Open Science in Software Engineering: A Study
on Deep Learning-Based Vulnerability Detection

Yu Nong, Rainy Sharma, Abdelwahab Hamou-Lhadj, Xiapu Luo, and Haipeng Cai

Abstract—Open science is a practice that makes scientific research publicly accessible to anyone, hence is highly beneficial. Given
the benefits, the software engineering (SE) community has been diligently advocating open science policies during peer reviews and
publication processes. However, to this date, there has been few studies that look into the status and issues of open science in SE from

a systematic perspective.

In this paper, we set out to start filling this gap. Given the great breadth of SE in general, we constrained our scope to a particular topic
area in SE as an example case. Recently, an increasing number of deep learning (DL) approaches have been explored in SE, including
DL-based software vulnerability detection, a popular, fast-growing topic that addresses an important problem in software security. We
exhaustively searched the literature in this area and identified 55 relevant works that propose a DL-based vulnerability detection
approach. This was then followed by comprehensively investigating the four integral aspects of open science: availability, executability,

reproducibility, and replicability.

Among other findings, our study revealed that only a small percentage (25.5%) of the studied approaches provided publicly available
tools. Some of these available tools did not provide sufficient documentation and complete implementation, making them not
executable or not reproducible. The uses of balanced or artificially generated datasets caused significantly overrated performance of
the respective techniques, making most of them not replicable. Based on our empirical results, we made actionable suggestions on
improving the state of open science in each of the four aspects. We note that our results and recommendations on most of these
aspects (availability, executability, reproducibility) are not tied to the nature of the chosen topic (DL-based vulnerability detection)
hence are likely applicable to other SE topic areas. We also believe our results and recommendations on replicability to be applicable
to other DL-based topics in SE as they are not tied to (the particular application of DL in) detecting software vulnerabilities.

Index Terms—Open science, availability, executability, reproducibility, replicability, case study, vulnerability detection, deep learning

1 INTRODUCTION

Open science advocates that scientific research be accessible
to all [[1]]. It aims to allow knowledge to be shared with other
researchers or amateurs smoothly [1]. Open science has been
frequently mentioned by the media, books, and government
white papers in recent years [2]. It is vital for advancement
of science in almost any field. Specifically, (1) it allows us to
validate the credibility of research findings so that we know
where/how far we have got; (2) it enables us to rigorously
evaluate and compare the existing studies with quantitative
measurement, so that we can understand the strengths and
limitations of current works in order to determine the next
steps; (3) by fostering reusability, it accelerates the progress
of science by allowing researchers to build on previous re-
search achievements, instead of reinventing wheels thereby
slowing down the overall process of scientific discovery.
Despite these well-known benefits of open science and
that it has been widely embraced in many different scientific
disciplines, it has not yet become a real norm in software
engineering (SE) [3]. In recent years, major SE venues started

e Yu Nong, Rainy Sharma, and Haipeng Cai are with the School of Elec-
trical Engineering and Computer Science, Washington State University,
Pullman, WA.

o Abdelwahab Hamou-Lhadj is with the Department of Electrical and Com-
puter Engineering, Concordia University, Montreal, Quebec, Canada.

e Xiapu Luo is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong SAR, China.

o Corresponding author: Haipeng Cai; Email: haipeng.cai@uwsu.edu

Manuscript received October 8, 2021, revised Month Day, 2022.

explicitly advocating/enforcing open science policies dur-
ing paper submission and review processes. Yet it remains
largely unclear what the current status of open science in
SE is and, more importantly, what make successes and
what cause failures in upholding the open science principles
in our community. Answers to these questions would not
only help us understand the possible gaps, they would
also inform practical strategies to improve the open-science
landscape in the SE community and beyond.

Motivated by the pressing need for these answers, we
aim to investigate the state and issues of open science in
SE from a systematic perspective. However, SE has a large
breadth in general (e.g., testing, maintenance, evolution).
Thus, it is difficult to investigate open science in different
SE domains comprehensively using a unified methodology
(e.g., the metrics of reproducibility and replicability in dif-
ferent SE domains may be different). Also, many deeper
insights are tied with more specific topics. We aim to un-
derstand the underlying reasons why certain open-science
aspects look like as they do now, not only just what the
status is, because understanding those reasons is essential
for providing actionable suggestions that help improve the
open science outlook. Therefore, we would like to start
with a particular topic area in SE as an example case to
realistically carry out the investigation.

Recent years have witnessed increasing use of deep
learning (DL) in traditional software engineering (SE) prob-
lems and tasks [4]. In particular, security is a growing
quality concern for modern software, and accordingly vul-

nerability detection has become a heavily studied topic in
the general SE domain. According to our survey, various
DL-based software vulnerability detection techniques have
been being introduced in the last five years (2016-2020) (see
Figure [2). It is essential to understand the status of, and
potential issues with, open science in this area so as to
advance it by taking advantage of the general merits of open
science. Thus, we chose DL-based vulnerability detection as the
example area to initiate our effort of understanding hence
helping improve open science in SE.

Prior studies concerning open science in SE exist, but
they were mostly focused on hence limited to relevant
definitions [3]], [5], [6], [7], [8], [9], benefits [10], [11f], [12],
[13], challenges [14], [15], and guidelines [16], [17]. Others
addressed open science in specific areas of SE, yet solely
based on literature reviews [18], [19], [20]. A few studies
investigated open science by checking whether available
source code could be obtained, but they did not repro-
duce/replicate the original experiment results using the
code when available [21]], [22], [23], although some also
investigated executability in addition to availability [24].
There have also been studies investigating reproducibility
and replicability of DL-based techniques. Yet they consid-
ered only a single model [25], examined a narrow facet of
open science (e.g., documentation sufficiency) [26] without
actual reproduction/replication experiments, or did not pro-
vide in-depth analysis of failures/gaps in open science [27].

In this paper, we exhaustively searched the current lit-
erature on DL-based software vulnerability detection tech-
niques published and indexed by Google Scholar by Oc-
tober 2020. Based on the resulting 55 relevant papers, we
conducted in-depth statistical and case studies to answer
four research questions (RQs) corresponding to the four
aspects of open science:

1) RQ1 (availability): how often does a paper make the tool
for the proposed technique publicly available and how
does it provide the relevant information?

2) RQ2 (executability): are the available tools executable,
and what is it that makes them executable or not?

3) RQ3 (reproducibility): are the executable tools repro-
ducible, and what are the success patterns (if repro-
ducible) or failure causes (if not reproducible)?

4) RQ4 (replicability): are the reproducible tools replicable,
and what are the success patterns or failure causes?

Guided by the these questions, our study revealed the
following major findings, among many others:

1) Only a small portion (25.5%) of the 55 papers provided
publicly available tools. For the success cases, the ways of
obtaining their tool links varied, limiting wide access by
the general public.

2) Among the available tools, 54.5% did not provide suf-
ficient documentation. Moreover, 27.3% of them had
incomplete and/or non-functional implementation, mak-
ing them not executable.

3) Most (87.5%) of the executable tools were reproducible and
most (71.4%) of the reproducible ones had datasets, im-
plementation, and configurations consistent with those
described in original papers. One of them was perfectly
reproduced using the pre-trained DL model it provided.

4) All the executable tools that provided sufficient docu-

mentation were strongly reproducible (i.e., having <1%
deviation of F1 accuracy from the originally reported).

5) Only 14.3% of the reproducible tools were replicable when
we applied their pre-trained models to a different real-
world testing dataset (i.e., partial replicable). Only 28.6%
of them were replicable when we re-trained and tested
their models both against a different real-world dataset
(full replicable).

6) 57.1% of the reproducible tools could not process our
program samples, or could only process a part of the
samples. This significantly limited their replicability and
practical use for real-world vulnerability detection.

7) The datasets originally used by 57.1% of the reproducible
tools (not the same set as the 57.1% above) were highly
balanced and/or entirely/mostly artificially generated,
leading to significantly overrated performance in their
original evaluation and making them not replicable.

8) The highest F1 score in our replication experiments was
only 52%, indicating that the existing DL-based software
vulnerability detection techniques are likely insufficient
for practical adoption.

9) By comparing our study results with those of other open
science related studies in SE, we noticed that, while not
all, many of the open science issues we found were
prevalent in other SE areas as well, suggesting that our
findings and insights are likely applicable beyond the
studied area (of DL-based vulnerability detection).

Based on these findings, we further distilled key lessons
learned and provided extensive actionable recommenda-
tions for the community and researchers to improve open
science in the area of DL-based software vulnerability de-
tection, as well as in other SE areas and beyond. To better
support open science, we have released all of the code and
datasets used in our study on Figshare:

https:/ /figshare.com/s/e048{a191503393275a1l

2 BACKGROUND AND MOTIVATION

In this section, we first briefly describe the status quo of
open science in SE. Then, we discuss the open science
dilemma in the chosen example cases of DL-based software
vulnerability detection techniques, to justify the urgent need
for a systematic, dedicated study on open science like ours.

2.1 Open Science in SE

Open science suggests that researchers make their publi-
cations, raw data, or physical samples produced in their
research activities accessible to all levels of people in the so-
ciety, so that knowledge can be shared without obstacles [2].
Open science has many benefits. It has been proved that
open science helps researchers succeed in terms of publica-
tion citations, media attention, potential collaborators, job
opportunities and funding opportunities [28].

In SE, open science is equally if not more important. It
requires the researchers to (1) make the source code and data
produced in their research activities available, (2) ensure that
their source code is executable and other people can reproduce
the experiment results by directly re-running their source
code using the default/original experimental setup, and (3)
ensure that the experiment results can still be replicated when

https://figshare.com/s/e048fa191503393275a1

changing the experimental setup (e.g., changing the testing
data) [3]. However, while open science has been generally
accepted in many scientific disciplines, in SE, open science
has not been comprehensively investigated, and thus has
not yet become a norm in the community [3].

2.2 DL-Based Software Vulnerability Detection

Software security is an important topic in SE [29], and
software vulnerability detection is one of the most essen-
tial tasks in software security [30]. Recently, deep learning
(DL) has been increasingly exploited to detect software
vulnerabilities automatically by using the patterns learned
from existing vulnerability data. Figure |1| shows the work-
flow of a typical DL-based software vulnerability detection
technique. First, the training and testing program samples
are preprocessed according to the format preferred by the
chosen DL model. Second, the DL model learns the vulnera-
bility patterns from the training samples. Finally, the trained
DL model is used to predict whether a given program
sample is vulnerable or not. We can use the testing samples
to assess the performance of the model.

DL-based software vulnerability detection is a booming
area. According to our literature review, 55 papers that each
introduced a new detection technique have been published
in the recent five years (2016-2020). Many of these papers
have reported impressive detection accuracy (up to 90%
F1 score) of the proposed approach [31], [32], [33], [34],
[35], 136, [37], [38], [39], [40], [41]. Figure E]shows that the
majority (38) of these papers were published in just the last
two years (2019 and 2020), indicating the dramatic growth
of the popularity of this topic.

2.3 Motivating Examples

The lack of open science in SE significantly impedes scien-
tific advancement of the field, which has gained growing
attention by our community in the past few years. Now
that the promotion (sometimes enforcement) of open science
has been in place for some time already, it remains unclear
what the current status is. In our own experiences with SE
research concerning various topics, we have encountered
and witnessed multiple instances of the failure to uphold the
open science practice being critical obstacles for research.

As more and more papers on DL-based vulnerability
detection techniques are being published, we intended to
conduct a comprehensive empirical study to assess and
compare the existing techniques in this area. However, we
had considerable difficulties when we started collecting and
setting up the tools that implement those techniques. A
common cause was that many of the tools were either not
available or not executable, and in even more cases we
could not reproduce the original results, making us doubt
about our setup. Without the ability to even reproduce, it
would make no sense to proceed with replication, which
was required for us to do a fair comparison based on the
same datasets. We thus had to suspend our original study.
This initially motivated us to look into the open science
problem with a dedicated effort.

In fact, other researchers have encountered similar dif-
ficulties. For example, in [35], the authors intended to use
a technique introduced in another paper as a baseline for

Training

Representation Learning]
Samples

Deep Learning
l R/Iodel

Vulnerability Prediction]

Testing

Samples Testin
VulnerableNon-Vulnerable
Samples Samples
Fig. 1: A common architecture of DL-based vulnerability

detectors.

30

24
20 14
10
10 6
: ||
0 ||

2016 2017 2018 2019 2020
Fig. 2: Research trend on DL-based vulnerability detection
techniques in terms of # publications (y axis) over the past
five years (z axis).

their study. However, the implementation of that technique
was not publicly available. As a result, these authors chose
to re-implement the baseline technique. Despite their best
effort, they were not able to reproduce the experiment
results using their own implementation. Not only did the re-
implementation take the researchers’ time that could have
otherwise been spared, the eventual outcome of the extra
effort also left some questions unanswered (e.g., it remained
unsure if the re-implementation was correct). Apparently,
these were barriers for that research study [35].

In both examples, the shortage of open science for pre-
vious research impeded or even disabled current/future
research that relies on those prior works. In this context,
it is essential to gain a deeper understanding and com-
prehensive view of the contemporary open-science practice.
Moreover, it is helpful to reveal the patterns of successes and
investigate the symptoms and possible causes of failures,
with the current practice, so as to understand how the SE
community may improve the state of open science.

While drawing growing attention, the status and
gaps of open science in SE have not been well
understood. In DL-based vulnerability detection as
one example topic, failures to uphold open-science
principles already appeared as critical obstacles for
ongoing and future research. The SE community
thus has an urgent quest to understand the current
practice of open science and ways to improve it.

3 STuDY DESIGN

In this section, we elaborate the design of our study. We start
with an overview of the study process. Then, we present the
design details for each research question (RQ), including
the motivation, experimental method, and the dimensions
in characterizing the studied tools for answering the RQ.

3.1 Process Overview

Figure [3| depicts the overall design of our study. We be-
gan with an extensive literature review on Google Scholar
with a general search term “deep learning software
vulnerability” against anywhere in any paper. We
adopted this highly-conservative approach in order to scoop

Tool Tool

Tool Link Tool Link Tool Hosting Tool Link Deep Learning | | Documentation
Presentation Location Sites Accessibility Completeness Functioning Framework Quality
[I

\ [\ [

I I
l

l I

Google . R

Scholar }/OLBased Software RQ1: Tool AvallabllltyI
Vulnerability

Available Tools

» RQ2: Tool Executabilitv|

Detection (RQ4.1: Partial || RQ4.2: Full Case Stud] Executable Tools
Technique Studies| Replicabilit Replicabilit Lase studies
Third-Party Dataset > | Reproducible Tools [- |
(9_projects) |RQ4: Tool Replicability[< —|RQ3: Tool Ilkeproduable
[]
. Dataset Data Dataset Implementation| [Configuration Use of a
Dataset Size Data Source . X . > X
Balance Duplication Consistency Consistency Consistency | | pre-trained model

Fig. 3: An overview of our study design.

relevant papers as thoroughly as possibl at the cost of
additional manual inspection effort in the following steps.
Next, for each paper returned from the search, we looked
into its citing and cited papers to collect more relevant ones.
Then, we carefully examined each of the collected papers
and selected the ones that introduced a new DL-based
vulnerability detection technique. The long (over 500-man-
hour) collection process ended with 55 relevant research
papers, as summarized in Figure [2|and listed in Table
These papers and the proposed techniques/tools formed
the basis of our study, guided by four high-level RQs: avail-
ability, executability, reproducibility, and replicabilityﬂ which
correspond to four aspects of open science. Each RQ was
examined using multiple dimensions (e.g., how the link to
tool is presented) so that we could uncover success/failure
patterns and provide actionable insights. Only the tools that
passed a current RQ’s success criterion went to the next RQ
for further investigation, given the dependencies among the
criteria (e.g., a reproducible tool must be executable).

