). We denote the vector as er .

wy(h,t) = “

er = LeakyRe LU (Mz (eh + €N(h))>

+ LeakyReLU <M3 (6h, © eN(h))) ®)

where LeakyReLU () is the activation function [13], symbol
(®) is the element-wise product, and My, Ms € RY ¥4 are two
trainable matrices used to transform e;, from the current GNN
layer to the next GNN layer. d’ is the transformation parameter.
Its value is equal to the size of the next GNN layer.

Remark: PyRec applies the second attention mechanism by
including LeakyReLU (Ms(ep, ® epnr(ny)) in Eq. (5). It allows
to selectively aggregate one-hop information, i.e., passing
more information to h if ey is closer to ey in latent
space. We will experimentally study the effectiveness of the
two attention mechanisms later in Section IV-E.

Step 2: Multi-hop Information Distillation. PyRec stacks
more GNN layers to capture the multi-hop information. Specif-
ically, each GNN layer takes vectors produced by the previous
layer as input and iterates the process introduced in Step 1 to
generate new vectors. In this way, information possessed by
neighbor nodes x-hops away from h in G can be gathered
by the z-th GNN layer. We iteratively define the embedding of
h updated by the z-th layer as follows.

e}, = LeakyReLU (M2 (ei_l n ej(/?i)))

+ LeakyReLU <M3 (62_1 © eif(i))) (6)
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Fig. 4. Gathering multi-hop information from p3 to for l2.

Example: Fig. 4 provides an example that p, distills 3-hop

information from ly with 3 GNN layers, as l4 connects to py

with 3 hops in Fig. 2 over path ly =% authori — 1o = py.

Latent vector e;, of node ly is initialized in Phase 2. Then,

it is distilled through relation ry by the first GNN layer and

merged to vector e}wthon. Next, it is distilled through relation
2

14 by the second GNN layer and merged to vector ej,. Finally,
it is merged into vector ef’) , by the third GNN layer.

E. Phase 4: Embedding Aggregation

In the previous phase, PyRec employs m-layer GNN to
gather information for node A from its m-hop neighbor nodes
in KG. Each GNN layer produces an individual vector as out-
put. In this phase, PyRec aggregates h’s embedding and those
generated vectors to constitute a final vector for h:

ﬁ
h =enllenllerllenll - ller ©)

. . . -
where || is the concatenation operation. Vector h possesses not
only h’s embedding but also useful information distilled from
all its neighbor nodes within m hops.

F. Phase 5: TPL Prediction

As introduced in Section III-C, the vector of a TPL node
represents its features and the vector of a Python project node
represents its interests in those features [13], [17]. Therefore,
PyRec approximates the usefulness of TPL [ to project p by:

alp)="1-7 ®)

For each TPL [ € L, PyRec approximates its usefulness for p.
Then, it recommends n TPLs in total that have the highest
usefulness values but have not been used by p to developers of
p. Upon the receipt of those TPLs, developers can prioritize the
evaluation and find out if these recommended TPLs are indeed
useful.

G. Optimization

Different from existing DL-based recommendation ap-
proaches [34], [35], PyRec optimizes the following two loss
functions alternatively via Adam [36] to train the entire model,
including graph embedding loss L,.; and TPL prediction
loss Lyre.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Graph Embedding Optimization. PyRec follows TransR
[30] to optimize embeddings of KG. Specifically, it considers
both valid relations R and invalid relations R’ in KG dur-
ing the training. To generate R’, it replaces node t in each
valid triplet (h,r,t) € R to a random node ¢’ € T, such that
(h,r,t") ¢ R. With R* = {(h,r,t,t')|(h,r,t) € R, (h,7,t') €
R’}, PyRec minimizes the embedding loss:

La= ¥ cto(nm0)-1000) O

V(h,rt,t")ER*

where o( ) is the sigmoid function, function f,.( ) is calculated
via Eq. (1). Eq. (9) indicates that PyRec tends to prioritize valid
relations and penalize invalid relations.

Project-Library Interaction Optimization. Similarly,
PyRec uses both valid project-library interactions Rp, and
invalid project-library interactions Rp.’ to optimize the TPL
prediction. The generation of Rp' is the same as the genera-
tion of R’ in the previous step. PyRec minimizes the following
prediction loss:

Epre =

Z —zna(a(l,p)—a(z’,p)) (10)

Y(p,L,I" ) ER*

where R* = {(p,[,1")|(p, 1,1) € Rpc, (p,1,I') € Rp.'}.

IV. EXPERIMENTAL EVALUATION

PyRec is designed to facilitate the project development
for Python community. Specifically, it employs the DL-based
mechanisms to automate developers’ TPL seeking process.
It is necessary to experimentally study the effectiveness of
PyRec, i.e., if PyRec could perform better than state-of-the-art
approaches. Second, considering that the scales of different
Python projects in terms of TPL usage vary significantly, it
is also of importance to explore the adaptability of PyRec
to projects with different scales. Third, PyRec is the first
approach that employs contextual information to make TPL
recommendations. It also employs an attention mechanism
to help automatically determine the importance of different
kinds of information to the model. Thus, we conduct ablation
studies to analyze the usefulness of incorporating contextual
information and the adoption of attention mechanism. After
that, we want to study how to choose the most suitable
parameters for PyRec in practice. Therefore, the following
five research questions are used to guide the experimental
evaluation of PyRec’s effectiveness.

RQ1: Does PyRec perform better compared with existing
state-of-the-art approaches?

Does PyRec perform well with Python projects of
different scales?

Is contextual information useful for improving TPL
recommendation performance?

Is attention mechanism useful for improving TPL
recommendation performance?

How do PyRec’s hyperparameter settings affect the
recommendation performance?

RQ2:
RQ3:
RQ4:

RQ5:

Authorized licensed use limited to: Washington State University. Downloaded on November 28,2024 at 05:14:52 UTC from IEEE Xplore. Restrictions apply.



LI et al.: NEURAL LIBRARY RECOMMENDATION BY EMBEDDING PROJECT-LIBRARY KNOWLEDGE GRAPH

A. Experimental Setup

1) Dataset: Through a thorough investigation, we found that
there is no benchmark dataset available, so we collected the
dataset by adopting the following methodologies.

Project-TPL Usage Information Collection. We resort to
the official GitHub API° to collect the most popular Python
projects. By setting the primary language to Python and exclud-
ing forked ones, we obtain around 13,000 projects. To collect
potential TPLs used in those projects, we retrieve 6,000 of
the most popular libraries from the official PyPI'” repository.
Please note that those library names are used as ground truth
to verify the TPLs extracted from each project. We leverage
the static analysis framework Scalpel [20] to extract TPL usage
information from collected Python projects. Specifically, given
a project, Scalpel extracts unique Python module names by
inspecting the import statements in each source file. Then, it
excludes the standard modules and local modules. When sub-
modules are used in a given source file, Scalpel only collects
the top-level module names, similar to [37]. Then, the extracted
TPLs rae compared against the library names collected from
PyPI to ensure their correctness.

