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A Longitudinal Study of Application Structure
and Behaviors in Android

Haipeng Cai and Barbara Ryder

Abstract—With the rise of the mobile computing market, Android has received tremendous attention from both academia and industry.
Application programming in Android is known to have unique characteristics, and Android apps be particularly vulnerable to various
security attacks. In response, numerous solutions for particular security issues have been proposed. However, there is little broad
understanding about Android app code structure and behaviors along with their implications for app analysis and security defense,
especially in an evolutionary perspective. To mitigate this gap, we present a longitudinal characterization study of Android apps to
systematically investigate how they are built and execute over time. Through lightweight static analysis and method-level tracing, we
examined the code and execution of 17,664 apps sampled from the apps developed in each of eight past years, with respect to metrics
in three complementary dimensions. Our study revealed that (1) apps functionalities heavily rely on the Android framework/SDK, and
the reliance continues to grow, (2) Activity components constantly dominated over other types of components and were responsible for
the invocation of most lifecycle callbacks, (3) event-handling callbacks consistently focused more on user-interface events than system
events, (4) the overall use of callbacks has been slowly diminishing over time, (5) the majority of exercised inter-component
communications (ICCs) did not carry any data payloads, and (6) sensitive data sources and sinks targeted only one/two dominant
categories of information or operations, and the ranking of source/sink categories remained quite stable throughout the eight years. We
discuss the implications of our empirical findings for cost-effective app analysis and security defense for Android, and make
cost-effectiveness improvement recommendations accordingly.

Index Terms—Android, code structure, app behavior, longitudinal study, evolution, app analysis, security, ICC.
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1 INTRODUCTION

T HE Android platform and its user applications (referred
to as apps) have been dominating various mobile computing

platforms, including smartphones, tablets, and other consumer
electronics [1], [2]. Android developers are increasingly creating
apps that cover a growing range of application domains.
Meanwhile, accompanying the rapid growth of Android apps is a
surge of security threats and attacks of various forms [1], [2]. In
this context, it becomes crucial for both researchers and tool
developers to understand the particular software ecosystem of
Android for developing cost-effective solutions to assuring the
quality of Android apps.

Android apps have been primarily developed in two
Java-based (JVM) languages, the canonical Java and Kotlin [3]
(A Java-like language)—both are the current official development
languages in Android. Yet these apps are different from
traditional Java programs in how they are coded and executed.
Android apps are supposed to rely on the Android SDK and
various third-party libraries to realize their functionalities,
according to existing (static) characterizations [4], [5]. In fact,
many of the distinct characteristics of Android apps have led to
unique challenges in developing sound and effective code-based
app analyses [4], [6]. These challenges have resulted in
specialization and customization, for the sake of Android apps, of
analysis algorithms that were originally devised for traditional
object-oriented programs.
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Specifically, the framework-based nature of Android apps
requires substantial modeling of the platform and runtime for
static analyses [4], [5], [7] to achieve reasonable accuracy.
Implicit invocation between app components via a mechanism
called inter-component communication (ICC) requires special
treatments (e.g., ICC resolution [8], [9]) for a soundy [10]
whole-program analysis. In addition, the event-driven paradigm
in Android programming accounts for many challenges in app
security analyses, such as determining component lifecycles [4],
[6], [7] and computing callback control flows [6], [11].

Existing research on Android apps has been mainly aimed at
security [12]. Further, most existing solutions targeted specific
security issues, with merely a few offering a broader view of
application security related characteristics in general [13], [14].
Intuitively, it is important to dissect app behaviors that commonly
underlie varied security issues, so as to develop more capable and
fundamental defense solutions that work across different kinds of
those issues. Moreover, while a critical quality factor, security is
not the only aspect of the holistic quality profile of apps.
Knowledge about the underlying app behaviors is also essential
for developing cost-effective app quality assurance solutions with
respect to quality aspects other than security.