3.2 RAQ1. Availability

Motivation. Publicly available tools (i.e., source code and
datasets) are essential for open science in SE. They are the
bases for other researchers to access the raw data and tech-
nique implementation. Thus, in this RQ, we investigated
how often/commonly the studied DL-based vulnerability detection
works provided publicly available tools.

Method. For each paper we surveyed, we checked whether
an accessible link for its introduced tool was provided in
the main text or footnotes of the paper. If there was no such
a link provided in the paper, we searched on the Internet
to check if the authors had uploaded the tool to a hosting
site (e.g., GitHub or GitLab). We also sent up to three emails
to the authors to ask for the tool if we could not find it by
ourselves. We considered a tool available if we successfully
obtained the source code and dataset.

Dimensions. We examined the following four dimensions
in characterizing the availability of each tool:

« Tool Link Presentation: If the tool link was available in
the paper, how it was presented (e.g., as raw text, as a
reference, or as a hyperlink).

o Tool Link Location: Where we found the tool link (e.g.,
main text or footnote in the paper, searching on the
Internet, authors’ emails).

1. We concluded our search on 10/31/2020. Thus, any papers that
were not indexed by Google Scholar by that date were dismissed.
2. We use the replicability /reproducibility definitions by ACM [42].

o Tool Hosting Site: Which hosting site the available
tool was uploaded to for public access (e.g., GitHub
or GitLab).

e Tool Link Accessibility: Whether the tool link we
obtained was valid for downloading the tool.

3.3 RQ2. Executability

Motivation. Executable tools are also important for open
science in SE. A broken tool cannot generate valid experi-
ment results, and thus has little value for other researchers.
Thus, in this RQ, we investigated whether the available tools
worked properly to execute the whole experiments in their studies.

Method. To better focus on the dominant class of DL-based
vulnerability detection techniques, in RQ2, RQ3, and RQ4,
we only investigated tools targeting C/C++, source code
or binary. The rationale behind this was that (1) C/C++
is the most vulnerable language [43]], and (2) many critical
software systems are written by C/C++. As documentation
is the key reference that informs about how to execute the
tools, for each available tool, we first evaluated whether the
documentation of the tool was sufficient. However, there
is no commonly accepted criterion for the sufficiency of
documentation for open science. For our study, we deem
a documentation sufficient when we were able to figure out
how to set up and use the tool following the documentation
based on our knowledge about DL and vulnerability detec-
tion. If the documentation provided sufficient information,
we followed its instructions to set up the DL framework,
install the tool, and execute the experiments. If, due to
insufficient documentation, we were not able to execute the
experiments, we contacted the authors or manually checked
the source code to figure out how to run the experiments.
If we successfully executed the whole experiment of a tool
and obtained valid results after doing these, we considered
the tool executable.

Dimensions. We examined the following four dimensions
in analyzing the success/failure patterns with executability:

o Tool Completeness: Whether the tool provided all the
necessary components (e.g., raw data, data preprocess-
ing code, DL model to be trained, etc.) that are needed
for executing the entire original experiment.

 Tool Functioning: Whether all the components of the
tool were functional such that they enable us to produce
valid experiment results.

e Deep Learning Framework: The DL framework (e.g.,
Tensorflow, PyTorch) on which the tool was based.

o Documentation Quality: Whether the documentation
for the tool was sufficient so that we can execute the
entire experiment without external resources.

3.4 RQa3. Reproducibility

Motivation. Ideally, the experiment results in a paper can
be reproduced by re-running the tool using the same exper-
iment setup. If the experiment results cannot be reproduced,
the reliability and even credibility of the tool is questionable.
Thus, in this RQ, we investigated whether the executable tools
can reproduce the experiment results in the original papers.

Method. Based on the definition by ACM [42], the re-
producibility experiments should be done with the same
measurement procedure, measuring system, and operating
conditions. Thus, we should use the same source code, input
data, dependency libraries, operating systems, and hard-
ware as the one used by the authors to do the experiments.
However, realistically it is very difficult to use exactly the
same hardware and operating system versions. We could
not buy all the different hardware and install all the different
operating system versions to match the original. Virtual
machines may seem to be a solution, but they often did not
work either because hardware cannot always be virtualized
(esp. GPUs, which are a major part of the computing en-
vironment for DL-based tools). Therefore, we followed the
methodology in [24]. We used the slightly weaker definition
of reproducibility and ensured the use of the same source
code or executable, input data, and dependency libraries.

For each tool, we executed the experiment using the
default configuration. Then, the tool generated experiment
results and reported the accuracy of predicting vulnera-
bilities on the testing set. For some tools, the prediction
accuracy was presented in terms of different metrics, such as
precision, recall and F1 score. In our study, we only consid-
ered F1 score, because (1) it accounts for both precision and
recall, and is a common measure for machine learning [44],
and (2) it allowed us to compare the reproducibility and
replicability of different tools consistently. To measure the
reproducibility of a tool, we computed the deviation between
the F1 score in our experiment and the one reported in the
original paper, as follows:

L F1in our experiment — F'1 in original paper
Deviation =

F1in original paper

If the absolute value of the deviation was < 1%, we
considered the tool reproducible. If the value was > 1% but
< 5%, we considered the tool weakly reproducible. If the
value was > 5%, we considered the tool not reproducible.
These thresholds were chosen based on the intervals used
in statistical testing [20] (e.g., 1% and 5% probabilities used
in statistical significance analysis [45]).

Because of the randomness in training DL models, the
F1 scores reported may be expectedly different across mul-
tiple runs of model training on the same dataset using the
same configuration [46]]. To mitigate relevant biases, when
evaluating reproducibility and replicability, we repeated the
experiment against each tool five times and reported the F1
score with the smallest absolute value of deviation.

Dimensions. We examined the success/failure patterns
with reproducibility in the following four dimensions:

o Dataset Consistency: Whether the dataset used in our
experiment was consistent with the one described in
the original paper.

o Implementation Consistency: Whether the tool imple-
mentation of the proposed technique was consistent
with the one described in the original paper.

 Configuration Consistency: Whether the configuration
of the tool (e.g., parameter setting of the DL model) was
consistent with the one described in the original paper.

o Use of a Pre-Trained Model: Whether a pre-trained DL
model was provided so that we could skip the training
phase and evaluate the model on the testing set directly.

3.5 RQA4. Replicability

To evaluate the replicability comprehensively, we consid-
ered two types of replicability: partial replicability and full
replicability, as defined below. We separately discuss them in
RQ4.1 and RQ4.2 respectively.

3.5.1 RQ4.1 Partial Replicability
Definition. For a DL-based tool, it is reasonable to use the

tool as trained on the dataset as used in the original paper.

If we can replicate the originally reported results using such
a pre-trained model against a different (testing) dataset, we
consider it partial replicable.

Motivation. According to the ACM definition [42], the

replicability experiments should be performed on differ-

ent measuring systems. Since we measured the DL-based
vulnerability detectors with benchmark datasets, we used a
third-party (i.e., different from the ones used in the original
papers) dataset for the replicability experiments. Such a
dataset does not have to have a similar distribution to the
one in the original papers and can be any kinds of vulnera-
bility datasets. In fact, with respect to its goal, replication
is expected to validate research work in real-world use
scenarios, where the distribution of users’ dataset is unlikely
to be guaranteed to be the same as that of the original one.

Ideally, the trained DL models should be ready for real-
world application tasks; that is, the models we trained in our
reproducibility experiments in RQ3 should have similar per-
formance when we test them on a third-party vulnerability
dataset. If the performance results cannot be replicated, the
respective tool has a partial replicability issue, which means
the (pre-trained) model may not be ready for practical use.
This issue is a major barrier in open science, as discussed
in [3]]. Thus, in this RQ, we investigated whether the models
we trained in our reproducibility experiments can replicate the
originally reported performance results when we test them on a
third-party, real-world dataset.

Method. We used the 9_projects dataset introduced in

[47] for our replicability experiments. This dataset contained

a large number of program samples from 9 open-source
projects, thus it is an appropriate benchmark for evalu-
ating DL-based vulnerability detection techniques. Such a
dataset also enabled us to consistently compare the repli-
cability across different tools. Table [I| shows the numbers
of vulnerable and non-vulnerable samples in this dataset El

3. The numbers are different from the ones in the original paper
because the authors have updated the dataset after paper publication.

The dataset came with both C/C++ source code and
compiled C/C++ binary code versions, allowing us to
evaluate tools that target different code formats.

We first checked the documentation, source code, or con-
tacted the authors to ensure that a tool was compatible with
third-party program samples. Those tools that were not able
to process third-party program samples were considered not
reproducible immediately. Then, for the remaining ones, we
did the partial replicability experiments on the 9_projects
dataset. For the tools working with C/C++ source code, we
used the source code version of the dataset. For those
working with compiled C/C++ binary code, we used the
binary code version.

For each tool, we first split the 9_projects dataset into
a training set and a testing set. Then, we tested the model
which was trained in our reproducibility experiments on the
split testing set. We used the same testing sets for both RQ4.1
and RQ4.2 to enable fair comparisons and more insights.

We then obtained the F1 score of each tool, and com-
puted the deviation, in the same fashion as we gauge repro-
ducibility, to measure replicability. Similarly, we considered
a tool replicable if the absolute value of the deviation was
< 1%, weakly replicable if the value was > 1% but < 5%,
and not replicable if the value was > 5%. As justified earlier,
we repeated each experiment for each tool five times and
reported the F1 score with the smallest deviation.
Dimensions. For each tool, we analyzed the partial repli-
cability successes/failures from the dataset perspective, by
comparing the one we used with the one used in the original
paper in the following four dimensions:

o Dataset Size: The number of samples in the dataset.

o Dataset Balance: The proportion of positive (vulnera-
ble) samples in the dataset.

o Data Source: Whether the samples in the dataset were
artificially generated or from real-world projects.

o Duplication Rate: The proportion of samples that each
has > 95% similarity to at least one other sample in the
dataset. We used a dedicated tool, difflib [}, to com-
pute the similarity between two samples (programs).

3.5.2 RQ4.2 Full Replicability

Definition. For differentiating from partial replicability, we
refer to the standard definition of replicability [42] for full
replicability. That is, a tool is full replicable if we can replicate
its originally reported performance results against training
and testing datasets that are both different from the origi-
nally used ones.

Motivation. In RQ4.1, we investigate partial replicability.
Being partial replicable or not indicates whether a pre-trained
model is ready for use in an off-the-shelf manner. However,
such results (for RQ4.1) would only reflect the performance
of the pre-trained models, not accounting for the capabilities
of the holisit DL-based vulnerability detection technique. In
practice, users may desire to retrain the DL model on new
datasets from their particular use scenarios. For a compre-
hensive open-science assessment, in RQ4.2 we investigated
full replicability for each tool: whether the technique can replicate
the originally reported performance results when we retrain and
re-test the model both on third-party, real-world datasets.

4. https:/ /docs.python.org/3/library/difflib.html

TABLE 1: The number of vulnerable and non-vulnerable
samples in the 9_projects dataset.

DT # of vulnerable # of non-vulnerable Total
samples samples

Source Code 1471 60132 61603

Binary Code 210 20646 20856

Method. As for RQ4.1, we used the 9_projects dataset
for our full replicability experiments.

For each tool, we used the split training set to re-train

the DL model. Then, we tested the re-trained model on the
same split testing set as for RQ4.1. We then obtained the F1
score, computed the deviation, and determined whether the
tool was replicable, weakly replicable, or not replicable similarly
to what we do for RQ4.1.
Dimensions. For each tool, we analyzed the full replicability
successes/failures, also from the dataset perspective, by
comparing the one we used with the one used in the original
paper in the same four dimensions as for RQ4.1.

3.5.3 Case Studies

To further understand the impact of dataset on replicability,
we conducted additional case studies, focusing on two of
the four dataset dimensions, dataset size and dataset balance,
which we observed had substantial impacts.

Impact of dataset size. For each tool, we reduced the
dataset (9_projects) size (number of samples) to 70%,
40%, and 10% of the whole, separately, while not changing
the dataset balance (as detailed later). Then, we split the
reduced datasets into training sets and testing sets, and
performed full reproducibility experiments on these reduced
datasets to investigate how the dataset size impacted the
tool performance.

Impact of dataset balance. For each tool, we kept the dataset
size at 10% so that we could experiment with as many dif-
ferent data balance ratios (proportion of positive samples) as
possible without changing the total dataset size. We found
that the original dataset balance ratios of 9_projects
when applied to different tools were all very small (<6%,
see Figure [9). Thus, we only considered increasing (but not
decreasing) the dataset balance b, to 4b, 7b, and 10b. We then
again split the datasets into training and testing sets, and did
full reproducibility experiments on these increased-balance
datasets to investigate how the dataset balance impacted
the tool performance.

4 RESULTS

In this section, we present and discuss the results of our
study by answering the four RQs. For each RQ, we first
show the overall status/statistics. Second, we discuss the
success cases and point out their possible limitations. Third,
we analyze the failure cases and discuss their reasons.
Finally, we give a summary for that RQ.

4.1 RQ1. Availability

Overall status/statistics. Table [2{ shows the tool availability
results of the 55 investigated papers/studies. The color of
each row indicates whether a tool for that study was pub-
licly available (green for available and red for unavailable). For
each study, results in the four dimensions we investigated
are shown by different abbreviations, and the full names for

The preparation of the dataset followed two steps. The
first step consists of parsing the original dataset to sepa-
rate each CS then calculate its code metrics. The second
step consists of eliminating any redundant data. The final
version of the dataset [82] which is used in experiments
contains 95351 instances. To work with the Java API of
‘Weka, the actual version of the dataset is in the ARFF
(Attribute-Relation File Format) format.

Fig. 4: One example of tool link presentation: the link is
presented as a reference, which is from the study ZMVP [34].

4) We also open source all our code and data we used
in this study for broader dissemination. Our code and
replication data are available in https://git.io/Jf6IA.

Fig. 5: Another example of tool link presentation: the link is
presented in the main body of the paper [35] as a raw text.

these abbreviations are shown below the table. For example,
we found the publicly available tool for TRL [31] (row 1,
which is filled by the green color). The tool link was found
in the paper as a raw text (RT), in the footnote of the
experiments section (FE). The tool was uploaded to GitHub
for sharing (GH), and the tool link was accessible so that we
could download the tool.

After trying our best to look for the available tools of
these 55 papers, we only found 14 actually having the tool
available. That is, only a low ratio (25.5%) of the studies
provided publicly available source code and datasets for
the techniques they introduced. This indicates a very poor
observance of the open science practice at least in the area
of DL-based software vulnerability detection, potentially
hindering the advancement of this area. That is, to assess or
improve an existing DL-based software vulnerability detec-
tion technique, it is likely that other researchers or interested
users have to re-implement it. This would waste much
time /resources; moreover, the custom implementation may
not be consistent with the one used in the original study.