Contextual Information Collection. A variety of informa-
tion can be used as contextual information. However, as this is
the first attempt, we employ only limited types of contextual
information in this paper. More potentially useful contextual
information will be explored in the future. For Python projects,
we collect the topics associated with each of them on GitHub.
A topic on GitHub is a keyword that the Python project belongs
to. Such keywords are generated by GitHub and chosen by
developers, and thus can accurately describe the features of
the corresponding projects. For TPLs, we collect keywords,
authors, and TPL dependencies of each TPL from its installation
wheel file. Specifically, we use the emails to identify different
authors. The TPL dependencies are extracted from the setup.py
file in the package and/or TPL description. Please note that the
above contextual information is publicly available and can be
collected without knowing the usage status of a library. For
example, once a library is available on PyPI, the corresponding
contextual information like author name, description, depen-
dencies, etc., can be collected and then used by PyRec. More
contextual information will be employed for experiments in
the future.

Dataset Creation. To build a fair testbed for all compet-
ing approaches, following the same settings as [13], [17], we
include only projects invoking 5 or more TPLs for evalua-
tion. After removing projects with less than 5 TPLs, we have
12,421 projects in total in our dataset. Those projects invoke
963 distinct TPLs in total. There is a total number of 121,474
project-library interaction records, i.e., those TPLs are used
121,474 times in total by those projects. In terms of contextual
information, the dataset has 73,277 pieces of records involving
9,675 extra entities corresponding to project topics, TPL au-
thors, and TPL topics. The details are summarized in Table 1.

“https://docs.github.com/en/rest/search#search-repositories
1Ohttps://pypi.org/
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TABLE I
SUMMARY OF PROJECTS, TPLS, AND CONTEXTUAL INFORMATION

Data Type Amount
Python Project 12,421
Project-TPL Interaction | Third-party Library 963
TPL Usage Information 121,474
Project Topic Keyword 68,951

TPL Author 431
TPL Topic Keyword 1,420
TPL Dependency 2,475

Contextual Information

Number of Projects

510 11-15 1620 21-25 2530 >30
Number of TPLs per Project

Fig. 5. TPL distribution.

The TPL distribution is depicted in Fig. 5. Each unique key-
word, author, topic, etc., is treated as an individual entity (graph
node) when creating the knowledge graph ICG. As introduced in
Section III-A, the application scenario of PyRec is that develop-
ers have decided on a few TPLs for their Python projects and are
seeking more new TPLs. Please note that from the programming
perspective, there is no specific sequence for the TPL usage, i.e.,
if two TPLs are used by a project, developers can incorporate
any of the two TPLs in the source code first, and then include
the other one. The study of version evolution is out of the scope
of this paper and will be studied in the future.

Following the same experimental settings in [4], [13], [16],
[17], we randomly remove rm TPLs from each Python project
to mimic that some TPLs have been determined but some new
TPLs are still needed. In addition, a project could be at different
development stages. There is usually a limited number of TPLs
used in a project at the early development stage, but more TPLs
can be included when the development is nearly completed. To
mimic such a real-world scenario, for each project in the dataset,
we set rm € {20%,40%, 60%} TPLs. Here rm = 60% means
only 40% of TPLs have been determined and the developer
wants to add 60% new TPLs (the removed ones in the experi-
ments) to her/his project. This also indicates the project is at an
early development stage. Similarly, rm=20% means the project
is nearly completed and only 20% extra TPLs are needed. To
ensure the comparability, the dataset with rm = 60% is a subset
of the dataset with 7m = 40%, which is a subset of the dataset
with rm = 20%.

The removed TPLs constitute a test set and the remaining
TPLs constitute a training set, the same as the settings in [4],
[13], [16], [17]. For ease of exposition, we call those TPLs kept
in the test set as correct TPLs hereafter as the developers have
used them eventually. The threats brought by the above settings
will be discussed later in Section I'V-1. To minimize the risk of
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label leakage, in the experiments, only those projects and TPLs
in the training set are used to construct the KG. Besides, only
contextual information that is relevant to those projects/TPLs in
the training set is employed to construct the KG. As introduced
in Section III, to generate the recommendation for a project, we
run PyRec to recommend a list with n € {5,10,20} TPLs. We
investigate PyRec’s performance by comparing those removed
TPLs with those recommended TPLs. It may be concerned that
a new project or new TPL may not have too much contextual
information in practice. However, PyRec does not require ev-
ery project/TPL to have contextual information. In fact, it can
build a simple KG solely based on the project-TPL interactions,
which is equivalent to BG. Then, once contextual information
is available, such information can be supplemented to KG and
eventually fed to PyRec.

For each group of parameter settings, we conduct 50 exper-
imental runs, i.e., executing the experiment 50 times with ran-
dom removals, similar to [13] and [17]. Then, the performance
averaged by arithmetic mean is reported. Considering the TPL
scales invoked by those projects, this allows different TPLs to
have roughly equal opportunity to be tested, similar to cross-
validation used in [4]. Besides, a potential advantage is that the
random removal allows different combinations of TPLs, which
is overlooked by the cross-validation.

2) Implementation: We prototype PyRec in Python. For the
other competing approaches [4], [13], [16], [17], we simply
run their open-source codes with the Python dataset. In PyRec,
we set the dimensionality of node embeddings d = 128, the
dimensionality of relation embeddings k = 64, the number of
GNN layers m = 2, and the size of each layer size s =64 in
PyRec. We adopt Adam [36] to adaptively adjust the learning
rate. For the other competing approaches, we keep the original
parameters/settings reported in the corresponding papers and/or
employed in the corresponding source codes. The testbed is
equipped with NVIDIA P100 12GB PCle GPU accelerator. It
runs Ubuntu 18.04, CUDA 10.2, Python 3.7.5, Torch 1.11.0,
NumPy 1.21.5, pandas 1.3.5, SciPy 1.4.1, tqdm 4.64.0, and
scikit-learn 0.22.

3) Metrics: Our objective is to propose an innovative ap-
proach to help Python developers effectively identify the most
suitable TPLs. Therefore, we not only evaluate PyRec’s ability
to recommend libraries accurately but also measure PyRec’s
ability to recommend diverse TPLs. All metrics are widely
used by researchers in not only the SE community but also
the recommender system community. Specifically, the first four
metrics are to measure the accuracy and the last one is to
measure the diversity. Greater values for each metric indicate
better performance.

e Mean Precision (MP) [4], [13], [38]: Given a list con-
sisting of n TPLs, the precision is calculated by dividing
the number of correctly recommended TPLs by n. Then,
MP averages all precisions in an experimental run.

o Mean Recall (MR) [4], [13], [14], [16]: The recall is cal-
culated by dividing the number of correctly recommended
TPLs in a list by the number of removed TPLs from the
corresponding project. Then, MR averages the recalls of
all lists in an experimental run.
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« Mean F1 Score (MF) [13], [17]: MF averages the F1-
scores of all lists in an experimental run. An Fl-score is
calculated with the precision and recall of a list.