Studies do exist which aim to characterize Android apps
beyond the security aspect, yet current studies are not sufficient
in multiple ways. First, most of the prior work in this area
(e.g., [15], [16], [17], [18], [19], [20], [21]) exclusively targeted
static characterizations by examining the source code rather than
the run-time behaviors of the apps. While they provide useful
insights into app behaviors, these studies only offer a relatively
rough approximation of those behaviors due to their overly
conservative nature (i.e., considering all possible app executions).
Dynamic characterizations would be necessary to complement



these studies by precisely profiling how apps actually behave at
runtime. Second, existing dynamic characterization studies for
Android either only address individual apps (e.g., [22]) or look at
external exhibitions of apps behaviors (e.g., resource usage [14]
and battery consumption [17]). Yet these dynamic studies do not
offer a code-based (i.e., from the perspectives of app
programming and code constructs) behavioral understanding of
apps at large. Since it is the code of an app that holds the primary
and original control of the app’s behaviors, characterizing
code-based (static and dynamic) app traits is a key to gaining a
deep, fine-grained understanding of app behaviors that would
commonly explain their diverse exhibitions. We refer to a
code-based behavioral characterization of an app population as a
general characterization. Third, other peer studies focus on
malware (e.g., [23], [24], [25]) only or lack an evolutionary
lens [26], thus they do not provide behavioral understandings
about benign apps and the evolution of their behaviors. In all,
there is a lack of general characterizations of code-based
behaviors with an evolutionary lens for Android apps as a
peculiar software domain.

To fill this gap, we conducted large-scale longitudinal studies
of user applications in Android. We sampled a total of 17,664
apps developed throughout the past eight years (2010–2017) from
varied sources, exercised each app with inputs that cover at least
60% of its code (74.25% on average), and gathered over 400GB
execution traces of ordinary method calls and ICCs. From their
code and executions that reasonably represent how they are
developed and used, respectively, we characterize these apps,
both statically and dynamically, while from both structural and
behavioral perspectives.

In particular, we stress metrics relevant to notable challenges
to app analysis (as mentioned earlier) including the interaction
between user code and libraries, distribution of app components
and ICCs, classification of callbacks, and categorization of
security-sensitive data access. Accordingly, we defined
characterization metrics that fall in three orthogonal dimensions,
capturing the code and execution features of Android apps in
multiple perspectives: Structure dimension, measuring the
structure of app code and executions, Communication dimension,
measuring component-level functionality invocation and data
transmission, and Sensitive Access dimension, measuring the
security aspect of apps in terms of their access to sensitive data.
In each dimension, we further define complementary
subcategories of measures. As a result, 122 metrics were derived
and used in our characterization.

These multi-perspective metrics and corresponding
measurement results constitute a systematic characterization of
Android apps, which offers new understandings of app behaviors
on the predominant mobile platform. Our study also demonstrates
a practical methodology for obtaining such understandings of
framework-based software applications in general. For the longer
term, our results will benefit customization and/or optimization of
future (code-based static/dynamic) Android app analyses, and
will inform better design of techniques and tools for more
cost-effectively securing the Android ecosystem. In particular, we
apply an evolutionary lens to the characteristics of these apps to
investigate how the static code traits and run-time behaviors of
Android apps change over time. This lens reveals the dynamics of
code structure and behavior traits in Android. Meanwhile, we put
the dynamic behaviors of apps in context of their corresponding
static characteristics to examine how apps actually behave versus

how they are coded (i.e., how they are attempted/supposed to
behave).

Our study has led to several noteworthy findings. First, the
study revealed that the studied apps are generally featured with
heavy reliance on the Android platform in terms of both API
callsites referred in the code and API calls invoked at runtime.
Beyond similar prior studies which all suggested the significant
involvement of the platform/SDK in apps’ functionalities, our
study highlighted the dominating proportion of the platform
functionalities in those of apps while also revealing similar
dominance in apps’ runtime behaviors. Also, the dominance kept
growing over the studied period of eight years, as reflected by the
continuously rising percentage of calls occurred within the SDK
among all method calls in apps’ code and executions. In contrary,
we found that user code in Android apps kept shrinking in terms
of the percentage of all callsites referred in user code and method
calls initiated from that code layer, whether the calls being within
user code or targeting the SDK. Regarding the involvement of
third-party libraries in apps’ code structure and execution
composition, calls to these libraries tended to be rarely initiated
from either the platform or user code, yet followed by noticeable
and gradually increasing portions of calls within libraries.