Success cases/possible limitations. We then inspected the
14 papers/studies which provided publicly available tools.
We noticed that 11 of these presented the tool links in their
papers, while the other 3 (SaBabi [38], VulDeePecker [39],
and BiVuld [41]) did not—their tool links could be only
obtained by searching on the Internet or contacting the
authors via email. In the 11 studies, all the links were
presented as raw texts in the papers except one (ZMVP [34]),
which was presented as a paper reference.

We found that the presentations of the tool links affected
the difficulties for the readers to find them. Figures [4] and
show the examples of presenting tool links in different
ways. In Figure 5} presenting the tool link as a raw text in the
paper is conspicuous, thus readers can find the link easily
by searching relevant keywords (e.g., http). In contrast, in
Figure {4} presenting the tool link as a reference is not as
effective, because readers may only find the tool link by
checking the context of each reference. The latter practice
compromises availability hence hinders open science.

Although most of the papers presented their tool links
in raw texts, which were conspicuous, we noticed that the
tool link locations were more varied. In the 11 studies which
provided the tool links in the papers, the links were in differ-
ent sections (Introduction, Methodology, or Experiments).
Besides, we noticed that some papers presented the tool
links in the footnotes rather than the main texts, as Figure[f]
shows. Furthermore, we also found one more available tool
(SaBabi [38]]) by searching on the Internet (we confirmed

sorted data at Github!. In summary, the contributions of
this paper are three-fold:

« We propose a deep learning framework utilizing het-
erogeneous vulnerability-relevant data sources based
on two independent deep representation learning
networks capable of extracting the useful features for
software vulnerable code detection.

1. https://github.com/DanielLin1986/RepresentationsLearningFro
mMulti_domain

Fig. 6: An example of tool link presented in a footnote of the
paper [32].

TABLE 2: Results on tool availability (along with respective
venue ranks)

Study Tool Link Tool Link Tool Tool Link Venue
Presentation Location Hosting Site Accessibili Ranking
TRL [31 RT FE GH v Unranked
RLMD |32 RT Fl GH v A
LAVDNN [33] RT | MM GH v Unranked
ZMVP [34 | RF | MM GH v Unranked
ReVeal |35 [RT [MI GH v A*
DCKM (36 RT ME GH 4 Unranked
MDSeqVAE [37] RT FE GH 4 A*
SaBabi [38] NA B GH 4 Preprint
VulDeePecker |39 NA AM GH v A*
SySeVR |40 RT MI GH v A
BiVuld [41 NA AM GH v Unranked
TAP |48 RT MI GH v Unranked
VulHunter [49 RT MI GH v B

* Project Achilles [50] RT | MM GL 4 A*

" VulSeeker-Pro [51] RT | FE GH X A*
Russell |52 NA NA NA X C
Devign |53 NA NA NA X A*

VulDeeLocator |54 NA NA NA X A
pVulDeePecker |55 NA NA NA X A
Choi |56 NA NA NA X A*
DCDDA |57 NA NA NA X A
DeepBalance |58 NA NA NA X A*
RNNBinary |59] NA NA NA X Unranked
BVDetector |60 NA | NA NA X A

" Minlntermediate [61] NA | NA NA X Unranked
Harer [62] NA NA NA X A*
CDVuld (63 NA NA NA X A

StaticCFVul 64 NA NA NA X B
VulSniper [65] NA NA NA X A*
TEI-DNN |[66] NA NA NA X Unranked

Caesar [67 NA NA NA X B
CPGVA |68] NA NA NA X Unranked
AI4VA |69 NA NA NA X Preprint
VulFrame |70, NA | NA NA X Unranked
Khanh [71] | NA | NA NA X A*
DPAM 72| | NA | NA NA X B
Fang |73] NA NA NA X Unranked
SCDAN |74 NA NA NA X B
MDSAE-NR |75] NA NA NA X Unranked
DeepVL [76] NA NA NA X Unranked
MIPSVul |77 NA NA NA X Unranked
Vulcan |78 NA NA NA X Unranked
Tanwar |79 NA NA NA X Preprint
Pang [80 | NA | NA NA X Unranked
Jabeen [81 | NA | NA NA X Preprint
Catal [82] | NA | NA NA X Preprint
Junae [83] NA NA NA X C
WebVul [84] NA NA NA X A
ALF |85 NA NA NA X A*
DLFV [86] NA NA NA X B

BinaryHan |87 NA NA NA X Unranked

AVDHRAM (88 NA NA NA X C

Explainable [89 NA NA NA X A*
FTCLNet [90 NA NA NA X B

Filus [91] | NA | NA NA X Unranked

Tool Availability:
Green: Available Red: Unavailable
Tool Link Presentation:
NA: None RT: Raw Text RE: Reference
Tool Link Location:

NA: None

ME: Main Text of Experiment
SI: Searching on the Internet

MI: Main Text of Introduction
FI: Footnote of Introduction
AM: Authors’ Email

MM: Main Text of Methodology
FE: Footnote of Experiments

Tool Hosting Site:
NA: None

GH: Github GL: GitLab

that the tool was developed by the authors), and obtained
two more available tool links by emailing the authors
(VulDeePecker [39] and BiVuld [41]). Note that the authors
of VulDeePecker [39] provided the link to SySeVR [40] and
told that SySeVR was an extension of VulDeePecker (i.e.,
the experiments of VulDeePecker could be done by using
parts of the SySeVR source code and datasets). Relevant

issues for VulDeePecker and SySeVR will be discussed in
RQ2. The varied tool link locations indicate that readers
have to review different paper sections or use different ways
to find the tool links in different studies. This costs time
and limits the access of all levels of people in the society.
This variation leads to unnecessary time costs and limits
potentially broader tool access.

On the other hand, to allow for convenient public access,
many researchers upload their works to public hosting sites.
In our study, we noticed that the authors who made their
tools publicly available did the same thing. We found that
all the available tools were shared on GitHub E} except for
one (Project Achilles [50]), which was shared on GitLab ﬂ A
possible reason is that GitHub is the most popular hosting
site for open source code. These authors may use it as a
social media and collaboration platform to promote their
research in the community [92].

Failure cases and causes. Meanwhile, we noticed that most
of the papers/studies that did not provide publicly available
tools provided nothing about their source code. VulSeeker-
Pro [51] provided a Github tool link in the paper, but the
link expired and thus it was not accessible. After getting
contacted by us, a few authors told us the reasons for not
sharing the tools: (1) the developed techniques were used
to apply for patents, (2) the developed techniques were
modified for further development, and (3) the source code
and datasets were lost due to some incidents.

Only 25.5% of the considered studies provided publicly
available tools for their proposed techniques, indicating
poor open-science practice at least in this studied area.
Even for the available ones, the tool link locations
varied largely, limiting broad and easy access by
the general public. Most of these available tools
were hosted on GitHub likely for its popularity.
The reasons that the majority of the studied tools
were not publicly available included artifact loss and
reservation for other future purposes.

4.2 RQ2. Executability

As we mentioned earlier, for RQ2 through RQ4, we only
considered the tools targeting C/C++ source code or com-
piled C/C++ binary code. Thus, we excluded TAP [48], Vul-
Hunter [49]], and Project Achilles [50] because their targeting
languages are PHP or Java. We focused on the remaining 11
tools to avoid further complicating our study with potential
effects of programming languages on open science practice.

Overall status/statistics. Table 3| shows the executability
results of the 11 tools. Similar to RQ1, the color of each row
indicates whether the tool was executable, and the four di-
mensions of the tool are indicated by different abbreviations.

After trying our best, we still could not execute three
of the 11 tools. That is, 27.3% of the available tools were
not executable. This indicates that executability issues are
an extant threat to open science, at least in the area of DL-
based vulnerability detection.

Success cases/possible limitations. We inspected the eight
executable tools based on the four dimensions we discussed

5. https:/ / github.com/
6. https://gitlab.com

TABLE 3: Results on tool executability

Tool Tool Deep Learning Documentation
Sty o et :\ Quality
TRL [31] 4 4 TF IS
RLMD (32 4 4 TF IS
LAVDNN |33 4 v CN SF
ZMVP 34 v v WK SF
ReVeal |35 v v PT SF
DCKM |36 v v TF SF
MDSeqVAE |37 v v TF 1S
SaBabi [38] v v TF SF
VulDeePecker |39 v X TE NA
SySeVR [40] v X TF S
BiVuld |41, X X TF NA

Tool Executability:

Green: Executable Red: Not Executable

Deep Learning Framework:

TF: Tensorflow PT: PyTorch CN: CNTK WK: Weka

Documentation Quality:
NA: None

IS: Insufficient SF: Sufficient

before. We noticed that all the eight tools were complete—
they provided all the necessary tool components for us to
execute the entire experiments step by step. Besides, the
components provided in the tools were all functional. They
were executed without crashing so that we obtained valid
experiment results smoothly.

Documentation is an important part of a tool. Sufficient
documentation helps the users install, configure, and exe-
cute a tool smoothly and correctly. We found that among
the eight executable tools, five provided sufficient docu-
mentation, which included instructions that allowed us to
smoothly set up and run the experiments. As an example,
Figure shows the documentation of DCKM [36] which was
sufficient for us to execute the tool. The documentation de-
scribed the statistics and format of its dataset and discussed
its model implementation. It also included guidelines for
users to prepare the execution environment, configure the
model parameters, and run model training and testing.

However, the other three tools did not provide sufficient
documentation. TRL [31] and RLMD [32] did not provide
the detailed steps for executing the experiments. MDSeq-
VAE [37] did not specify which DL framework and other
dependencies should be installed before executing the tool.

The insufficient documentation implies that other re-
searchers have to spend extra time on inspecting the source
code to understand how the tool works, so that they can
execute the whole experiment correctly. It is also possible
that an amateur cannot execute the experiment correctly
because of his/her lack of technical knowledge. Thus, in-
sufficient documentation limits the research accessibility to
the public, and becomes a threat to open science in the area
of DL-based software vulnerability detection.

Meanwhile, we found that all the tools were developed
on top of an existing DL framework. Yet the DL frame-
works used by the eight executable tools varied. Five tools
used Tensorflow/’] while the other three tools used CNTKF]
Wekﬂ and PyTorc}m respectively. The variety of underly-
ing DL frameworks make the run-time environments more
difficult to set up than otherwise. Other researchers have
to configure different run-time environments for different
tools, potentially incurring extra time and storage costs.

7. https:/ /www.tensorflow.org/

8. https://github.com/microsoft/CNTK

9. https:/ /www.cs.waikato.ac.nz/ml/weka/
10. https:/ /pytorch.org/

Deep Cost-sensitive Kernel Machine Model

This is an implementation of the Deep Cost-sensitive Kernel Machine (DCKM) model

Datasets

The statistics of the two binary datasets
Data format

An example of the content of binary files

Model implementation
Environment preparation

Model training and evaluation
Model parameters:

Command to run:
Model test

Command to run:

Fig. 7: An example of executability success: the tool
(DCKM [36]) provided sufficient documentation including
instructions easy for users to follow. Only the headings are
shown to save space.

BiVulD

BiVulD: Vulnerability detection based on binary code. Resources for research use only

Fig. 8: An example of executability failure: the tool
(BiVuld [41]) did not provide meaningful documentation in
its repository.

Failure cases and causes. Looking at the three tools that
were not executable, we noticed that VulDeePecker [39]
and SySeVR [40] were not functional. As we mentioned
for RQ1, SySeVR was an extension of VulDeePecker and
the experiments of VulDeePecker could be done by using
the source code and datasets of SySeVR as informed by the
authors. Thus, we discuss them together as one tool.

Based on the papers and the documentation, VulDeeP-
ecker/SySeVR has three steps for its experiments. It first
generates program slices from the given source code. Then,
it preprocesses the program slices to get their vector rep-
resentations. Finally, the vector representations are used to
train and test the DL models.

We noticed that, while providing the code for gener-
ating the program slices from the source code, VulDeeP-
ecker/SySeVR provided several files in the repository which
seemed to be the generated program slices (the documenta-
tion did not tell the purpose of these files). We first tried to
use these files to directly get the vector representations, but
VulDeePecker/SySeVR did not produce any valid outputs
as such. Then, we generated the program slices by ourselves.
Although the newly generated program slices were different
from the ones in the repository, VulDeePecker/SySeVR still
did not output any valid vector representations. This sug-
gested possible inconsistency between different components
and datasets of the tool, making the tool not functional.

We also noticed that the tool BiVuld [41] was not com-
plete. Based on the paper, BiVuld first generates vector
representations from the binary code files, which were
compiled C/C++ object files. Then, it uses the vector rep-
resentations to train and test the DL models. However, the
repository of BiVuld only provided the compiled C/C++
object files and the code for training/testing the DL models.
We did not find the generated vector representations or the
code for generating vector representations. Thus, the tool
BiVuld had missing components (i.e., it was incomplete).

In addition, none of the tools that were not executable
provided sufficient documentation. The documentation of
SySeVR only briefly discussed the functionality of each
code file in the repository. The authors of VulDeePecker
told us to use parts of SySeVR source code and datasets
for the experiments of VulDeePecker, but we did not find
any documentation related to VulDeePecker in the SySeVR
documentation. BiVuld did not even provide meaningful
documentation, as Figure shows.

Considering all the 11 available tools we investigated,
54.5% did not provide sufficient documentation. This indi-
cates very poor overall documentation quality in the studied
area. A possible reason was that these authors might not
have a strong intent to support others in using their tools. It
is likely that they just uploaded the tools to hosting sites as
backups of their development.

27.3% of the available tools were not executable, com-
promising open science in the area of DL-based soft-
ware vulnerability detection. All the executable tools
were complete and functional, but the insufficient
documentation and variations in the underlying DL
frameworks that have to be set up with considerable
effort limited the research accessibility to all. The
tools that were not executable were either incom-
plete or having components that were nonfunctional,
and their documentation was insufficient or missing.

\. .

4.3 RQa3. Reproducibility

Overall status/statistics. Figure [J|shows the reproducibility
statistics of the eight executable tools. For each tool, we
compare the F1 score reported in the original paper (the
blue bar) with the one we obtained in our reproducibil-
ity experiment (the orange bar). The deviation values are
shown above the bars, and its color indicates whether the
tool was reproducible (blue for strongly reproducible, orange
for weakly reproducible, red for not reproducible). The results
on the four reproducibility characterization dimensions are
shown by different shapes (square, diamond, circle, and
triangle) under the chart, and their values are indicated by
different colors (gray for no and green for yes).

We noticed that six of these tools were strongly repro-
ducible—the absolute values of their deviations were all
less than 1%. RLMD [32] was weakly reproducible with a
deviation -4.31%. Only for TRL [31] we failed largely in
reproducing the original experiment results: our F1 score
was 26.71% lower than the one reported in the original
paper. As a result, 87.5% of the executable tools were
considered reproducible (strongly or weakly). This indicates
that for the studied tools the gap between executability and
reproducibility was overall quite small.