+ Mean Reciprocal Rank (MRR) [4], [17]: MRR measures
the ability of each approach to put correct TPLs at higher
positions in the recommendation list. Specifically, given a
set of recommendation lists RL, the MRR is calculated by:

MRR= —— > L

an
IRL] i, €0)

where c¢(4) is the position of the first correct TPL in the
current recommendation list /. Considering the fact that
developers usually evaluate those recommended TPLs se-
quentially from top to bottom, a recommendation approach
with higher MRR is much more useful in practice.

« TPL Coverage (COV) [4], [13], [17]. In one experimental
run, COV is the ratio of distinct TPLs in all recommenda-
tion lists over the total number of distinct TPLs contained
in the dataset. A greater value of COV indicates a higher
probability that the approach recommends inventive TPLs.
Note that inventive TPLs may not be correct TPLs and
thus COV is irrelevant to accuracy. However, it can be
used to check if an approach achieves better accuracy but
significantly scarifies the diversity of recommended TPLs.

B. Performance Comparison (RQI)

To answer the research question RQ)1, we compare PyRec
against four state-of-the-art approaches.

o LibRec [16]: It is the first TPL recommendation approach.

It combines CF and association rule mining to recommend
useful TPLs for Java projects.

e CrossRec [4]: It is a CF-based approach designed for
open-source Java projects.

e LibSeek [17]: It is an MF-based TPL recommendation
approach facilitating Android app development.

e GRec [13]: This is a DL-based approach designed for
Android app development. It models the app-library inter-
actions as a BG and employs GNN to distill information
for TPL recommendations.

We simulate different development stages of Python projects
by setting parameter rm to 20%, 40%, and 60%, respectively
[4]. This means the developers have decided 80%, 60%, and
40%, respectively, of the TPLs for their Python projects and
are seeking more TPLs for use. Then, given a Python project,
each approach gives out a recommendation list consisting of
n TPLs. In practice, the recommendation list could not be too
long [13], [17], so we set n to 5, 10, and 20, respectively. Please
note that LibRec, CrossRec, LibSeek, and GRec can only use
the project-TPL interactions to make recommendations. Thus,
only such project-TPL interaction information in the training
set is employed as their input. In contrast, PyRec can utilize not
only project-TPL interaction information but also contextual in-
formation. Therefore, both of the above-mentioned information
are employed as the input of PyRec. The potential threats to
the conclusion validity will be discussed later in Section I'V-1.
Table II reports the performance of all competing approaches.
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TABLE II
PERFORMANCE COMPARISON. DATA WITH UNDERLINES ARE THE BEST PERFORMANCE ACHIEVED BY EXISTING APPROACHES
Dataset Approach n=3 n=10 n=20
MP MR MF MRR  COV MP MR MF MRR  COV MP MR MF MRR  COV
LibRec 0.0819 02362 0.1216 02682 0.2669 | 0.0607 03731 0.0980 0.2850 0.2735 | 0.0332 0.3907 0.0583 03162  0.3089
CrossRec | 0.0305 0.1136  0.0457 0.0723  0.1268 | 0.0262 0.1888 0.0442 0.0847 0.1458 | 0.0231 0.3333  0.0421 0.0964  0.1549
rm=20% LibSeek | 0.0985 0.3318 0.1418 0.2952 0.2847 | 0.0653 0.4291 0.1073 0.3092 03297 | 0.0413 0.5317 0.0739 0.3163 0.3765
GRec 0.0968 0.3394 0.1418 0.2926  0.3836 | 0.0645 04328 0.1074 03079 04593 | 0.0412 05390 0.0741 03153  0.5542
PyRec 0.1106 03781 0.1711 03276  0.3857 | 0.0724 0.4844  0.1259 03424  0.4609 | 0.0455 0.5926 0.0845 0.3495 0.5553
LibRec 0.1497  0.2297 0.1672 0.3883 02778 | 0.0907 02616 0.1240 03932  0.2867 | 0.0497 02716 0.0781 03936  0.3186
CrossRec | 0.0528 0.0912 0.0631 0.1279  0.1547 | 0.0522 0.1738  0.0759 0.1481  0.1965 | 0.0487 0.3286 0.0816 0.1651 0.2144
rm=40%  LibSeek 0.1675 0.2654 0.1907 0.4203 02979 | 0.1169 03598 0.1646 0.4359 0.3488 | 0.0774 0.4647 0.1256 0.4427 0.3915
GRec 0.1089  0.1928 0.1321 02680 0.4164 | 0.0804 02755 0.1184 02855 0.4968 | 0.0580 0.3798 0.0965 0.2951  0.5834
PyRec 02111 03438  0.2616 0.5174 0.4215 | 0.1438 04549 0.2184 05312  0.4994 | 0.0926 0.5679 0.1591 0.5366 0.5852
LibRec 0.1246  0.1226  0.1138 03249  0.3279 | 0.0731 0.1353 0.0862 03268 0.3374 | 0.0396 0.1388 0.0561  0.3269  0.3443
CrossRec | 0.0680 0.0738 0.0667 0.1290 0.2488 | 0.0880 0.1893 0.1133  0.1611  0.3032 | 0.0731 0.3245 0.1145 0.1768  0.3906
rm=60%  LibSeek 0.1705 0.1801  0.1643  0.3925 0.3507 | 0.1318 0.2715 0.1660 0.4094 04041 | 0.0887 03561 0.1340 0.4148 0.4219
GRec 0.1401  0.1578  0.1410  0.3178 0.5053 | 0.1039 0.2271 0.1350 0.3344 0.5721 | 0.0749 03154 0.1152 03432  0.6458
PyRec 0.2862 03063 0.2959  0.6122  0.5331 | 0.2014 0.4196 0.2721 0.6229  0.6043 | 0.1320 0.5324 0.2116  0.6265 0.6781

Please note that the minimum advantages (Min. Adv.) are calcu-
lated by comparing PyRec with the best performance achieved
by state-of-the-arts (underlined).

The first observation is that PyRec achieves the best per-
formance in every case. Taking n = 10 and rm = 40% as an
example, PyRec achieves 0.1438, 0.4549, 0.2184, 0.5312, and
0.4994 in MP, MR, MF, MRR, and COV, respectively. Mean-
while, LibSeek is the second-best approach achieving 0.1169,
0.3598, 0.1646, and 0.4359 in MP, MR, MF, and MRR, re-
spectively. GRec achieves the second-best performance in COV,
with a value of 0.4968. Accordingly, PyRec outperforms Lib-
Seek by 23.08%, 26.43%, 32.69%, and 21.88% in MP, MR, MF,
and MRR, respectively. Although PyRec outperforms GRec
by 0.52% in COV, it outperforms GRec by 78.92%, 65.14%,
84.48%, and 86.05% in MP, MR, MF, and MRR, respectively.
The advantages of PyRec over LibRec and CrossRec are more
significant. This demonstrates that PyRec does not scarify the
diversity of recommended TPLs while achieving higher ac-
curacy than those state-of-the-art approaches. Moreover, com-
pared with LibRec, CrossRec, LibSeek, and GRec, PyRec’s
average advantages in MRR are 47.58%, 291.52%, 28.62%, and
61.82%, respectively.