Second, our study showed that only a small portion (<2%) of
callsites and runtime method calls in the benchmarks targeted
callback methods, albeit the presence of exercised callbacks in
app executions was noticeably greater than that of callback
callsites in app code. Among the callbacks used in the sample
apps, either in code or at runtime, more aimed at lifecycle
management of various types of app components by the Android
platform than handling varied kinds of events (e.g., events on
user interaction, system status, hardware management, etc.). In
particular, consistently over time, the most dominating portion of
lifecycle callbacks were used for managing the lifecycle of
Activity components while the most dominating portion of
event-handling callbacks were invoked for handling events
associated with Views (as a type of user interface) and System
status. Yet overall the use of callbacks in the apps dropped
considerably, while the category ranking of used callbacks
remained almost the same, over the studied years.

Third, our results indicated ICCs were a relatively minor part
of the runtime behaviors of apps—among all method calls
occurred during app executions, (API calls for) ICCs accounted
for a tiny proportion (<1%) only. Among the exercised ICCs,
Activity components (the type of components hosting GUIs) were
the dominating (85%) initiators and receivers of ICCs, consistent
with the dominance of this type of components over all other
types of components that were exercised during app executions.
While this is not surprising given the fact that Android apps are
generally rich in GUIs, such an overwhelming degree of
dominance has not been reported before. Historically, however,
we found that this dominance has been declining over time. We
also found that newer apps tended to use Content Providers (app
components for data storage and management) with increasing
frequency at runtime yet with less and less callsites in their code.
In addition, between components within the same apps, the
targets of exercised ICCs were rarely implicitly matched but
almost always explicitly specified, while between components
across apps, the targets were much more likely to be implicitly
resolved. The majority, and over time increasing proportions, of
these exercised ICCs carried no data at all, or they did so
preferably in the extras field of the ICC messaging objects.
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Fourth, we demonstrated through this study the extensive
access to sensitive data and operations in the studied apps, albeit
through a relatively proportion of callsites for such access. Over
time, proportions of APIs for accessing sensitive data among all
method calls in apps remained generally stable, yet those of APIs
for accessing sensitive operations (which are potentially able to
send the data out of the apps) have been declining. Among the
categories of accessed sensitive data, network information was
the most common category, while the most common category of
accessed sensitive operations were related to account setting.
Through an evolutionary lens, we found that both the top
categories of sensitive access and the overall ranking of major
categories have not changed much across the eight-year span
studied. Also, with respect to the category ranking, the access in
app code is overall proportional to that during app executions in
terms of the percentage of the underlying APIs.

In sum, this paper makes the following contributions:
• We systematically characterized both the code traits and

run-time behaviors of 17,664 apps in terms of a diverse set
of metrics that lie in three complementary dimensions:
functionality composition (Structure), component
communication (Communication), and access to sensitive
data and operations (Sensitive Access).

• We conducted a longitudinal study of apps developed in the
past eight years (2010–2017), which revealed how Android
apps (as a population) evolved over time with respect to the
diverse metrics.

• We discussed the implications of our empirical findings and
made actionable recommendations to both researchers and
tool developers for improving (code-based static and
dynamic) app analysis in general and security defense
techniques in particular, for enhanced cost-effectiveness. We
also examined how the quality of test inputs affected our
conclusions.

• We released our study utilities and dataset to facilitate both
reuse and reproduction, which is available online [27].