Success cases/possible limitations. We inspected the seven
reproducible tools along the four dimensions we discussed
before. We first checked whether the datasets used by the
tools were consistent with the ones described in the papers.
We found this inconsistency in RLMD [32]. The authors
had updated the dataset by adding new program samples
(the number of program samples in the dataset described
in the paper was 33,822, while that in the dataset provided
in the repository was 39,942). This was a plausible reason

Deviation:

100%
80%
60%
40%
20%
0%

-0.69%
0.00%

-26.71% -4.31%

F1 Score

Reproducible Weakly Reproducible Not Reproducible

M in Paper in Experiment

-0.50 % 0.06 %

-0.59 %

-0.15%

TRL RLMD LAVDNN ZMVP ReVeal DCKM MDSeqVAE SaBabi
Oo0A oo0oA OooA oooA oooA OooA OoooA Ooo0oA
Dataset Consistency Implementation Consistency Configuration Consistency Use of a Pre-Trained Model
O No OYes ONo OYes O No OYes A No AYes

Fig. 9: Results on tool reproducibility.

Generate two datasets, a training set and test set. The sA_SEeD
variable is optional, but used here for reproducibility.

3 SA_SEED=8 ./sa_e2e.sh working/sa-train-1686 1eee
$ SA_SEED=1 ./sa_e2e.sh working/sa-test-10@ 108

Fig. 10: An example of dataset consistency: the tool
(SaBabi [38]]) uses fixed random seeds for consistent formation
of training/testing sets.

Name

test_GGNNinput_graph json
train_GGNNinput_graph.json
valid_GGMNinput_graphjson

Fig. 11: Another example of dataset consistency: the tool
(ReVeal [35]) uses pre-split training/validation/testing sets to
ensure the consistency.

that RLMD was only weakly reproducible. LAVDNN [33]
did not provide its complete training set. Its success in
reproducibility was based on its pre-trained model, which
will be discussed later.

For the remaining five reproducible tools, the dataset
used was strictly consistent with the description in paper.
These tools not only ensured the consistency for the entire
dataset, they also ensured the consistency for both training
and testing sets. This was either achieved by using fixed
random seeds (numbers or vectors which make a random
process behave the same in each run) to split the dataset
(exemplified in Figures or by simply using pre-split
training/testing sets (exemplified in Figure . That is, the
samples we used for training and testing were completely
the same as the ones used in the authors’ experiments.

We also checked the implementation and configuration
of each tool. By checking the source code against the de-
scriptions in the paper, we did not find any inconsistency
in either regard for any of the seven reproducible tools. Put
together, 71.4% of the reproducible tools had datasets, im-
plementation, and configurations all being consistent with
the ones described in the original papers. These consisten-
cies contributed to the reproducibility successes.

Combining with the findings for RQ2 revealed that all
the executable tools that provided sufficient documentation
(LAVDNN [33], ZMVP [34], ReVeal [35], DCKM [36], and
SaBabi [38]) were strongly reproducible. In contrast to the tools
providing insufficient or entirely missing documentation,
the authors of these tools may have paid particular attention
to reproducibility, purposely supporting open science.

For LAVDNN |[33], the F1 score obtained in our ex-
periment was exactly the same as the one reported in the
paper. The reason was that it provided a pre-trained DL
model, which allowed us to run the tool on the testing
samples directly. Because of the randomness in DL model

10

initialization and optimization, it is common that the models
trained on the same dataset are different, and thus they
report different accuracy [46]. In this case, a pre-trained
model is a simple way to eliminate the randomness hence
facilitate successful reproduction. It also saves time and
computational resources that would have been spent to re-
train the DL model.

However, we noticed that LAVDNN did not provide a
complete training set. Because of this, we were not able
to re-train the model to evaluate the training process. The
incompleteness also restricted our replicability evaluation
in RQ4. Therefore, it is recommended that authors provide
the training set even if a pre-trained model is provided.

Failure cases and causes. We found that TRL [31] was not

reproducible, with a -26.71% deviation. TRL (Transferable
Representation Learning) is a technique that aims to solve
the problem that high-quality vulnerability detection train-
ing data is in shortage in a single real-world project [31]. It
did so by learning rich features from different similar real-
world projects. Based on the paper and the documentation,
TRL has several steps for its reproduction experiments.
At the beginning, the vulnerable/non-vulnerable function
samples of 6 real-world projects are given. In the 6 projects,
5 are chosen as historical data for pre-training a DL model,
and the remaining one is chosen as the testing project. Then,
the pre-trained DL model is used to extract the rich features
for the samples in the testing project. Finally, using the rich
features, only 25% of the samples in the testing project are
used for training another machine learning model (based
on the hypothesis that training data is in shortage in a real-
world project). The new machine learning model can predict
the vulnerabilities in the testing project well although only
25% of the samples are used for training.

We followed the several steps above to reproduce the
experiment. According to the experiment configuration in
the paper, we chose FFmpeg as the testing project and the
other 5 projects were used for pre-training the DL model.
However, we did not succeed at reproducing the results
after five trials and our best F1 score was still 26.71% lower
than one reported in the paper. We then contacted the
authors for help. The authors told us that it was normal for
getting the model under-performed because the code in the
Github repository was not optimized. They recommended
us to add implementation of dropout layers and regularizers
in the DL model to be pre-trained. They also recommended
us to modify the configuration of the DL model, such as
tuning the learning rate of the optimizer and reducing the
batch size. This indicates that the implementation and the
configuration of the DL model were not consistent with the
ones originally used by the authors. Furthermore, despite

following their recommendations, the results did not im-
prove or even became worse. A possible reason was that we
did not know necessary details for correctly modifying the
implementation and configuration.

We also noticed that the dataset provided in the repos-
itory was not the same as the one used in the original
paper. This might have further enlarged the reproducibility
deviation in TRL.

In sum, our analysis of this failure case indicates that,
while providing the source code, the tools on the public
repositories may not be fully /well developed or fine-tuned,
making the tools not reproducible.

Most (87.5%) of the executable tools were reproducible,
strongly supporting open science in the area of DL-based
software vulnerability detection. Some authors pro-
vided consistent datasets, implementation, configu-
rations, and sufficient documentation, which greatly
facilitate reproduction. Training a DL model has
randomness in it and costs time, for which offering a
pre-trained model helped achieve perfect reproduc-
tion. The tool which was not reproducible provided
inconsistent dataset, implementation, and/or config-
uration in its repository, leading to a large deviation
in our reproducibility experiments.

4.4 RQA4. Replicability

As justified earlier (Section , we separately examine
partial replicability and full replicability, for which we present
the results in RQ4.1 and RQ4.2, respectively.

4.4.1 RQ4.1 Partial Replicability

For the partial replicability experiments, we first used each
reproducible tool to preprocess the 9_projects dataset
and split it into training and testing sets. For the tools detect-
ing vulnerabilities in C/C++ source code, i.e.,, RLMD [32],
LAVDNN [33], ZMVP [34], ReVeal [35]], and SaBabi [38],
we used the source code version (61,603 samples) of the
9_projects dataset. For the tools detecting vulnerabilities
in C/C++ binaries, i.e.,, DCKM [36] and MDSeqVAE [37],
we used the binary code version (20,856 samples). For
each tool, we tested the model trained in our reproducibility
experiments to gauge its accuracy.

Overall status/statistics. Figure 12 shows the results of the
seven replicable tools in our partial and full replicability
experiments. Like for RQ3 (Section [£.3), we compare the
F1 scores in our experiments (orange bars) with the ones
reported in the papers (blue bars), and show the deviations
with different colors. For each tool, the deviation for partial
replicability and full replicability is shown to the left and
right of the slash, respectively. We also compare the datasets
used in our experiments (green bars or texts) with the ones
described in the papers (yellow bars or texts) in the four
dimensions defined earlier. Note that when we processed
and split the 9_projects dataset, some of the tools only
successfully processed a part of the samples (e.g, ZMVP
only processed 7,277 samples, although the whole dataset
had 61,603 samples, as shown in the parenthesis in the
figure). The green bars/texts shown on the figure are for
the actual datasets used in our replicability experiments.

11

LAVDNN did not provide its whole dataset, thus the du-
plication rate for it was missing.

We noticed that the overall partial replicability of these
reproducible tools was poor. Only RLMD was weakly repro-
ducible, with a -4.96% deviation. The deviation of ZMVP was
large (-40.90%), although its F1 score itself appeared to be
the highest among these tools in our experiments. ReVeal
and DCKM had much worse F1 scores, with -78.62% and
-79.87% deviations, respectively. LAVDNN and MDSeqVAE
performed extremely bad in our experiments, with only
5.70% and 3.56% F1, respectively. SaBabi was not able to
process any third-party program samples, thus it was not
replicable at all.

Overall, only 14.3% of the reproducible tools were replica-
ble in our partial replicability experiments. The results indi-
cate that many pre-trained DL models from the DL-based
software vulnerability detection tools worked poorly or did
not work at all when applying to a third-party real-world
dataset. This significantly limited these techniques from
being applied to real-world software vulnerability detection,
threatening open science in this area.

Success cases/possible limitations. We inspected RLMD,
the only tool that was (weakly) replicable in our partial repli-
cability experiments, and found that it was able to process all
the 61,603 program samples in the 9_projects dataset.
Both this dataset and the one used in the paper (over
35,000 samples) are large and imbalanced (with less than 3%
positive/vulnerable samples), and they both fully consist
of programs from real-world projects. Their duplication
rates were also both low (< 10%). These similarities were
probably the key for the success of this tool in replicability.

Failure cases and causes. We then inspected the six tools
that were not partially replicable. We observed a few patterns
of the failure and discovered several underlying causes.
First, we noticed that the original dataset used by several
of the tools was small in size and the samples were not
diverse. The dataset of MDSeqVAE only had 14,304 samples.
ReVeal only used 18,169 samples from two open-source
projects to construct its dataset [35]. LAVDNN built its
dataset with only 18,925 samples and 2,400 of them were
augmented to avoid overfitting [33]. With datasets of low
diversity and such relatively small sizes (for deep learning),
the models were not very well trained, which significantly
limited their capabilities to generalize to other datasets.
Second, some of the tools originally only used mostly or
entirely artificially generated program samples to train their
models. In particular, all the samples used by MDSeqVAE
and SaBabi were artificially generated, while ZMVP used
a mixed dataset where more than 85% of the samples
were artificial. In contrast, the samples we used for testing
the models are all from real-world software projects. We
observed that these real-world program samples are much
more complex than, hence unlikely well represented by, the
artificially generated ones. Thus, the DL models, mostly
only seeing patterns in artificial samples, were not able to
sufficiently learn realistic vulnerability patterns [35] hence
unable to work well with real-world programs.
Figure(13|shows a comparison of a real-world vulnerabil-
ity sample and an artificially generated one. In the artificial
sample, the vulnerability is conspicuous at line 6, where the

Deviation:

Replicable Weakly Replicable Not Replicable

100%
80%
60%
40%
20%

0%

-40.90%/-34.55%

-89.52%/-97.63%
-4.96%/-4.70%

F1 Score

RLMD

61603(61603)
39942

LAVDNN
49904(61603)
18925

ZMVP

7277(61603)
9535

Dataset Size: 1

2.37%
45.05%

5.73%
10.43%

2.39%
1.46%

Real-world

Dataset Balance:

Real-world Real-world

Data Source:

6.93%

Duplication Rate: 4459 7.32%

64.80%

7.13%

6.84%
7.76%

H in Paper in Partial Replication
original dataset 9_projects
-79.87%/-42.85%

in Full Replication

-95.57%/-97.41%

z
5]
S
-78.62%/+0.02% F3

j=A
=
o
=2
(0]

ReVeal DCKM MDSeqVAE SaBabi

48424(61603) 20856(20356) 20856(20856)

18169 14304 153600

2.59% |1.01% [1.01%

9.16% 117% 51.38% 45.00%

Real-world Real-world Real-world

12.48%
68.77%

12.48%

16.49% 96.98%

Fig. 12: Results on tool replicability.

buffer write (to buf+17) blatantly reaches beyond the buffer
boundary (buf+9). However, in the real-world sample, the
vulnerability is not even close as easy to detect—There are
many function calls (lines 9 and 14) and other complex code
contexts (lines 3-11) involved in the vulnerable operation
(at line 14). While this example just illustrates one case
of how much more complex real-world programs are than
artificial ones, such cases were common between our dataset
(9_projects) and (most or all of) the samples used by
MDSeqVAE, SaBabi, and ZMVP. Apparently, it is quite
challenging for models trained on these simple programs
to detect vulnerabilities in complex real-world programs.

We also noticed that SaBabi was not able to process third-
party samples, because it requires special information that
was provided in its own original dataset but not commonly
available in other datasets (including 9_projects). Fig-
ure |14|shows a program sample originally used by SaBabi.
The comment (the text after ”//”) in each line provided
such information that SaBabi relies on in order to train and
test its model. SaBabi did not provide any tool to generate
such information for a given third-party sample either. As a
result, it was not replicable at all in our experiments.

Yet another cause, which we found contributed to the
partial replicability failure with MDSeqVAE and DCKM,
concerns the data the model took as immediate inputs.
Both of these two tools target C/C++ binaries, unlike the
other tools detecting vulnerabilities in source code. It is
well known that extracting semantic information (even very
basic ones like control flow [93]) from binary code is much
harder than from source code. Yet a DL model needs to learn
such information in order to make correct predictions of a
given program as vulnerable or not. As a result, it was even
more difficult for the DL models in MDSeqVAE and DCKM,
trained on one set of binaries, to generalize its prediction
capabilities to a quite different set of binaries.

Only 14.1% of the reproducible tools were replicable in
our partial replicability experiments, indicating a large
gap in this regard of open science in the studied area of
DL-based vulnerability detection. Main causes under-
lying the gaps included limited sizes and diversity
of datasets used in original evaluation, challenging
model input format that is intrinsically hard to learn
from, largely/entirely using artificial (rather than
real-world) samples, and requirement for special
information in both training and testing samples.

12

Artificially Generated Vulnerability Sample
1 int main(int argc, char *argv[])

2 {

char buf[10];

// Write to a postion that is outside the buffer
// Causing a buffer overflow vulnerability (CWE119)
buf[17] = 'A’;

return 0;

¥
eal-World Vulnerability Sample

nt new_msg_register_event(u_int32_t seqnum, struct lsa_filter_type *filter)

i
{
u_char buf[0SPF_API_MAX_MSG_SIZE];
struct msg_register_event *emsg;
int len;
emsg = (struct msg_register_event *)buf;
len = sizeof(struct msg_register_event)

+ filter->num_areas * sizeof(struct in_addr);
emsg->filter.typemask = htons(filter->typemask);
emsg->filter.origin = filter->origin;
emsg->filter.num_areas = filter->num_areas;

// “len” may be greater than the buffer size of emsg,
// Causing a buffer overflow vulnerability (CWE119)
return msg_new(MSG_REGISTER_EVENT, emsg, seqnum, len);

R A ERENEY

10
11
12
13
14
15 }

Fig. 13: An example of the greater complexity of real-world
programs we used than the ones originally used by some of
the studied tools.