This demonstrates PyRec’s capability of putting those cor-
rect TPLs at higher positions in the recommendation lists.
This is more helpful for developers as it helps prioritize the
evaluation of useful TPLs and subsequently saves develop-
ers’ TPL-seeking efforts.

The second observation is that along with the increase in n,
the MR, MRR, and COV of PyRec increase accordingly. Taking
rm = 20% as an example, when n increases from 5 to 20, the
MR of PyRec increases from 0.3781 to 0.5926 by 56.72%, the
MRR increases from 0.3276 to 0.3495 by 6.69%, and the COV
increases from 0.3875 to 0.5553. When n is larger, more TPLs
are included in each recommendation list. Therefore, PyRec has
a higher probability of recommending not only correct TPLs

but also inventive TPLs, which leads to an increase in MR,
MRR, and COV. However, with a larger n, developers may
spend more time testing those recommended TPLs. In practice,
the more suitable value of n can be empirically set up according
to developers’ needs.

The third observation is that when rm increases, MP, MF, and
MRR of PyRec increase accordingly. Given a Python project,
a greater rm means that fewer TPLs have been decided by
developers and more new TPLs are expected. Then, TPLs in
a recommendation list have a higher probability of being the
correct ones. This leads to an increase in MP, MF, and MRR.
However, when more TPLs are expected, it is harder for PyRec
to include all those correct TPLs in a list with a fixed length.
As a result, its MR decreases slightly.

Cold start problem is an essential problem faced by
recommendation systems. This paper focuses on general TPL
recommendation scenarios, the cold start problem will be
studied in the future. However, the results reported in Table
II demonstrate that PyRec has better ability than the other
approaches to address the cold start problem. For example,
when rm = 60%, each project has only 40% used TPLs,
indicating that there is only limited historical data used for
recommendation. It is easy to see from Table II that PyRec has
greater advantages in every metric than the other approaches.
For example, when rm = 20% and n = 20, PyRec’s advantages
in MR are 51.69%, 77.81%, 11.45%, and 9.95%, respectively,
against LibRec, CrossRec, LibSeek, GRec, and PyRec. When
rm = 60%, the corresponding advantages become 283.59%,
64.08%, 49.51%, and 68.79%, respectively. That is because
when rm increases, less information can be employed to
make the recommendation. This limits their performance.
Therefore, the MRs of all approaches decrease accordingly.
However, PyRec’s MR decreases slightly from 0.5926 to
0.5324 while others decrease significantly, thanks to PyRec’s
ability to incorporate contextual information to supplement
the recommendation. This observation evidences that PyRec
is more capable of handling the cold start problem. It also
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Fig. 6. Impact of project scales (rm = 40%,n = 5).

confirms our statement made in Section I that incorporating
contextual information in TPL recommendation is
useful.

The above observations demonstrate PyRec’s suitability for
Python projects not only nearing completion (e.g., rm =
20%) but also at an early development stage (e.g., rm =

60%).

C. Adaptability to Projects Scales (RQ2)

Now we investigate PyRec’s adaptability to projects with
different scales. We split those Python projects into three cate-
gories according to the total number of TPLs used. The first
category consists of projects using 5 to 7 TPLs, the second
category consists of projects using 8-12 TPLs, and the last
category consists of projects using more than 12 TPLs. Each
category has a similar number of project-library interactions.
As reported in Table II, LibSeek has the best performance
across all existing approaches. Thus, we employ LibSeek only
for comparison. The results are shown in Fig. 6.

We can observe that the project scales significantly impact
the performance of both PyRec and LibSeek. For example, in
the first category where each project has 5 to 7 TPLs, PyRec
achieves 0.1496 in MP. In contrast, in the third category where
each project has more than 12 TPLs, PyRec’s MP increases
to 0.3314 by 221.47%. The reasons are twofold. First, as we
remove 40% TPLs from each project as the test set, the theo-
retical up-bound of MP in the first category is 0.40 [17]. This
up-bound is looser in the other two categories. Second, projects
in the first category have relatively less TPL usage information.
Compared with the second and third categories, it is harder to
make accurate recommendations.

An interesting finding is that PyRec achieves the greatest ad-
vantage over LibSeek in the first category. Specifically, PyRec
outperforms LibSeek by 24.65%, 19.14%, and 15.10%, respec-
tively, on average across the three categories. Because when
a project invokes fewer TPIs, less information can be utilized
by LibSeek to make recommendations. This also demonstrates
PyRec’s ability to make accurate TPL recommendations with
limited TPL usage information, as it can use contextual infor-
mation as a supplement.

Another finding is that along with the increment of project
scales, the COVs achieved by both approaches decrease ac-
cordingly. The reason is that when we fix rm = 40%, a project
with more TPLs will have more TPL usage information for the

recommendation. Subsequently, each approach can make more
accurate recommendations with fewer random TPLs included in
the lists. As a result, the values of COV metric decrease. The last
finding is that when the project scale becomes bigger, the advan-
tage of PyRec over GRec in COV becomes smaller. This further
evidences the observation reported in Table II, i.e., PyRec is
more useful for projects at the early development stage.

D. Usefulness of Contextual Information (RQ3)

We conduct an ablation study to get deep insights into the
effectiveness of utilizing contextual information. Indeed, the
utilization of contextual information is one of the major differ-
ences between PyRec and GRec [13]. Specifically, we disable
the attention mechanism (to avoid bias) defined by Eq.s (3)
and (5). Then, we run PyRec without contextual information,
denoted as PyRec., and with contextual information, denoted
as PyRec.;, separately. Fig. 7 depicts the final results when
n =5 and rm increases from 20% to 60%.

We can observe that the utilization of contextual informa-
tion significantly boosts PyRec’s performance in terms of
recommendation accuracy.

For example, PyRec.; outperforms PyRec.o by 8.92%,
21.17%, 21.34% on average when rm = 20%, 40% and 60%,
respectively. This evidences the statement made earlier in Sec-
tion I that contextual information needs to be considered when
recommending TPLs for Python projects. Second, the advan-
tages of PyRec.; over PyRec. increase when rm increases.
This indicates that contextual information is much more useful
for Python projects at the early development stage where a lim-
ited number of TPLs have been decided/used. This observation
also confirms the findings shown in Table II that the advantage
of PyRec over the other competing approaches becomes more
significant when rm increases. Because all those approaches
except PyRec used only project-library interaction information
to make recommendations. When rm increases, less project-
library interaction information is available for use, and their
performance is highly constrained. In contrast, PyRec can use
contextual information as a supplement when making recom-
mendations, and thus it can have a much better performance.

Interestingly, the COV of PyRec is slightly lower than
PyRec.;. A potential reason is that when contextual informa-
tion is incorporated into the model, PyRec could make more
accurate TPL recommendations, and thus fewer fresh TPLs are
included in the lists.
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E. Usefulness of Attention Mechanism (RQ4)

Now we investigate whether the adoption of attention mech-
anisms in Section III (Egs. (3) and (5)) can improve PyRec’s
performance. Similar to the settings in the previous section,
we disable the usage of contextual information to avoid bias.
Then, we change Eq. (3) to w,.(h, t) = €} and change Eq. (5) to
e}, = LeakyReLU (Mz(en + enrpy)) to disable the attention
mechanisms. We denote the new approach without attention
mechanisms as PyRec,o and the approach with attention mech-
anisms as PyRec,;. Fig. 8 shows the experimental results when
rm =40% and n = 5.

We can find that PyRec,; outperforms PyRec,q by 10.12%,
8.28%, 9.42%, and 12.64% in MP, MR, MF, and MRR, re-
spectively. Because attention mechanisms can automatically
formulate the importance of different neighbor nodes when
gathering information for a target node in KG. This helps am-
plify useful information possessed by neighbor nodes and filter
out useless information. As a result, PyRec,; achieves much
better performance. This observation evidences the effective-
ness of attention mechanisms designed in Section III. Similar
to the phenomena observed in Fig. 7, PyRec,o performs better
in COV than PyRec. The underlay reason is also the same.

F. Impact of PyRec’s Hyperparameters (RQS5)

PyRec embeds both nodes (including Python project nodes,
TPL nodes, and extra entity nodes) and edges (relations between
nodes) in KG to latent space to capture their characteristics.
Now we study the impact of different hyperparameters on
PyRec’s performance to answer research question RQS5.

Relation Embedding Dimensionality (k). We vary £ to
study its impact on PyRec’s performance. Specifically, we set
k to 16, 32, and 64 in PyRec,1, PyRec,2, and PyRec,3, re-
spectively. Fig. 9 reports the average performance achieved
by each approach when rm = 40% and n = 5. For example,
compared with PyRec,; in which k£ =16, PyRec,2 improves

the performance by 1.18%, 1.07%, 1.14%, and 0.57% in MP,
MR, MF, and MRR, respectively. When k = 64, PyRec,3 out-
performs PyRec,.5 by 7.00%, 6.52%, 6.82%, and 9.03% in MP,
MR, MF, and MRR, respectively. The reason is that a higher
dimensionality of the relation embeddings allows PyRec to
model more latent features for the corresponding relationships.
Subsequently, more latent features allow PyRec to reflect the
relations between each pair of nodes in G more precisely. As
a result, PyRec can recommend correct TPLs more effectively.
In contrast, when k increases from 16 to 64, the value of COV
decreases from 0.5395 to 0.4215 by 21.87%.

We can find that along with the increase of k, PyRec’s
recommendation accuracy becomes better in all cases.

Please note that a greater k also results in higher time con-
sumption and more storage space. Thus, a proper value of k£ can
be experimentally identified in practice.

Node Embedding Dimensionality (d). Now, we vary d to
32, 64, and 128, to study its impact on the performance of
PyRec. We denote the three derived approaches as PyRec,1,
PyRec,2, and PyRec,3 in which d is 32, 64, and 128, re-
spectively. The experimental results are reported in Fig. 10.
For example, PyRec,,5 outperforms PyRec,,; by 7.45%, 7.43%,
7.44%, and 8.23% in MR, MR, MF, and MRR, respectively.
Furthermore, compared with PyRec,2, PyRec,3’s advantages
increase to 20.57%, 19.50%, 20.16%, and 30.78%, respectively.
As introduced in Section III-C, the embeddings of TPL nodes
represent latent characters of those TPLs, such as functional-
ity, performance, popularity, compatibility, reliability, interface,
etc. The embeddings of Python project nodes represent how
much they are interested in each feature. Therefore, a greater
d allows a more accurate formulation of those characters and
interests. Similarly, when d increases from 32 to 64, the value of
COV increases accordingly. However, when d further increases
from 64 to 128, the value of COV decreases slightly.
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Based on the above observations we can find that a greater
value of d results in better performance in MP, MR, MF,
and MRR.

By comparing Figs. 9 and 10, we can also observe that
the node embedding dimensionality d has a more significant
impact on PyRec’s performance than the relation embedding
dimensionality k.

Number of GNN Layers (m). As introduced in Section
III-D, PyRec uses the m-th GNN layer to capture information
for target node from its m-hop neighbors in XG. Now we vary
m from 1 to 4 to study the impact of m on PyRec’s performance,
as shown in Fig. 11.

We can find that when m increases from 1 to 2, PyRec’s
recommendation accuracy increases rapidly, i.e., by 61.43%,

57.08%, 59.78%, and 84.27% in MP, MR, MF, and MRR, re-
spectively. This evidences the effectiveness of capturing multi-
hop information to facilitate the TPL recommendation, similar
to [13]. Note that m = 2 is enough to capture all the contextual
information as shown in Fig. 2. When m continues to increase,
PyRec’s performance decreases slightly, as an overly large m
will include unnecessary noise that undermines GRec’s accu-
racy. However, incorporating noisy information is beneficial for
improving COV. Those fresh TPLs have a higher probability of
being included in a recommendation list. As a result, the value
of COV increases along with the increment of m.

Size of GNN Layers (s). Now we vary the GNN layer size
s from 16 to 128 exponentially to study how it impacts PyRec’s
performance. As shown in Fig. 12, when s increases from 16 to
64, PyRec’s recommendation accuracy increase rapidly. For ex-
ample, the MP is 0.1835 when s = 16, and increases to 0.2111
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TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT DATASET SCALES

n=5 n=10 n=20 . .
Dataset Scale Training Time
MP MR  MF MRR COV | MP MR MRR COV | MP MR  MF  MRR  COV
Scale=40% | 0.1873 03104 02336 04257 04400 | 0.1369 04439 02092 04448 04574 | 0.0910 05725 0.570 04516 0.5363 | 31.3 mins
Scale=70% | 0.1954 03236 02436 04535 04210 | 0.1384 04473 02114 04704 04397 | 0.0911 05719 0.1571 04768 0.5162 | 64.1 mins
Scale=100% | 02111 03438 02616 05174 04215 | 0.1438 04549 02184 05312 04994 | 00926 05679 0.1501 05366 0.5852 | 115.2 mins
— ] Recommendation list with
by 15.06% when §= 64. This 'demonstrates thflt a greater s @ . . @ / Recommendation It »
allows GNN to distill information more effectively. When s AN S
. . . ey T 0,
increases further, PyRec’s performance decreases slightly, sim- \ \/ s Lo,
\ N ~

ilar to the phenomena observed in Fig. 11. In contrast, the
COV decreases when s increases from 16 to 64 but increases
when s increases from 64 to 128. The reasons are similar and
thus are omitted here. In practice, the optional s and m can be
experimentally determined.