1 #include <stdlib.h> // Tag.OTHER
2 int main() // Tag.OTHER
3 4 // Tag.OTHER
4 int entity_6; // Tag.BODY
5 int entity_2; // Tag.BODY
6 char entity_5[48]; // Tag.BODY
7 int entity_o; // Tag.BODY
8 entity_© = rand(); // Tag.BODY
9 entity_2 = 32; // Tag.BODY
10 entity 6 = 72; // Tag.BODY
11 if (entity_@ < entity_2){ // Tag.BODY
12 } else { // Tag.BODY
13 entity_© = 10; // Tag.BODY
14 } // Tag.BODY
15 while(entity_6 < entity_©){ // Tag.BODY
16 entity_6++; // Tag.BODY
17 } // Tag.BODY
18 entity 5[entity 6] = 'w'; // Tag.BUFWRITE_COND_UNSAFE
19 return ©; // Tag.BODY
20 } // Tag.OTHER
Fig. 14: An example showing the special, additional infor-

mation required by a tool (SaBabi [38])) for its model training
and testing.

4.4.2 RQ4.2 Full Replicability

As mentioned earlier, in the full replicability experiments, for
each tool, we re-trained the model using the split training
set of 9_projects and tested the re-trained model on the
split testing set.
Overall status/statistics. We show in Figurethe full repli-
cation results of the seven reproducible tools. We compare
the F1 scores in our full replicability experiments (gray bars)
with the ones reported in the papers (blue bars).

We noticed that the overall full replicability of these

tools was poor. Only ReVeal was replicable, with a +0.02%
deviation, and RLMD was weakly replicable, with a -4.70%
deviation. The deviations seen by ZMVP and DCKM were
large (-34.55% and -42.85%, respectively), yet they still
achieved fine F1 scores in absolute terms (48.57% and
51.61%, respectively). LAVDNN and MDSeqVAE, however,
performed extremely poor in our experiments, with a very
low F1 score of 1.29% and 2.29%, respectively.

Overall, only 28.6% of the reproducible tools were replica-
ble in our full replicability experiments. While slightly (just
one more tool achieving success) better than those in our
partial replicability experiments, this number still indicates an
undesirable open-science situation. That is, these DL-based
software vulnerability detectors can still not perform well
even when their models are completely retrained (i.e., when
the testing data is more likely to be closer to the training set,
compared to using pre-trained models). The implication of
these results is that the generalizability of these tools is not
promising overall.

Success cases/possible limitations. We inspected RLMD
and ReVeal, which succeeded in our full replicability exper-
iments. RLMD achieved similar performance compared to
the one in our partial replicability experiments. The reasons
were the same as the ones we discussed in Section 4.1l
(i.e., similarities between our dataset and the originally used
one). Regarding ReVeal, while it was not partially repro-
ducible, because of its use of small and non-diverse dataset
for training the model, its unbalanced, realistic dataset still
represented the real-world vulnerability detection scenario,
which made its original performance evaluation fair.

Importantly, in our partial replication, the testing sam-
ples were from a different dataset compared to the training
set, while in the full replication both the training and testing
sets were from the same dataset (9_projects). The fact
that ReVeal succeeded in the full replication while failing
in the partial replication implies that its model was well
generalized to the new dataset (after getting retrained on
this dataset), and this new dataset was quite different from
the original training set used in the paper.

Thus, while facilitating reproduction, using a pre-trained
model offered by a tool could make partial replication more
challenging than full replication as the former additionally
requires the replication testing set to be similar to the dataset
used for the pre-training—otherwise, the testing samples
would be out of distribution for the (pre-trained) model.

Failure cases and causes. We examined the five tools that
were not replicable in our full replicability experiments. We
identified several causes/patterns of the replication failures.

First, some of the replicable tools could not process
third-party samples, or could only process a part of third-
party samples. For example, SaBabi only worked on its own
dataset as we discussed in Section thus no full replica-
bility could be evaluated. ZMVP crashed when it processed
some program samples in the 9_projects dataset, thus
only a small proportion (7,277) of the (61,603) samples were
actually used for training and testing in our replicability
experiment. LAVDNN and ReVeal did not process all the
samples either. While the inability to process all the samples
might not impact the tool’s core technical performance, it
was still a threat to open science, because the samples that

13

can not be processed would not be usable in the reproduc-
tion/replication experiments, immediately limiting the scale
of such experiments.

Second, some of the tools originally used balanced
datasets to evaluate their performance. However, real-world
datasets for software vulnerability detection are often ex-
tremely imbalanced, making the DL model biased if the
tool does not purposely handle the imbalance issue [35]. We
noticed that the tools using balanced datasets (those having
data balance around 50%) had much larger performance
deviations. Specifically, LAVDNN and MDSeqVAE, which
used highly balanced datasets to evaluate performance, had
extremely large deviations in our full replicability experi-
ments (-97.63% and -97.41%, respectively). This indicates
that the authors of LAVDNN and MDSeqVAE might have
not considered data imbalance issues in the real world
carefully when developing and evaluating their tools. In
consequence, their tools were not able to deal with im-
balanced datasets, making them not replicable against such
datasets (like the one we used).

Third, as we discussed in Section some of these
five tools only used artificially generated program samples
to evaluate the performance. Not only were such artificial
samples too simple to train a model sufficiently for real-
world tasks, they also led to inflation in the performance
measurement. We noticed that the artificially generated
datasets introduced many duplicate samples: the datasets
of ZMVP, MDSeqVAE, and SaBabi had significant portions
(64.80%, 68.77%, and 96.98%, respectively) of duplicate sam-
ples. Figure [15| delineates the impact of duplication on our
replicability results. It shows the fitting curve, as well as
the coefficient of determination R? which indicates how
close the data fits to the curve. While the correlation was
not strongly linear (R? < 0.8) because of the impact of
other factors (e.g., dataset size, data balance), overall the
tools using datasets with higher duplication rates tended to
have larger performance deviations. The uses of artificially
generated samples, as well as the data duplication issues,
made the DL model learn irrelevant features. Due to these
issues, the overall original performance of the tools [94] was
inflated, contributing to the full replicability failures.

7

Only 28.6% of the reproducible tools were replicable in
our full replicability experiments, indicating poor overall
status of open science in this aspect—despite the slightly
better situation than for partial replicability. For the
two replicable tools, the success was attributed to
better model generalizability and/or the similarities
of the replication dataset to the one used in original
evaluation. For the other tools, the failures can be
explained by issues with data preprocessing and/or
the use of original evaluation dataset that was highly
duplicated or highly balanced.

4.4.3 Case Studies

Our results on the full replicability of the studied tools
suggested the impact of various dataset dimensions. To
further understand these impacts, we conducted two addi-
tional case studies to quantify them, focusing on two major
dimensions: dataset size and balance, respectively.

0%

f=

S 500, JRLMD =-0.957x - 4.863

£20% Y ; ZMVP
S 40%1 R2 = 0.6025 .

[a)

£-60% 1

&

<-80%

w MDSeqVAE
-100%

20% 30% 40% 50% 60%

Duplication Rate in Original Dataset
Fig. 15: Impact of dataset duplication on F1 in full replica-
tion.

0% 10%

0%

-20% y=-1.723x - 12.12

-40% RZ = 0.8064
-60%

-80%

F1 Score Deviation

-100%
0%

10% 20% 30% 40%
Dataset Balance in Original Dataset

Fig. 16: Impact of dataset balance on F1 in full replication.

Case study 1: impact of dataset size. We first investigated
how the dataset size impacts replicability. We reduced the
dataset sizes and used the reduced datasets to repeat our full
replicability experiments as discussed in Section[3.5.2] Table[4]
lists the F1 scores of each tool under different size reduction
ratios. We noticed that many of the tools” performance
decreased when we reduced the entire dataset. For instance,
when the size was reduced to 10% of the original, the F1
score of dropped from 36.29% to 28.40% for RLMD, from
1.29% dropped to 0% for LAVDNN, and from 51.61% to
4.65% for DCKM. The main reason for these performance
drops was that these tools suffered from greater overfit-
ting when their models were trained on fewer samples, as
found earlier in [95]. In consequence, the DL models tended
to learn irrelevant features to fit the smaller training set,
causing the models to perform worse when applied to the
testing samples. Note that MDSeqVAE and LAVDNN barely
worked in our replication experiments, and we found that
their predictions were essentially random, as seen from their
F1 score triviality /variations.

In comparison, ReVeal and ZMVP were much more
stable. Their performance stayed almost unchanged with
various dataset reductions. We found that this stability was
mainly due to the more effective (semantic) program rep-
resentations learned by these tools. Specifically, ReVeal con-
structs a code property graph (CPG) for each program sam-
ple, which contains both syntactic (from abstract syntax tree)
and semantic (from control/data flow) information [35]. It
took the CPGs as inputs to a graph-based DL model (gated
graph neural network) for vulnerability detection.

A similar merit was found in ZMVP as well. It extracts
the code slices that were related to vulnerabilities from each
program sample, and computed 19 code metrics to quan-
titatively characterize the vulnerability-relevant code [34].
These code metrics were then fed into to a multilayer
perceptron (MLP) model for vulnerability detection.

These semantic representations learned by the DL mod-
els captured program behaviors that were actually respon-
sible for vulnerabilities, making these two tools much less
sensitive to the number of training samples used. In con-

14

TABLE 4: F1 scores of each tool when changing the dataset
size

100%
36.29%
1.29%
1857%
41.26%
51.61%
2.29%

70%
36.76%
1.28%
48.39%
41.07%
42.11%
4.17%

40%
38.71%
1.26%
48.26%
40.96%
33.33%
7.69%

10%
28.40%
0.00%
47.26%
40.00%
4.65%
3.03%

Dataset Size
RLMD
LAVDNN
ZMVP
ReVeal
DCKM
MDSeqVAE

TABLE 5: F1 scores of each tool when changing the dataset
balance

1xb
28.40%
0.00%
47.26%
40.00%
4.65%
3.03%

4xb
31.78%

7.11%
48.25%
41.07%
25.00%
12.28%

7xb
45.79%

8.70%
48.55%
40.96%
51.85%
17.14%

10 x b
55.25%
7.43%
48.40%
40.00%
42.86%
28.88%

Dataset Balance
RLMD
LAVDNN
ZMVP
ReVeal
DCKM
MDSeqVAE

trast, the other four tools simply treated a program as a
natural-language text (i.e., a sequence of tokens), which did
not capture semantic information of the code. As a result,
the representation learned by these tools did not model
vulnerability-relevant code behaviors. That is, the models
mostly ended up learning irrelevant features.

Ovwerall, dataset size had significant impacts on the per-
formance of the tools. Using large enough datasets
was crucial to training DL models adequately and
avoiding overfitting, hence to better replicability. On
the other hand, learning semantic data (program)
representations largely mitigated model sensitivity
to dataset size, also making the tools more replicable.

Case study 2: impact of dataset balance. In a similar way
of exploring the relationship between dataset duplication
rate and tool performance (F1) as shown in Figure we
also attempted to discover the correlation between dataset
balance ratio and tool performance (also in terms of F1)
through curve fitting. As plotted in Figure |16} based on the
performance results of the six tools in our full replicability
experiments (y axis) and their original balance ratios (x),
we observed a reasonably linear (R? > 0.8) relationship
between the two variables. Overall, the tools using balanced
(a balance ratio of around 50%) datasets had much larger
performance deviations, as we discussed in Section
To further examine the impacts of dataset balance, we
did extended experiments by changing the dataset balance
of the dataset while keeping the total dataset size un-
changed, as we discussed in Section[3.5.2] Table 5|shows the
F1 score of each tool with each different balance ratio we
considered. We noticed that the performance of LAVDNN
and MDSeqVAE, which originally used balanced datasets
to evaluate their performance, was significantly impacted
by the dataset balance variations. After making the dataset
more balanced, the F1 score of LAVDNN improved from
0.00% (i.e., not working at all) to 8.70% and the F1 score of
MDSeqVAE improved from 3.03% (i.e., barely working) to
28.88%. These F1 scores were even much higher than the re-
sults in our full replicability experiments (where we used the
entire usable datasets but with the original balance ratios).
These noticeable performance variations can be explained
by the fact that LAVDNN and MDSeqVAE did not adopt

TABLE 6: Association between venue ranking and open
science

Open Science Venue Rank | Support | Confidence | Lift
A* 7.27% 36.36% 1.43

A 3.64% 25.00% 0.98

Availability | B 1.82% 17.00% | 0.65
C N.A N.A N.A

Unranked 10.91% 30.00% 1.18

Preprint 1.82% 12.50% 0.49

A* 18.18% 66.67% 0.92

- A 9.09% 50.00% 0.69
Executability "ponked | 3636% | 80.00% | 110
Preprint 9.09% 100.00% 1.38

A* 25.00% 100.00% 1.14

A 12.50% 100.00% | 1.14
Reproducibility " oied | 37.50% | 75.00% | 086
Preprint 12.50% 100.00% 1.14

A* 14.29% 50.00% 1.75

o A 14.29% 100.00% 35
Replicability Unranked N.A N.A N.A
Preprint N.A N.A N.A

any mechanisms to deal with dataset imbalance in their
designs [33], [37]], making them sensitive to dataset balance.

We observed that ZMVP and ReVeal, which originally
used imbalanced datasets to evaluate performance, were
stable against dataset balance changes. This was because
they purposely handled imbalanced datasets—ZMVP im-
plemented an undersampling mechanism called SpreadSub-
sample unsupervised filter [34] while ReVeal adopted an
oversampling mechanism called SMOTE [35]. These dedi-
cated data handling techniques led to greater model stability
hence better tool replicability, given that the balance of a
replication dataset is very likely to diff from that of the
dataset used in the original tool evaluation.

While RLMD and DCKM used imbalanced datasets to
evaluate performance as well, they were still sensitive to
dataset balance. Specifically, the F1 score of RLMD im-
proved from 28.40% to 55.25% and that of DCKM jumped
from 4.65% to 51.85%. We noticed that both RLMD and
DCKM employed cost-sensitive learning to deal with im-
balanced datasets. Thus, incorporating a dedicated handling
mechanism, while helpful, did not constitute a guarantee
for model stability against dataset balance variations. Using
datasets whose balance represents real-world scenarios in
tool evaluation is still necessary for successful replication
by others using real-world datasets.

Owerall, dataset balance had significant impacts on the
performance of the tools—most of them were sensitive
to balance variations. Adopting dedicated imbalance
handling strategies helped alleviate, but did not
always eliminate, the sensitivity. In all, evaluating
tools against datasets who balance ratios represent
real-world scenarios could help discover gaps early
on hence achieve better replicability later.

5 DiscuUssION

We first present and discuss additional observations beyond
those for answering the four RQs. Then, we discuss the
implications of our major findings and make actionable
suggestions accordingly based on those findings, to support
open science not only in the studied area of DL-based
software vulnerability detection but beyond.