G. Impact of Knowlege Graph Scale

Our PyRec makes TPL recommendations based on the
project-TPL knowledge graph. The more projects and/or TPLs
involved, the larger the corresponding knowledge graph is.
Now, we study the impact of graph scales on PyRec’s perfor-
mance. Specifically, we build another two knowledge graphs
by randomly choosing 40% and 70% projects from the original
dataset. Then, we build the graphs with chosen projects and
corresponding TPLs and contextual information. The rm is set
to 40%, and n is set to 5, 10, and 20, respectively. The results
are reported in Table III.

We can find that when more projects are included in the
knowledge graph, PyRec has a better performance in MP, MR,
MEF, and MRR. This is expected as more projects involve more
TPLs and more contextual information. Then, PyRec can make
better use of that information to make more accurate recommen-
dations. However, the performance in COV is slightly turbulent
when the dataset scale increases.

The training time is 31.3 mins, 64.1 mins, and 115.2 mins,
respectively, with different dataset scales. This is acceptable
as PyRec can be trained once and used several times. Given
a project, PyRec takes 1.2 s, 2.3 s, and 2.6 s, respectively, to
make recommendations when the dataset scale is 40%, 70%,
and 100%, respectively.

PyRec is capable of making near real-time responses, mak-
ing it practical in real-world applications.

H. Case Study

1) Usefulness of Contextual Information: One of the inno-
vations of PyRec is the utilization of contextual information. We
employ project #1048 OpenMatch!' as an example to demon-
strate the usefulness of contextual information. We randomly
remove 40% of TPLs used by OpenMatch and use those left
(shown in the white disks in Fig. 13) as input for PyRec. We ask

Mhttps://github.com/thunlp/OpenMatch

00

@ Recommendation list without
r contextual information

@ incorrect P @ Correct TPL (7) Used TPL - Keyword

Contextual
information

Fig. 13.  Exemplary recommendation for project #1048 in our dataset.

PyRec to recommend 5 TPLs with/without utilizing contextual
information. We can find that when using contextual informa-
tion, PyRec recommends three correct TPLs with IDs of 4, 11,
and 8. In contrast, without using the contextual information,
PyRec recommends only two correct TPLs whose IDs are 8
and 4, respectively.

Taking TPL #11 (DeepPavlov'?) as an example, without
contextual information, PyRec overlooks this TPL. When us-
ing contextual information, PyRec puts DeepPavlov in the
fourth position in the recommendation list, because 1) Deep-
Pavlov has a dependency relationship with TPL #18 (NLTK'?)
and 2) DeepPavlov is described by keyword #13824 (NLP)
which also describes TPLs #272 (Pytorch Lightning'#), #274
(PyThaiNLP'%), and #16 (Adaptor Transformer'®). The above
extra relationships between TPL DeepPavlov and used TPLs by
OpenMatch indicate that DeepPavlov is potentially useful for
OpenMatch, and thus is included in the list.

Utilizing contextual information can improve PyRec’s rec-
ommendation performance.

2) Recommendation for New Projects: Now we study
PyRec’s performance when recommending TPLs for new
projects. Specifically, we randomly choose 80% of projects and
relevant TPLs and contextual information as the training set
to create the knowledge graph used by PyRec. We take the
other 20% projects as the test set. For each project in the test
set, we randomly choose 60% used TPLs as input and check
if PyRec can successfully recommend the other 40% TPLs.

Zhttps://deeppavlov.ai/

Bhttps://www.nltk.org/
4https://pypi.org/project/pytorch-lightning/
Shttps://pythainlp.github.io/
16https://pypi.org/project/adapter-transformers/
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TABLE IV
PERFORMANCE ON NEW PROJECTS

List length MP MR MF MRR COV
n=>5 02311 0.3763  0.2864  0.5616  0.5147
n=10 0.1546 04865 0.2347  0.5736  0.6260
n=20 0.0980 0.5979 0.1684 0.5781 0.7421

Table IV reports the averaged performance. Compared the re-
sults reported in Table IV with the results reported earlier in
Table II we can find that PyRec still has a good performance
when working with new projects, indicating its good adaptabil-
ity. Please note that we randomly remove TPLs from each new
project to construct the test set. Unfortunately, the limitation is
that the random removal may not adequately evaluate PyRec’s
performance in practice, and thus can be further improved in
the future.

3) Rare TPL Recommendation: The same as the findings
reported in [17], the TPL usage is significantly biased. For
example, the top 1% most popular TPLs in our dataset dominate
69.31% TPL usage across those projects. A great portion of rare
TPLs do not have too much usage. To study PyRec’s ability
to recommend rare TPLs, we rank all TPLs according to their
popularities in the dataset and take 200 TPLs ranked from 501
to 700 as examples. For each project in the dataset, we randomly
remove its 40% TPLs and run PyRec to recommend a list with
10 TPLs. Then, we measure how many times those rare TPLs
are included in the test set and the recommendation lists. We
repeat the experiments 10 times and report the grand total for
each TPL in Fig. 14.

It can be found that PyRec can successfully recommend rare
TPLs. However, most of the time, PyRec recommends less rare
TPLs than expected, indicated by the fact that a TPL appears
more times in the test set than the recommendation lists. This is
acceptable as recommending rare items is still challenging for
existing recommender systems [26]. The second observation is
that PyRec tends to recommend slightly less rare TPLs when
utilizing contextual information. This is because popular TPLs
usually have more contextual information and thus are much
easier to be recommended by PyRec. However, if a rare TPL has
contextual information, it has more opportunity to be recom-
mended by PyRec. Taking TPL JikanPy'” (#459, ranked 521) as
an example, it has two topic keywords cryptography (#14328)
and security (#13859) in PyPI, which connects it to the other 7
TPLs. Besides, it has a dependency relationship with a popular
TPL Cryptography (#136, ranked 52). The above contextual in-
formation provides many connections in the knowledge graph.
As aresult, it is recommended 158 times when contextual infor-
mation is included, compared with 95 times in the test set and
132 times when making recommendations without contextual
information.

1. Threats to Validity

Internal Threats. The first threat comes from the dataset
scale. Given the huge number of available projects and TPLs,

Thttps://pypi.org/project/jikanpy/
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Fig. 14. Rare TPL recommendation.

we employed 12,421 projects and 963 distinct TPLs in the
experiments, which may lead to bias. However, we collected
6,000 of the most popular TPLs for TPL usage analysis and
randomly collected 13,000 Python projects published in the
past 5 years. In addition, we experimentally evaluated PyRec’s
performance with different project scales, i.e., 40%, 70%, and
100% of collected projects. Therefore, the bias may exist but is
not significant. The second threat comes from the implementa-
tion of PyRec and other competing approaches. To minimize
this threat, we made PyRec publicly available for validation
and reproduction of the experimental results. In addition, we
used the original source codes and parameter settings of those
competing approaches for comparison. The third threat comes
from the correctness of the dataset. To mitigate this threat,
we collected and manually filtered 13,000 Python projects
from GitHub. Then, we employed a publicly available tool -
Scalpel [20] - to extract the TPL usage information from each
project. We also manually inspected the contextual information
collected from GitHub and PyPI. Therefore, this threat has
been minimized.

External validity. The main threat to the external validity
comes from whether the PyRec proposed in this paper can
be generalized to solve the TPL recommendation problems
for applications developed in other programming languages.
Although PyRec is a generalized TPL recommendation tool, we
only conducted experimental evaluations with Python projects
and Python TPLs. However, we employed four state-of-the-
art approaches for comparison in the experiments. Those ap-
proaches were designed to solve the TPL recommendation
problems for Java projects [16], open-source projects [4], and
Android mobile app development [13], [17], respectively. The
results reported in Table II show that PyRec has a significant
advantage over those state-of-the-art approaches. We have also
varied many parameters like rm and n to mimic different
development scenarios to comprehensively evaluate PyRec’s
performance. Therefore, the threat exists but could not be sig-
nificant. The second threat comes from that we did not repeat
the user study to verify the usefulness of TPL recommendation
for software development. However, preliminary studies [13],
[17] have conducted comprehensive user studies and the use-
fulness of recommending TPLs for software development has
been widely acknowledged by developers. We also take the two
studies for comparison in the experiments. Therefore, the threat
has been minimized.

Construct validity. The main threat comes from the four
approaches used for comparison in the experiments. CrossRec
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[4] and LibSeek [17] can utilize the direct project-library in-
teraction information. GRec can utilize higher-order interac-
tions but cannot make use of contextual information. Therefore,
their TPL recommendation performance tends to be lower than
PyRec. To minimize this threat, we varied many parameters
like rm, n, k, d, m and s to comprehensively evaluate PyRec’s
performance in different scenarios. Thus, this threat exists but is
not significant. The second threat comes from the lack of project
evolution information in the dataset. Almost all projects in the
dataset are unique. If such evolution information is available,
we can further investigate if a TPL recommended based on the
current project will be used by its later versions. This can be
used to supplement the experimental evaluation. However, as
each project uses multiple TPLs at the same time, we followed
the same settings in [4], [13], [16], [17] to conduct the experi-
ments, i.e., randomly removing a specific portion of those TPLs
and making recommendations based on the rest of TPLs. This
simulates the practical development scenario where developers
have determined part of TPLs and are seeking more TPLs for
their projects. Indeed, the lack of evolution information will
not affect the mechanism of PyRec. Thus, the lack of project
evolution information poses a threat to the construct validity but
will not be significant.

Conclusion validity. The first threat comes from the conclu-
sion we made that PyRec can achieve high performance due to
its ability to utilize both project-library interaction information
and contextual information. The second threat comes from the
conclusion we made that PyRec can achieve high performance
due to the application of the attention mechanism in the GNN
model. To minimize these two threats, we conducted a series of
ablation studies by removing contextual information and/or at-
tention mechanism, as shown in Section IV-D and Section IV-E,
respectively. This allows us to inspect PyRec’s TPL recommen-
dation performance with and without contextual information
and attention mechanism. The last threat comes from the way
we model the TPL usefulness. Following the same settings in
[4], [13], [16], [17], we assume only TPLs in the test set are
useful for the corresponding Python projects. However, TPLs
beyond the test set may be also of interest. However, this will
not scarify the performance reported in this paper. Therefore,
this threat is not significant.

V. RELATED WORK

Recommendation techniques have been widely adopted to
facilitate software development, maintenance, and evolution,
such as defect identification [39], developer recommendation
[40], [41], [42], [43], API/code snippet recommendation [27],
[44], third-party library recommendation [13], [17], permission
recommendation [45], etc. Among them, our work is closely
related to API recommendations and TPL recommendations.

A. API Recommendation

As suggested by its name, the API recommendation is to pro-
vide developers with useful APIs and/or code snippets, aiming
atimproving developers’ coding efficiency [46], [47], [48], [49].
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Many researchers have tried to recommend APIs based on
contextual information. To name a few, Thung et al. recom-
mended APIs to implement software features based on APIs’
textual descriptions about those features [46]. Similarly, Huang
et al. focused on mapping developers’ demand descriptions to
APIs’ structured feature descriptions to find more suitable APIs
[47]. He et al. considered more contextual information when
recommending Python APIs. They proposed a random forest-
based approach utilizing data flow, token similarity, and token
co-occurrence [21].

The API usage information is also useful for finding use-
ful APIs. Liu et al. constructed function call graphs and then
recommended APIs based on the API usage paths distilled
from those graphs [49]. Similarly, Xie et al. recommended
new APIs by distilling hierarchical contextual information from
the project’s call graph [48]. However, the above two methods
suffer from efficiency issues as the involved graphs are usually
too complex. Different from them, Nguyen et al. employed a
CF-based recommendation technique to find useful APIs for
open-source projects [38]. Specifically, they collected a large
number of projects and extracted the historical API usage in-
formation, based on which new APIs were recommended for
those projects. Zhao et al. utilized both textual descriptions and
TPL usage information to make API recommendations. They
proposed APIMatchmaker to recommend APIs for Android app
development [27]. Wu et al. proposed a neural framework lever-
aging multi-model fusion and multi-task learning techniques to
recommend Web APIs [50]. Gong et al. [51] proposed DAWAR
to improve the diversity and compatibility of recommended
Web APIs.

Different from the above work, PyRec recommends entire
TPLs rather than specific program snippets or APIs, i.e., it
works at a fine-grained level from the software development
perspective.

B. TPL Recommendation

Different from API recommendation, the TPL recommen-
dation is to find entire TPLs that are potentially useful for
software development, which works at a coarse-grained level.
Although many efforts have been devoted to identifying TPL
usage patterns [9], [14], [52], there is still a lack of effective
solutions to recommend TPLs.

To tackle this issue, Thung et al. combined association
rule mining and TPL-based CF to recommend TPLs for Java
projects [16]. As this is the first attempt at the TPL recommen-
dation issue, the performance is limited. Later, Nguyen et al.
combined project-based CF and TPL-based CF to recommend
TPLs for open-source Java projects [4]. This further improved
the recommendation performance, especially the precision of
the recommended TPLs. However, He et al. found that such
methods tend to recommend popular TPLs, which is indeed
not useful enough for mobile app development [17]. To solve
this issue, they proposed an MF-based approach that can diver-
sify the recommended TPLs. Very recently, Li et al. proposed
GRec which employs GNN to recommend TPLs for Android
app development based on the app-library graph [13]. GRec is
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capable of distilling transitive information from BG consisting
of TPLs and Android apps and thus has better performance.
However, all of the above approaches utilize only the TPL usage
information to find useful TPLs. None of them can utilize the
contextual information that has been widely used in the API
recommendation area.