15

5.1 Additional Observations

Association with publication venues. Intuitively, the venue

(regarding its visibility, reputation, etc.) in which a paper is
published may affect the open-science status of the paper.
For instance, it is plausible that a paper published at a more
visible/reputable (e.g., in terms of ranking) venue may look
better in various open-science dimensions. Thus, we classi-
fied the 55 papers based on the ranking of their published
venues. We used the CORE Rankings ﬁ as the reference,
which classifies a journal or conference into one of four
main classes (ranks), A*, A, B, C, in the order of decreasing
visibility /reputation/prestige. For venues that are not listed
in this ranking, we marked them as Unranked. For those
papers only posted on preprint websites (e.g., arXiv) and
not yet accepted by any peer-reviewed venues, we marked
them as Preprint. Table [2| (last column) lists these ranks for
the studied papers. Since we only evaluated executability,
reproducibility and replicability on the tools that passed
the previous dimensions, we only computed the association
on the studies evaluated in the respective dimensions (e.g.,
we only computed association between executability and
venue ranking on the 11 tools listed in Table [3). Table [6]
shows the frequent if-then associations between the venue
ranking and (success) status in each of four open-science
dimensions, using the Apriori algorithm [96]. The support
indicates how frequently a pair of venue rank and the open
science status appears among the relevant papers. The confi-
dence indicates the conditional probability of the occurrence
of the open science status given the paper’s venue rank.
The lift indicates the strength of association between the
paper’s venue rank and the open science status: lift<1
indicates the paper venue rank and the open science status
are mutually exclusive; [ift==1 indicates no association;
and lift>1 indicates that they are associated, with greater
lift indicating stronger association. When there is not any
paper at a rank (e.g., C) that has the success status for
an open-science dimension (e.g., Availability), there are no
applicable (N.A.) association results for that dimension.
Overall, our results show no consistent/significant asso-
ciation between open-science status and publication venue
ranking. The top-venue (A*) papers tended to have better
availability: the lift value is 1.43, greater than those with
venues of any other ranks. However, the top-venue papers
were found exclusive with executability as the lift is less
than 1. For reproducibility and replicability, the association
strengths with top-venue papers were not greater at all
compared to the strengths with venues in other ranks. This
indicates that the fact that the papers were published on top
venues did not necessarily indicate the open science status
of those papers, although the top venues usually enforce
open science policies. In contrast, while the lower-ranked
venues do not usually enforce open science policies, many
papers in there still practiced open science. This indicates
that the open science policies for the top venues may need
to be improved. Specifically, current top SE venues like
ICSE E] and FSE || require the authors to upload their
artifact packages when they submit the papers unless they

11. https:/ /www.core.edu.au/
12. http:/ /www.icse-conferences.org/
13. https:/ /www.esec-fse.org/

can explain the reasons not to do so. This is a possible
reason why the availability of the top-venue papers is better
than others. However, while artifact sharing is required,
there are no detailed requirements for the artifact package
itself. We noticed that some authors only uploaded the
data used without providing the source code to use it.
Some authors did not provide complete source code. Other
authors did not provide sufficient documentation for other
researchers to use them. These are the possible reasons that
the executability, reproducibility, and replicability of the top-
venue papers are not better than others.

Effectiveness of existing techniques. In Section by
applying the existing DL-based vulnerability detection tech-
niques to a real-world third-party dataset, we found that
none of the techniques had reasonably high accuracy.
DCKM and ZMVP achieved the best F1 scores (52% and
48%, respectively) in our replicability experiments, most
likely not sufficient for practice use. This also implies that
the actual overall effectiveness of current DL-based soft-
ware vulnerability detection techniques might have been
highly overrated. Although evaluating/comparing the per-
formance of these techniques was not the aim of our study,
our results did reveal that existing techniques still lack
practicality.

Comparison with R&R of traditional vulnerability detec-

tors. In [97]], [98], we performed a comparative evaluation
on five memory error vulnerability detectors that are based
on code analysis, a major traditional approach to vulner-
ability detection. In that study, we used the MemSafety
and Systems_BusyBox_MemSafety datasets from the SV-
COMP 2019 competition [99] to evaluate the five detectors.
One of them, cBMC [100], participated in the competition,
making our evaluation of it a reproduction. In the competi-
tion, the overall F1 score of CBMC on these two datasets was
97%, but the number in our experiments was only 72%.

Two other evaluated detectors, DrMemory [101] and
Valgrind [102], used different benchmarks (datasets) in
their original performance evaluation. Thus, our evaluation
of these two tools can be considered replication. Compared
to the datasets we used, their benchmarks came with no
ground truths; thus they were only evaluated in terms of
the numbers of vulnerabilities found. As a result, we could
not actually measure replicability since our metrics metrics
(i.e., recall, precision, F1) were not comparable to theirs.

These previous results initially signified that the contem-
porary open science status may not be promising in the area
of traditional vulnerability detection either.

Comparison with other R&R studies in Software Engi-

neering. There exist other R&R studies showing the state of
open science in SE. Robles [23] reviewed the papers in Min-
ing Software Repositories (MSR) that contained experimen-
tal analysis. He noticed that out of the 154 papers published
between 2004-2009, only two (1.30%) offered their raw data,
processed data, as well as complete sets of tools/scripts.
Rodriguez-Pérez et al. [19] reviewed 189 papers using the
SZZ algorithm, only 24 (12.70%) provided reproduction
packages and described the reproduction steps in detail.
Daoudi [103] tried to reproduce and replicate five machine
learning based Android malware detection tools. They spent
much effort but only three tools could be reproduced and

16

only one replicated successfully. Liu et al. [27] reviewed 94
DL-based software engineering papers and only 24 (25.53%)
provided accessible links for their replication packages.
These prior peer studies indicate that the issues of open
science in software engineering are prevalent.

5.2 Open Science in DL-based Vulnerability Detection

Based on our empirical results and the additional ob-
servations, we offer insights and recommendations that our
community could build upon to support open science in
DL-based software vulnerability detection.

Taking care of data (pre)processing. In Section H we
noticed that 57.1% of the reproducible tools had issues
with (pre)processing third-party program samples, making
it difficult for other researchers to comprehensively evaluate
these tools (e.g., evaluation scale may have to be reduced
since samples that can not be processed have to be dis-
missed). It also prevents these tools to be used against real-
world software, hence limiting their usefulness in practice.
Thus, we suggest that authors make their tools compatible
to third-party program samples, so that the developed tech-
niques can be better evaluated and more practically useful.
Based on our observations, such better compatibilities can
be achieved by either building data processing in the tool
core or providing additional data-preprocessing utilities
(e.g., scripts), with respect to real-world usage scenarios.

Building and using standard baselines/datasets. In Sec-
tion 4.4, we noticed that only 14.3% and 28.6% of the
reproducible tools were replicable in the partial and full
replicability experiments, respectively. Put in the context of
our holistic study, only 1/55 or 2/55 of the considered
techniques were replicable, a serious warning sign for open
science in our community. Based on our analyses, beyond
those impeding the availability and executability bottom-
line, the uses of balanced, artificially generated, or highly-
duplicated datasets in the original tool evaluations were
the main reasons for this dire outcome. In the 7 papers
studied in RQ4, 28.58% (2) of them only used artificially
generated datasets. We then went back to RQ1 and further
checked the 55 studied papers, and found that 34.55% (19)
of them only used artificially generated datasets. Using such
datasets led to inflation in the reported performance, hence
leading to big gaps with respect to real-world datasets and
realistic/practical application settings.

Besides, we also noticed that the baselines/datasets used
for evaluating the studied tools are usually different in
different papers. The main reason was that there was a lack
of standard baselines/datasets for evaluating vulnerability
detection techniques. Many of the studies had to build
new datasets to evaluate their techniques. For example,
the authors of Devign [53] spent around 600 man-hours
to collect real-world vulnerability samples to train and test
their technique. The authors of ReVeal [35] did the similar
thing to collect real-world vulnerability samples from two
projects (i.e., Debian and Chromium). For traditional (i.e.,
code-analysis-based) vulnerability detectors, the tools were
not even evaluated on the datasets with ground truths,
as we discussed in Section In contrast, many other
DL or SE domains have standard baselines/datasets for
evaluating techniques. For example, in computer vision,

ImageNet [104] is a large-scale image database which is
widely used for evaluating image classification techniques.
In software defect analysis, researchers usually use stan-
dard real-world baselines/datasets like Defect4] [105] and
Bugs.Jar [106]. These standard baselines/datasets well rep-
resent real-world application scenarios. They are accompa-
nied with ground truths, realistic, and diverse.

Thus, we strongly suggest that the software vulnerabil-
ity analysis community (including the areas of DL-based
and conventional code-based vulnerability detection) may
build standard baselines/datasets that well represent real-
world application scenarios and explicitly encourage or
even require researchers to evaluate their techniques against
standard baselines/datasets. Such baselines need to stay
at the front line (representing the state of the art) and the
datasets need to be large-scale, realistic, and diverse. Doing
so would not only help assess the real performance of the
techniques comprehensively and fairly; more importantly, it
would reveal performance insufficiency early on and help
researchers improve their technical designs accordingly,
hence ensuring the practical applicability of the tools for
end users while facilitating replication by other researchers.
Focusing more on tool practicality. Intuitively, a main
purpose of developing DL-based vulnerability detectors is
to help detect new vulnerabilities in real-world software
systems hence reduce the losses they may cause. However,
current tools seemed to be playing a “numbers arms race”
in the community—They tend to primarily pursue higher
numbers for effectiveness metrics like precision, recall, and
F1 on the existing datasets, largely dismissing the criticality
(e.g., security impact) of the vulnerabilities (e.g., treating
all the vulnerabilities detected equally in terms of their
severity). In this case, the practicability of the tools is not
evaluated in most of the papers. Indeed, software devel-
opers may expect the new tools to detect more critical
vulnerabilities (e.g., those are severer or harder to detect
by other tools). Thus, we checked the 55 papers for whether
they found new vulnerabilities and whether they discussed
the severity of the vulnerabilities that the tools can detect.
Unfortunately, only 7.27% (i.e., 4 papers [39], [40], [49],
[54]) of them discussed the new real-world vulnerabilities
found by the tools, and only 12.73% (i.e., 7 papers [36],
[39], [40], [49], 53], [54], [64]) of them discussed the tool’s
capability to detect more critical vulnerabilities. For exam-
ple, while not executable in our study, VulDeePecker was
used by the authors to have detected 4 new vulnerabilities
on 3 real-world projects, which were reported to the CVE
database E] [39]. Devign selected the latest 112 vulnerability
samples in the CVE database and checked whether it had
the potential to detect zero-day vulnerabilities, showing the
tool’s capability to detect more critical vulnerabilities [53].
The CVE database does have information regarding crit-
icality /severity of each archived case. Also, usually fol-
lowing the assignment of CVEs, software engineering pro-
fessionals (e.g., the developers of the vulnerable software
project) offer feedback through responses/reactions to bug
reports. Therefore, we suggest that future studies should
assess tool practicability (e.g., discussing vulnerability crit-
icality /severity, security consequence/impact) rather than

14. https:/ /cve.mitre.org/data/downloads/index.html

17

only reporting/improving the numbers regarding common
effectiveness metrics.

Assessing technique stability. In Section we noticed

that the performance of some tools was significantly im-
pacted by variations in dataset size and balance. Since the
dataset used in a replication study is very likely to differ
from the dataset used in authors’ original evaluation, these
and other dataset dimensions can be key players in replica-
tion failures. We thus suggest researchers conduct extensive
evaluations to assess the stability of their techniques against
variations in those dataset dimensions.

Our study results also offered further actionable strate-
gies for improving the stability when found undesirable
initially. We noticed that the performance of several tools
was not significantly impacted (e.g., ZMVP and ReVeal) by
variations in dataset size and balance because they explicitly
accounted for such factors by adopting dedicated handling
mechanisms (e.g, better program representation, oversam-
pling, or undersampling). These mechanisms helped reduce
overfitting hence improve the stability of the techniques.
Therefore, we suggest that researchers explicitly consider
stability when they design their techniques (e.g., by incor-
porating dedicated instability-mitigating mechanisms), and
include performance evaluations against varying dataset
characteristics to validate model stability.

Providing pre-trained models. In Section we noticed

that LAVDNN reported perfect reproduction results because
it provided a pre-trained DL model. The randomness in
training a DL model can become an obstacle for other
researchers to exactly reproduce the original experiment
results. Offering pre-trained models is a simple yet effective
way to address the issue in reproduction of ML/DL-based
research, while additionally saving computation resources
(that would be incurred for re-training). Thus, we suggest
authors of relevant research may consider including pre-
trained models in their shared artifact package to ease
reproduction by others.

5.3 Open Science in General Software Engineering

Since our study was focused on DL-based vulnerability
detection techniques, we cannot claim the generalizability
of our results to other areas in or beyond SE. The specific
numbers for the four open-science dimensions we obtained
may vary from tools to tools and from domains to domains
in absolute terms. However, we would like to note that
both the current status and success/failure effects/causes
of open science with the studied works are not necessarily
tied with the particular technical nature of this chosen area
of study. In particular, we have not found any clear links
between our availability /executability results and the fact
that the studied tools are DL-based techniques of any kind.
For instance, none of tools that were found executable
or non-executable were so because they were DL-based
or they aimed to detect vulnerabilities. For the results on
reproducibility and replicability, our analyses of successes
and failures were indeed linked to the DL-based nature of
the studied tools, but the results were not clearly linked to
the fact that they were vulnerability detectors. For example,
none of the tools that were found not replicable were so
because they dealt with the task of detecting vulnerabilities.

Thus, we believe our results on the four studied as-
pects of open science, and accordingly the insights and
recommendations, are likely to apply to broader areas in
SE. Next, we discuss such insights and make more general
recommendations for SE broadly.

Making tools publicly available for open science. In Sec-
tion our investigations revealed that only one fourth
of the DL-based software vulnerability detection studies
(published up to late year 2020) provided publicly avail-
able tools. This critical lack in tool availability, the very
first condition for reproduction and replication, rendered a
concerning situation of open science in this area. Given the
discussed benefits of open science, we suggest researchers in
our community take better efforts to support open science
by first making their research publicly accessible.

Our study also revealed that the ways of obtaining
the tool links varied, limiting the access by the public.
On the other hand, we observed the success pattern of
offering easy-to-find pointers in papers to artifacts stored
at persistent locations. Thus, we strongly advocate that our
community should establish/improve open science policies
to explicitly urge authors to present the artifact pointers
(e.g., tool links) in a conspicuous and consistent place in
their papers. In addition, in case that such pointers may
expire soon, we further suggest authors may share their
artifacts (e.g., source code and data) at persistent, archived
places (e.g., Figshare [107]).

Offering complete/functional tool with sufficient docu-

mentation. In Section we observed that 27.3% of the
available tools were incomplete and/or not fully functional,
making them not executable. Besides, the documentation
of 54.5% of these auailable tools was insufficient or even
entirely missing. While executable, some of the tools did not
document required dependencies or experimentation steps,
which largely impeded and slowed down our setup pro-
cesses. In contrast, all of the tools that provided detailed and
sufficient documentation were not only easy to set up and
execute, but also strongly reproducible (Section . Thus,
we strongly urge the SE research community to mandate
that authors provide complete and functional tool pack-
ages, along with sufficient documentation on tool setup and
experimentation instructions, to enable or facilitate artifact
reproduction and replication.

Ensuring consistency in dataset and tool implementation.
In Section[4.3] it was encouraging to see that almost all of the
(executable) tools involved in our reproduction study were
successfully reproduced. we noticed that these successes
were mainly attributed to the authors providing datasets,
tool implementation, and configuration information that
are consistent between the artifact package and relevant
descriptions in the original papers. And the only failing case
was found the failure causes also in these same regards.
Accordingly, We suggest that researchers supporting open
science may make efforts to ensure these consistencies.

Developing metrics of reproducibility and replicability.
In Sections[3.4]and we considered F1 score as the metric
for evaluating reproducibility and replicability (R&R) and
we considered 1% and 5% deviations as the thresholds
to differentiate successes versus failures. This method was
based on the prevalent use of F1 and relevant conventions

18

widely used in statistical analysis. However, to the best
of our knowledge, there are no generally accepted metrics
for quantifying R&R. Other researchers investigating R&R
may use different metrics for such evaluations. For exam-
ple, Liu et al. [27] used four different metrics to evaluate
R&R of four DL-based software engineering (vulnerability-
irrelevant) tools, while taking minimum, maximum, mean,
and standard deviation to determine successes/failures. A
standardized or at least widely accepted set of metrics for
R&R would provide a necessary common reference, as well
as a potential incentive, for researchers to evaluate R&R,
hence potentially closing extant gaps in open science. We
thus suggest out community take some efforts to develop
such metrics and publicize them.

Developing community-agreed approaches for open sci-
ence. In Section we noticed that there was no significant
association between the published venue rankings and open
science. The top-venue papers did not seem to be in a better
open-science status than the preprint or unranked-venue
papers because the open science policies in these top venues
are too coarse. Thus, besides the several recommendations
discussed above, we call for a community-wide effort to
establish an open-science standard for SE (like a similar
effort focusing on how to conduct empirical studies [108]).
The standard may put up recommendations like ours above
as an agreement, and enforce it via major SE venue call-
for-papers. Currently some conferences (e.g., ICSE and FSE)
already enforce sharing of open data, unless there is a
justified reason not to do so. But we should aim to do better
than that. Requiring mere data sharing is not enough. Except
for strong extenuating reasons related to the nature of the
research, the open-science requirements ought to be more
demanding. For example, the open science policies should
ask authors to submit code and reproduction/replication
documentation. Finally, the open-source standard should
not only address what are required but also include recom-
mended processes/procedures for achieving /validating the
fulfillment of each open-science requirement. For instance,
we may standardize the data sharing protocol/instrument
such as the platform to use and the mechanisms to adopt
(e.g., promoting the use of virtual machines/containers
to facilitate faithful reproduction). For another example,
researchers should conduct more evaluations using real-
world/industrial datasets in realistic settings (e.g. inde-
pendent testing with respect to real-world data imbalance
situations) to assess the practicality of techniques/tools.

5.4 Threats to Validity and Limitations

Internal validity. The major threat to the internal validity
of our study results lies in the possible errors that occurred
when we manually reviewed the papers, set up the tools,
and inspected the tool implementation. To mitigate the
problem, we conducted multiple rounds of careful inspec-
tion of all the relevant data, code, and other information that
we used to draw any conclusions presented in the paper.
Some of the criteria used in our study were subjective.
For example, decisions on whether the documentation of
a tool was sufficient were made in the paper according to
our own relevant knowledge. It is possible that other re-
searchers would determine that the documentation of a tool,

which was deemed insufficient in our study, is sufficient.
Another example is that we were not able to check all the
details of the tool implementation and configurations, thus
the conclusions on the implementation and configuration
consistencies drawn in RQ3 could be flawed. To mitigate the
problem, we contacted the authors to verify our findings in
these regards when necessary (e.g., we were uncertain).

For reproduction experiments, ideally we would like
to always use exactly the same experimental setting and
computing environments as those used for producing the
original, published results. We did ensure that we followed
the same experimental settings as originally used, including
the code, data, and library dependencies. Yet practically we
only have one set of hardware, thus we could not use exactly
the same computing platform for every paper as that in
the original experiment, as we explained in Section As
a result, our reproduction results and related conclusions
are subject to potential biases induced by the differences in
computing platforms (e.g., GPUs) used by us versus those
by the original paper authors.

External validity. The primary threat to the external valid-
ity of our results concerns the choices of the investigated
studies we used for evaluating the status of open science.
To mitigate this problem, we have tried our best to collect
as thoroughly as possible all the relevant papers. To the best
of our knowledge, the 55 investigated papers/studies were
those that introduced a DL-based software vulnerability de-
tection technique published and indexed by Google Scholar
prior to the end of October 2020.

Another threat to external validity lies in the repre-
sentativeness of the dataset we chose for evaluating repli-
cability and that we only considered a single dataset for
this evaluation. To mitigate the threat, we chose a dataset
containing a large number of real-world program samples
collected from multiple, diverse open-source projects. We
chose this dataset purposely when keeping in mind that
our findings based on it could be better generalized to
real-world vulnerability detection scenarios. Nevertheless,
it is still possible that some of our findings and conclusions
would shift if a different replication dataset were chosen.

Conclusion validity. We chose to focus on a particular topic
area of SE (i.e., DL-based vulnerability detection) in order
to enable in-depth investigations into open-science suc-
cesses/failures hence actionable insights/recommendations
for promoting good practices while improving against in-
sufficiencies, as justified earlier. This choice, however, also
limited our study scope, making our results and conclusions
more applicable/relevant to this or similar (e.g., DL-based
techniques for other SE tasks) areas than others. Thus, we
cannot claim that our insights/recommendations are surely
generalizable in SE broadly, especially those regarding re-
producibility and replicability.

6 RELATED WORK

Open science in SE has been previously examined. Several
studies [3]], [5], [6], [7], [8], [9] discussed the definitions and
standards of open science, replicability, and reproducibility.
In [10], [11]], [12], [13], the authors demonstrated the benefits
of open science in SE through several concrete examples.
In [14], [15], possible challenges and barriers of promoting

19

open science in SE were discussed. Other studies [16], [17]
provided open science guidelines and recommendations for
researchers in SE. However, these papers only discussed
open science conceptually or using a few examples, unlike
ours empirically and extensively investigating the state,
success patterns, and failure causes of open science.

De Magalhdes [18] studied how and how often the
SE papers published in the last 17 years replicated other
studies, but whether the experiment results were replicable
was not discussed. Rodriguez-Pérez [19] checked whether
the studies using the SZZ algorithm discussed replication
packages in their papers, but no actual empirical experiment
on replication was conducted. Mahmood [20] compared the
software defect prediction results in the original reporting
papers with the replication results obtained in other studies,
but the replication experiments were conducted by different
researchers. Overall, these previous studies investigated
open science, focusing on replicability and reproducibility,
but largely through literature reviews and qualitative dis-
cussions rather than empirical assessment like ours.

In [22], [23]], the authors investigated whether they could
obtain the source code of some studies, but they did not
investigate whether the obtained source code could replicate
the original experiment results. Kitchenham et al. [109]
attempted to repeat the meta-analysis in other papers to
assess their reproducibility and validity. In [25], the au-
thors conducted experiments to evaluate the DL model’s
reproducibility, but only one specific model was consid-
ered. Piantadosi et al. [26] evaluated the reproducibility of
DL studies by checking whether the studies documented
sufficient information, but no actual reproducibility exper-
iment on these studies was conducted. Daoudi et al. [103]
tried to reproduce/replicate five machine learning based
malware detection approaches and investigated the barri-
ers for reproducing/replicating them. In [110], the authors
replicated and extended the state-of-the-art multi-objective
software effort estimation CoGEE with an independent im-
plementation, which consolidated the validity of the orig-
inal study. In [27], the replicability and reproducibility of
several DL-based techniques studies were assessed. The
assessment involved many topics yet without conducting
in-depth analysis of why certain techniques were not repli-
cable/reproducible as we did.

The study in [35] examined how well existing DL-
based vulnerability detection techniques perform in a real-
world vulnerability prediction scenario. They found the
performance of the existing techniques dropped dramati-
cally because of the challenges with the real-world data
(e.g., data duplication, imbalanced training data, etc.). They
focused on the failure reasons of four tools and discussed
DL model related factors without quantifying the statistical
relationships between the factors and model performance.
In comparison, our study investigated the reproducibility of
seven tools, filtered from a large set of (55) techniques. We
also conducted in-depth studies to discover success/failure
patterns/causes in various relevant characterization dimen-
sions, as well as additional case studies to establish the im-
pact of several dataset characteristics via statistical analysis.

Beyond SE, open science has been studied in other areas
as well (e.g., replicability in computer graphics [21], repeata-
bility in computer systems research [24]). They had some

similar findings to ours in that they also found code/tools
were not always shared or the shared artifact did not cor-
respond to the one used for producing the published re-
sults. Yet they focused primarily on availability, rather than
conducting/diagnosing replication or replication in depth.
For example, in [24], the authors investigated 601 papers
published in ACM journals and conferences and checked
the availability of source code and datasets used. They also
executed the source code against the dataset and attempted
to reproduce, yet they did not validate reproducibility as
we did (i.e., comparing the reproduction experiment results
with the published ones). Accordingly, their recommenda-
tions were largely different from ours.

Moreover, compared to all prior relevant studies, ours
is more comprehensive in that it not only addressed one
or two commonly-studied aspects of open science (replica-
bility and reproducibility) but also systematically assessed
availability and executability as well.

7 CONCLUSION

While open science is increasingly promoted in the SE
community, it has not been systematically studied. In this
paper, we intended to start filling this gap with such a
systematic study targeting a specific topic area in SE.

We thoroughly investigated the open science status of
DL-based software vulnerability detection techniques. We
collected all the 55 relevant papers/studies published and
indexed on Google Scholar up to October 2020. Based on
this body of literature, we extensively examined four aspects
of open science: availability (whether the papers provided
publicly available tools), executability (whether the publicly
available tools were executable), reproducibility (whether the
executable tools can reproduce the originally reported per-
formance results), and replicability (whether the originally
reported performance results of reproducible tools can be
replicated on a different dataset). For each aspect, in addi-
tion to reporting the current status, we carefully examined
success patterns and failure causes in that aspect. Based on
our findings and insights, we offered actionable suggestions
to improve open science both in the studied area (of DL-
based vulnerability detection) and beyond.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. This research was sponsored by the Army Re-
search Office (W911NF-21-1-0027) and Office of Naval Re-
search (N000142212111).

REFERENCES
[1] P. Masuzzo and L. Martens, “Do you speak open science? re-
sources and tips to learn the language,” Peer] Preprints, Tech.
Rep., 2017.

P. Mirowski, “The future (s) of open science,” Social studies of
science, vol. 48, no. 2, pp. 171-203, 2018.

D. Mendez, D. Graziotin, S. Wagner, and H. Seibold, “Open sci-
ence in software engineering,” in Contemporary Empirical Methods
in Software Engineering. Springer, 2020, pp. 477-501.

E. Ferreira, L. L. Silva, and M. T. Valente, “Software engineering
meets deep learning: A literature review,” in SAC, 2021, pp. 1542—
1549.

(2]
(3]

(4]

20

(5]

6]

(71
(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Brooks,]. Daly, J. Miller, M. Roper, and M. Wood, “Replication
of experimental results in software engineering,” ISERN Technical
Report 96-10, University of Strathclyde, vol. 2, 1996.

N. Juristo and O. S. Gémez, “Replication of software engineering
experiments,” in Empirical software engineering and verification.
Springer, 2010, pp. 60-88.

O. S. Gémez, N. Juristo, and S. Vegas, “Replications types in
experimental disciplines,” in ESEM, 2010, pp. 1-10.

S. Krishnamurthi and J. Vitek, “The real software crisis: Repeata-
bility as a core value,” CACM, vol. 58, no. 3, pp. 34-36, 2015.

N. Juristo and S. Vegas, “The role of non-exact replications in
software engineering experiments,” EMSE, vol. 16, no. 3, pp. 295-
324, 2011.

P. Louridas and G. Gousios, “A note on rigour and replicability,”
ACM SIGSOFT Software Engineering Notes, vol. 37, no. 5, pp. 1-4,
2012.

G. Robles and D. M. German, “Beyond replication: An example
of the potential benefits of replicability in the mining of software
repositories community,” in RESER, 2010, pp. 1-4.

E. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” EMSE, vol. 13,
no. 2, pp. 211-218, 2008.

D. C. Ince, L. Hatton, and J. Graham-Cumming, “The case for
open computer programs,” Nature, vol. 482, no. 7386, pp. 485
488, 2012.

J. M. Gonzalez-Barahona and G. Robles, “On the reproducibility
of empirical software engineering studies based on data retrieved
from development repositories,” EMSE, vol. 17, no. 1, pp. 75-89,
2012.

S. M. Easterbrook, “Open code for open science?” Nature Geo-
science, vol. 7, no. 11, pp. 779-781, 2014.

J. Fehr, J. Heiland, C. Himpe, and J. Saak, “Best practices for
replicability, reproducibility and reusability of computer-based
experiments exemplified by model reduction software,” arXiv
preprint arXiv:1607.01191, 2016.

S. Vollmer, B. A. Mateen, G. Bohner, E]. Kirdly, R. Ghani,
P. Jonsson, S. Cumbers, A. Jonas, K. S. McAllister, P. Myles et al.,
“Machine learning and artificial intelligence research for patient
benefit: 20 critical questions on transparency, replicability, ethics,
and effectiveness,” BM]J, vol. 368, 2020.

C. V. de Magalhdes, F. Q. da Silva, R. E. Santos, and M. Suassuna,
“Investigations about replication of empirical studies in software
engineering: A systematic mapping study,” IST, vol. 64, pp. 76—
101, 2015.

G. Rodriguez-Pérez, G. Robles, and J. M. Gonzélez-Barahona,
“Reproducibility and credibility in empirical software engineer-
ing: A case study based on a systematic literature review of the
use of the szz algorithm,” IST, vol. 99, pp. 164-176, 2018.

Z. Mahmood, D. Bowes, T. Hall, P. C. Lane, and J. Petri¢, “Repro-
ducibility and replicability of software defect prediction studies,”
IST, vol. 99, pp. 148-163, 2018.

N. Bonneel, D. Coeurjolly, J. Digne, and N. Mellado, “Code
replicability in computer graphics,” TOG, vol. 39, no. 4, pp. 93-1,
2020.

A. Boll and T. Kehrer, “On the replicability of experimental tool
evaluations in model-based development,” in ICSMM, 2020, pp.
111-130.

G. Robles, “Replicating MSR: A study of the potential replica-
bility of papers published in the mining software repositories
proceedings,” in MSR, 2010, pp. 171-180.

C. Collberg and T. A. Proebsting, “Repeatability in computer
systems research,” CACM, vol. 59, no. 3, pp. 6269, 2016.

G. Piantadosi, S. Marrone, and C. Sansone, “On reproducibility of
deep convolutional neural networks approaches,” in International
Workshop on Reproducible Research in Pattern Recognition, 2018, pp.
104-109.

O. E. Gundersen and S. Kjensmo, “State of the art: Reproducibil-
ity in artificial intelligence,” in AAAI, vol. 32, no. 1, 2018, pp.
1644-1651.

C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On the
replicability and reproducibility of deep learning in software
engineering,” arXiv preprint arXiv:2006.14244, 2020.

E. C. McKiernan, P. E. Bourne, C. T. Brown, S. Buck, A. Kenall,
J. Lin, D. McDougall, B. A. Nosek, K. Ram, C. K. Soderberg et al.,
“Point of view: How open science helps researchers succeed,”
elife, vol. 5, p. €16800, 2016.