Different from all the above approaches, PyRec proposed
in this paper makes recommendations based on not only TPL
usage information but also contextual information. It employs
KG to model the heterogeneous relations between different
entities and uses GNN to distill useful information from the
graph. This takes a giant step out to advance TPL recommenda-
tion performance.

C. Python Library

As an emerging programming language, Python has been
widely used in recent years. Many efforts have been devoted to
the study of Python libraries. Those studies can be categorized
into two categories, including the TPL/API evolution [1], [2],
[19] and the TPL dependency analysis [53], [54], [55], [56].

To name a few studies in TPL/API evolution, He et al. studied
the TPL migration problem and proposed a novel approach that
utilizes TPL characteristics like rule support, message support,
distance support, and API support to rank TPLs and recommend
migration solutions [57]. Zhang et al. investigated the API
evolution in Python libraries and detected compatibility issues
caused by such API evolution [2]. They proposed PYCOMPAT
to automatically detect compatibility issues caused by the mis-
use of evolved APIs. Similarly, Wang et al. investigated how the
deprecated APIs are declared in Python libraries and handled
in Python projects [1]. Rubei et al. [19] integrated end-user
feedback to provide developers with TPL evolution suggestions,
i.e., whether to keep or discard a used TPL.

In terms of the TPL dependency analysis, Wang et al. studied
the TPL dependency issues in Jupyter Notebooks [54]. They
presented SnifferDog to automatically restore the execution en-
vironment for Jupyter Notebooks based on TPL usage analysis.
Ye et al. proposed PyEGo to automatically infer dependencies
between not only TPLs but also Python interpreter and system
libraries [55]. Ying et al. proposed Watchman to automatically
detect dependency conflicts among Python TPLs for the PyPI
ecosystem [56].

Different from the above-mentioned studies, this paper fo-
cuses on recommending potentially useful TPLs to facilitate
Python project development. However, as PyRec can leverage
various kinds of contextual information, the TPL dependencies
and evolution information identified by the above studies could
be a fruitful supplement for PyRec.

D. Knowledge Graph in Software Engineering

The knowledge graph can effectively model complex re-
lationships between different entities and thus was widely
adopted to solve software engineering problems, such as run-
time environment configuration, API analysis, bug fixing, and
weakness analysis [58].
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To name a few, Cheng et al. found that restoring the runtime
environment for open-source Python projects is usually chal-
lenging [37]. To solve this issue, they designed a KG based
on massive Python projects and Python third-party packages.
Then, they proposed a heuristic graph traversal algorithm to
infer the compatible runtime environment for the target Python
project. To help developers compare APIs’ commonalities and
differences, Liu et al. proposed APIComp based on KG to
automatically extract API knowledge from API reference doc-
umentation [59]. APIComp can compare API classes and/or
methods from different perspectives. The misuse of APIs is a
critical problem for software development. To solve this prob-
lem, Ren et al. detected API misuses against the API caveat
knowledge [60]. Such knowledge is captured from an API-
constraint knowledge graph generated with API reference docu-
ments. Cheng proposed a KG-based approach to utilize the deep
semantic and structural relationships possessed in multi-source
software projects [61]. Based on the generated KG, develop-
ers can effectively search for useful bug-fix knowledge in the
Q&A manner. To enable the common weakness enumeration
(CWE) for software maintenance, Han et al. mapped software
weaknesses and their relations as a knowledge graph [62]. Then,
they developed a knowledge representation learning method to
embed the graph into a semantic vector space, based on which
three reasoning tasks, including CWE link prediction, CWE
triple classification, and common consequence prediction were
enabled. Zhao et al. proposed HDSKG, an automatic method,
to discover domain-specific concepts and their relation triples
from web pages [63]. They constructed a domain-specific
knowledge graph by analyzing web content on Stack Overflow.

Different from the above-mentioned studies, this paper em-
ploys KG to enable the TPL recommendation for software
development, which provides a new adoption of KG in the
software engineering field.

VI. DISCUSSION AND FUTURE WORK

There are a few problems that can be further studied and
addressed in the future.

The first problem is to evaluate PyRec’s applicability, i.e., in-
vestigating PyRec’s adaptability to projects developed in other
languages. This can be achieved by collecting projects and
TPLs developed in different languages, like Java, .NET, etc. As
different programming languages have different characteristics,
it is better to construct an individual dataset for each language.

The second problem is to extend PyRec to recommend TPL
updates for software projects. Specifically, given a software
application, PyRec identifies if any TPLs can be updated and if
yes, recommends developers the specific versions. It is chal-
lenging as the TPL update usually leads to compatibility is-
sues [64]. Another challenge is the current dataset used by
PyRec does not have TPL version information. One potential
solution is to extend the dataset to include all TPL versions
and the compatibility information for each version. Meanwhile,
the knowledge graph should be extended to incorporate such
new information.
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The third problem is to further improve PyRec’s perfor-
mance. One potential solution is to incorporate more projects,
TPLs, and contextual information to enrich the knowledge
graph. The second potential solution is to update the graph
embedding technique used by PyRec. Although TransR has
a good performance, new embedding techniques like TransH,
TransE, TransD, ComplEX, etc., can be explored to further
improve PyRec’s performance.

The fourth problem is the cold start problem, which is a
common problem faced by modern recommender systems [65].
This is challenging as limited information is available for PyRec
to construct the knowledge graph when a project just starts. To
tackle this issue, new methodologies like dropout net [66] and
aligning distillation [67] can be explored.

The last problem is to improve the evaluation methodology
to better investigate PyRec’s performance. In Section IV, we
followed the settings in [4], [13], [16], [17] to randomly remove
a few TPLs to establish the test set. Unfortunately, there is still a
threat. For example, if too many popular TPLs are removed, the
recommendation complexity could be reduced. However, creat-
ing a suitable test set is challenging. To tackle this problem, one
potential solution is to evaluate PyRec in the wild. Specifically,
collecting a few new projects and making recommendations for
each project by PyRec. Then, their developers can be contacted
to check if the recommended TPLs are indeed useful.

VII. CONCLUSION

In this paper, we proposed an innovative PyRec to facil-
itate the development of software projects. PyRec helps re-
lieve developers’ burden incurred by seeking new TPLs for
their projects. Unlike previous approaches that employ solely
existing TPL usage information to make recommendations,
PyRec leverages both TPL usage information and contextual
information by encoding them into a knowledge graph. This
enables PyRec to gather more information via GNN to make
more accurate recommendations. More domain-specific tech-
niques like attention mechanism are also incorporated in PyRec
to further burst its performance. The experimental results on
12,421 Python projects demonstrate the superior performance
of PyRec.
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