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

(52]

[53]

G. McGraw, “Software security,” IEEE Security & Privacy, vol. 2,
no. 2, pp. 80-83, 2004.

B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery
techniques: A survey,” in International Conference on Multimedia
Information Networking and Security, 2012, pp. 152-156.

G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and
P. Montague, “Cross-project transfer representation learning for
vulnerable function discovery,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 7, pp. 3289-3297, 2018.

G. Lin, J. Zhang, W. Luo, L. Pan, O. De Vel, P. Montague, and
Y. Xiang, “Software vulnerability discovery via learning multi-
domain knowledge bases,” TDSC, vol. 18, no. 5, pp. 2469-2485,
2019.

R. Li, C. Feng, X. Zhang, and C. Tang, “A lightweight assisted
vulnerability discovery method using deep neural networks,”
IEEE Access, vol. 7, pp. 80079-80 092, 2019.

M. Zagane, M. K. Abdi, and M. Alenezi, “Deep learning for soft-
ware vulnerabilities detection using code metrics,” IEEE Access,
vol. 8, pp. 74 562-74 570, 2020.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” TSE, 2021, early
Access.

T. Nguyen, T. Le, K. Nguyen, O. de Vel, P. Montague,]J. Grundy,
and D. Phung, “Deep cost-sensitive kernel machine for binary
software vulnerability detection,” in PAKDD, 2020, pp. 164-177.

T. Le, T. Nguyen, T. Le, D. Phung, P. Montague, O. De Vel, and
L. Qu, “Maximal divergence sequential autoencoder for binary
software vulnerability detection,” in ICLR, 2018, pp. 1-15.

C. D. Sestili, W. S. Snavely, and N. M. VanHoudnos, “Towards se-
curity defect prediction with ai,” arXiv preprint arXiv:1808.09897,
2018.

Z.Li,D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability
detection,” NDSS, pp. 1-15, 2018.

Z.Li,D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A frame-
work for using deep learning to detect software vulnerabilities,”
TDSC, vol. 19, no. 4, pp. 2244-2258, 2021.

S. Liu, M. Dibaei, Y. Tai, C. Chen, J. Zhang, and Y. Xiang, “Cyber
vulnerability intelligence for internet of things binary,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2154-2163,
2019.

Association for Computing Machinery, “Artifact review and
badging - current: Terminology,” https:/ /shorturl.at/efior, 2021.
A. Rasool, “Which is the most vulnerable programming lan-
guage?” https://shorturl.at/fHJQ1, 2019.

J. Brownlee, “Classification accuracy is not enough: More perfor-
mance measures you can use,” https://shorturl.at/diKR2, 2014.

S. M. Ross, Introduction to probability and statistics for engineers and
scientists. Academic Press, 2020.

L. Li and A. Talwalkar, “Random search and reproducibility for
neural architecture search,” in UAI, 2020, pp. 367-377.

G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based
vulnerable function detection: A benchmark,” in ICICS, 2019, pp.
219-232.

Y. Fang, S. Han, C. Huang, and R. Wu, “Tap: A static analysis
model for php vulnerabilities based on token and deep learning
technology,” PLOS One, vol. 14, no. 11, p. €0225196, 2019.

N. Guo, X. Li, H. Yin, and Y. Gao, “Vulhunter: An automated
vulnerability detection system based on deep learning and byte-
code,” in ICICS, 2019, pp. 199-218.

N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, and Y. Xiong,
“Project achilles: A prototype tool for static method-level vul-
nerability detection of java source code using a recurrent neural
network,” in ASE, 2019, pp. 114-121.

J. Gao, X. Yang, Y. Fu, Y. Jiang, H. Shi, and J. Sun, “Vulseeker-pro:
Enhanced semantic learning based binary vulnerability seeker
with emulation,” in FSE, 2018, pp. 803-808.

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability de-
tection in source code using deep representation learning,” in
ICMLA, 2018, pp. 757-762.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” NIPS, vol. 32, pp. 1-11,
2019.

21

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(74]

[75]

[76]

[77]

(78]

Z.Li,D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: a
deep learning-based fine-grained vulnerability detector,” TDSC,
vol. 19, no. 4, pp. 2821-2837, 2021.

D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “pVulDeePecker: A deep
learning-based system for multiclass vulnerability detection,”
TDSC, vol. 18, no. 5, pp. 2224-2236, 2019.

M.+j. Choi, S. Jeong, H. Oh, and J. Choo, “End-to-end prediction
of buffer overruns from raw source code via neural memory
networks,” arXiv preprint arXiv:1703.02458, 2017.

V. Nguyen, T. Le, O. de Vel, P. Montague, J. Grundy, and
D. Phung, “Dual-component deep domain adaptation: A new
approach for cross project software vulnerability detection,” in
PAKDD, 2020, pp. 699-711.

S. Liu, G. Lin, Q.-L. Han, S. Wen,]J. Zhang, and Y. Xiang, “Deep-
balance: Deep-learning and fuzzy oversampling for vulnerability
detection,” TFS, vol. 28, no. 7, pp. 1329-1343, 2019.

J. Zheng, . Pang, X. Zhang, X. Zhou, M. Li, and]J. Wang, “Recur-
rent neural network based binary code vulnerability detection,”
in ACAI, 2019, pp. 160-165.

J. Tian, W. Xing, and Z. Li, “Bvdetector: A program slice-based
binary code vulnerability intelligent detection system,” IST, vol.
123, p. 106289, 2020.

X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, “Automated vul-
nerability detection in source code using minimum intermediate
representation learning,” Applied Sciences, vol. 10, no. 5, p. 1692,
2020.

J. Harer, O. Ozdemir, T. Lazovich, C. Reale, R. Russell, L. Kim
et al., “Learning to repair software vulnerabilities with generative
adversarial networks,” NIPS, vol. 31, pp. 7944-7954, 2018.

S. Liu, G. Lin, L. Qu, J. Zhang, O. De Vel, P. Montague, and
Y. Xiang, “CD-VulD: Cross-domain vulnerability discovery based
on deep domain adaptation,” TDSC, vol. 19, no. 1, pp. 438451,
2020.

X. Cheng, H. Wang, J. Hua, M. Zhang, G. Xu, L. Yi, and
Y. Sui, “Static detection of control-flow-related vulnerabilities
using graph embedding,” in ICECCS, 2019, pp. 41-50.

X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu,
“Vulsniper: Focus your attention to shoot fine-grained vulner-
abilities.” in IJCAI, 2019, pp. 4665-4671.

G. Huang, Y. Li, Q. Wang, J. Ren, Y. Cheng, and X. Zhao, “Au-
tomatic classification method for software vulnerability based on
deep neural network,” IEEE Access, vol. 7, pp. 28 291-28 298, 2019.
C. J. Clemente, F. Jaafar, and Y. Malik, “Is predicting software
security bugs using deep learning better than the traditional
machine learning algorithms?” in QRS, 2018, pp. 95-102.

W. Xiaomeng, Z. Tao, W. Runpu, X. Wei, and H. Changyu,
“CPGVA: code property graph based vulnerability analysis by
deep learning,” in ICAIT, 2018, pp. 184-188.

S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learn-
ing to map source code to software vulnerability using code-as-
a-graph,” arXiv preprint arXiv:2006.08614, 2020.

Y. Hu, “A framework for using deep learning to detect software
vulnerabilities,” 2019, MS thesis. Harbin Institute of Technology.
H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv
preprint arXiv:1708.02368, 2017.

G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Deep semantic
feature learning with embedded static metrics for software defect
prediction,” in APSEC, 2019, pp. 244-251.

F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability detection with
deep learning,” in ICCC, 2017, pp. 1298-1302.

V.Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu,
and D. Phung, “Deep domain adaptation for vulnerable code
function identification,” in IJCNN, 2019, pp. 1-8.

M. A. Albahar, “A modified maximal divergence sequential auto-
encoder and time delay neural network models for vulnerable
binary codes detection,” IEEE Access, vol. 8, pp. 14999-15006,
2020.

R. Li, C. Zhang, C. Feng, X. Zhang, and C. Tang, “Locating
vulnerability in binaries using deep neural networks,” IEEE
Access, vol. 7, pp. 134660-134 676, 2019.

R. Demidov and A. Pechenkin, “Application of siamese neural
networks for fast vulnerability detection in mips executable
code,” in FTC, 2019, pp. 454—466.

S. Srikant, “Vulcan: classifying vulnerabilities in solidity smart
contracts using dependency-based deep program representa-
tions,” Ph.D. dissertation, MIT, 2020.

https://shorturl.at/efior
https://shorturl.at/fHJQ1
https://shorturl.at/diKR2

[79]

[80]

(81]

[82]

(83]

(84]

(85]

(86]

(871

(88]

(89]

[90]

[91]

[92]

[93]

[94]

A. Tanwar, K. Sundaresan, P. Ashwath, P. Ganesan, S. K.
Chandrasekaran, and S. Ravi, “Predicting vulnerability in
large codebases with deep code representation,” arXiv preprint
arXiv:2004.12783, 2020.

Y. Pang, X. Xue, and H. Wang, “Predicting vulnerable software
components through deep neural network,” in ICDLT, 2017, pp.
6-10.

G. Jabeen, L. Ping, J. Akram, and A. A. Shah, “An integrated
software vulnerability discovery model based on artificial neural
network.” in SEKE, 2019, pp. 349-458.

C. Catal, A. Akbulut, S. Karakati¢, M. Pavlinek, and V. Podgor-
elec, “Can we predict software vulnerability with deep neural
network?” in International Multiconference: Information Society,
2016, pp. 19-22.

J. Kim, D. Hubczenko, and P. Montague, “Towards attention
based vulnerability discovery using source code representation,”
in ICANN, 2019, pp. 731-746.

C. Catal, A. Akbulut, E. Ekenoglu, and M. Alemdaroglu, “Devel-
opment of a software vulnerability prediction web service based
on artificial neural networks,” in PAKDD, 2017, pp. 59-67.

H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for predicting vulnerable software
components,” TSE, vol. 47, no. 1, pp. 67-85, 2018.

X. Ban, S. Liu, C. Chen, and C. Chua, “A performance evalua-
tion of deep-learnt features for software vulnerability detection,”
CCPE, vol. 31, no. 19, p. €5103, 2019.

W. Han, J. Pang, X. Zhou, and D. Zhu, “Binary software vul-
nerability detection method based on attention mechanism,” in
ICMCCE, 2020, pp. 1462-1466.

W. An, L. Chen, J. Wang, G. Du, G. Shi, and D. Meng,
“AVDHRAM: Automated vulnerability detection based on
hierarchical representation and attention mechanism,” in
ISPA/BDCloud/SocialCom/SustainCom, 2020, pp. 337-344.

Y. Mao, Y. Li, J. Sun, and Y. Chen, “Explainable software vulner-
ability detection based on attention-based bidirectional recurrent
neural networks,” in Big Data, 2020, pp. 4651-4656.

D. Cao, J. Huang, X. Zhang, and X. Liu, “FTCLNet: Convolutional
LSTM with Fourier transform for vulnerability detection,” in
TrustCom, 2020, pp. 539-546.

K. Filus, M. Siavvas, J. Domarniska, and E. Gelenbe, “The random
neural network as a bonding model for software vulnerability
prediction,” in MASCOTS, 2020, pp. 102-116.

A. Lima, L. Rossi, and M. Musolesi, “Coding together at scale:
Github as a collaborative social network,” in AAAI, vol. 8, no. 1,
2014, pp. 295-304.

X. Meng and B. P. Miller, “Binary code is not easy,” in ISSTA,
2016, pp. 24-35.

M. Allamanis, “The adverse effects of code duplication in ma-
chine learning models of code,” in SPLASH, 2019, pp. 143-153.

22

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

M. S. Santos,]J. P. Soares, P. H. Abreu, H. Araujo, and]. Santos,
“Cross-validation for imbalanced datasets: avoiding overopti-
mistic and overfitting approaches [research frontier],” IEEE Com-
putational Intelligence Magazine, vol. 13, no. 4, pp. 59-76, 2018.

R. Perego, S. Orlando, and P. Palmerini, “Enhancing the Apriori
algorithm for frequent set counting,” in International Conference
on Data Warehousing and Knowledge Discovery, 2001, pp. 71-82.

Y. Nong and H. Cai, “A preliminary study on open-source
memory vulnerability detectors,” in SANER, 2020, pp. 557-561.
Y. Nong, H. Cai, P. Ye, L. Li, and F. Chen, “Evaluating and
comparing memory error vulnerability detectors,” IST, vol. 137,
p- 106614, 2021.

D. Beyer, “Automatic verification of C and Java programs: SV-
COMP 2019,” in TACAS, 2019, pp. 133-155.

D. Kroening and M. Tautschnig, “CBMC-C bounded model
checker,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2014, pp. 389-391.

D. Bruening and Q. Zhao, “Practical memory checking with Dr.
Memory,” in CGO, 2011, pp. 213-223.

J. Seward and N. Nethercote, “Using Valgrind to detect unde-
fined value errors with bit-precision.” in USENIX ATC, 2005, pp.
17-30.

N. Daoudi, K. Allix, T. F. Bissyandé, and J. Klein, “Lessons learnt
on reproducibility in machine learning based android malware
detection,” EMSE, vol. 26, no. 4, pp. 1-53, 2021.

J. Deng, W. Dong, R. Socher, L-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in CVPR,
2009, pp. 248-255.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of exist-
ing faults to enable controlled testing studies for Java programs,”
in ISSTA, 2014, pp. 437-440.

R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.
jar: a large-scale, diverse dataset of real-world Java bugs,” in
MSR, 2018, pp. 10-13.

D. Science, “Figshare,” https:/ /figshare.com, 2022.

P. Ralph, N. b. Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dit-
trich, N. Ernst, M. Felderer, R. Feldt, A. Filieri et al., “Empiri-
cal standards for software engineering research,” arXiv preprint
arXiv:2010.03525, 2020.

B. Kitchenham, L. Madeyski, and P. Brereton, “Meta-analysis for
families of experiments in software engineering: a systematic
review and reproducibility and validity assessment,” EMSE,
vol. 25, no. 1, pp. 353-401, 2020.

V. Tawosi, F. Sarro, A. Petrozziello, and M. Harman, “Multi-
objective software effort estimation: A replication study,” TSE,
vol. 48, no. 8, pp. 3185-3205, 2021.

https://figshare.com

	Introduction
	Background and Motivation
	Open Science in SE
	DL-Based Software Vulnerability Detection
	Motivating Examples

	Study Design
	Process Overview
	RQ1. Availability
	RQ2. Executability
	RQ3. Reproducibility
	RQ4. Replicability
	RQ4.1 Partial Replicability
	RQ4.2 Full Replicability
	Case Studies

	Results
	RQ1. Availability
	RQ2. Executability
	RQ3. Reproducibility
	RQ4. Replicability
	RQ4.1 Partial Replicability
	RQ4.2 Full Replicability
	Case Studies

	Discussion
	Additional Observations
	Open Science in DL-based Vulnerability Detection
	Open Science in General Software Engineering
	Threats to Validity and Limitations

	Related Work
	Conclusion
	References