2 BACKGROUND

Android is now the most popular operating system (OS) running
on various types of mobile devices. To facilitate the development
of user applications, the Android OS provides a rich set of APIs
as part of its SDK which implements functionalities commonly
used on various mobile devices. These APIs serve as the only
interface for applications to access the device, and the
framework-based paradigm allows for quick creation of user
applications through extending and customizing SDK classes and
interfaces. The Android framework communicates with
applications and manages their executions via various callbacks,
including lifecycle methods and event handlers [6].

Four types of components are defined in Android, Activity,
Service, Broadcast Receiver, and Content Provider, as the
top-level abstraction of user interface, background service,
response to broadcasts, and data storage, respectively [28]. The
SDK includes APIs for ICC by which components communicate
primarily via messaging objects called Intents. We focus on ICCs
based on Intents that can link components both within the same
app (i.e., internal ICC) and across multiple apps (i.e., external
ICC). Application components send and receive Intents by
invoking ICC APIs either explicitly or implicitly. For an explicit
ICC, the source component specifies to which target component

the Intent is sent; for an implicit ICC, the component which will
receive the Intent is determined by the Android OS at runtime.

Some information on mobile devices is security-sensitive,
such as device ID, location, and contacts [13], [28].
Exposure/leak of the sensitive information is a main cause of
varied security threats in an app. A primary approach to the
defense against these threats is to detect the existence of feasible
program paths, called sensitive information flow, between
predefined information sources and information sinks [6], [29]. In
Android, sources are the APIs through which apps access
sensitive information (i.e., sensitive APIs). Therefore, as per this
definition, we consider sensitive the data retrieved by any source
API. The Android SDK also provides APIs (inclusive of those for
ICCs) through which apps can send their internal data to other
apps either on the same device or on remote devices (e.g.,
sending data to network and writing to external storage). These
APIs potentially constitute operations that are security-critical as
they may lead to data leakage (i.e., critical APIs or sinks). We
consider sensitive the operation performed the invocation of any
sink API.

3 METHODOLOGY

To understand the dynamic features of applications in Android,
we traced all ordinary method calls and Intent ICCs. The resulting
traces capture coarse-grained (method-level) control flows but not
data flows. Nonetheless, such traces can reveal a broad scope of
important dynamic characteristics regarding the typical behaviors
and security-related traits of Android apps. To contextualize these
dynamic features, we further characterize the underlying static
code features as well. Next, we elaborate on the design of our
empirical study—benchmark apps, inputs used for the dynamic
analysis, metrics calculated, and study process.

3.1 Benchmarks and Test Inputs
TABLE 1: Numbers of benchmarks of per different year and in
total used in our study

Year 2010 2011 2012 2013 2014 2015 2016 2017 Total
#apps 2,235 2,222 2,208 2,107 2,288 2,183 2,174 2,247 17,664

For our evolutionary characterization, we collected sample
apps that were developed in each of the eight past years between
2010–2017. The apps from 2017 were downloaded from Google
Play, while all other apps were selected from the AndroZoo
database [30] (which crawls apps from a large variety of
sources). The reason that we did not also download year-2017
apps from AndroZoo was that during our study period there were
not sufficient samples in there.

Benchmark selection process and criterion. For each year, we
started with a pool of 500 apps that were randomly picked from the
respective source, and then applied the following three selection
criteria to choose the benchmarks eventually used in our study; we
then repeated this selection process with another 500 downloaded
samples, until we had at least 2,000 samples per year. First, the app
is not a repackaged version of any other app that has been already
selected. Second, the app can be successfully processed by our
study pipeline (as described in Section 4). Third, exercising the
app with the inputs generated by Sapienz [31] for 10 minutes can
cover at least 60% user code of the app. We tried consistently
2,500 apps in total per year—for each 500, we used all that met
the three criteria. We chose 60% as the minimal coverage because
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Fig. 1: A pareto chart showing the percentage distribution of our benchmarks over 48 distinct functionality categories.

(1) it enforces the majority of the code lines to be covered and
(2) previous relevant studies showed that the coverage of human
inputs is up to this level [32]. Table 1 lists the number of samples
from each year that we actually chose as per the three selection
criteria, totaling 17,664 apps.1 This scale of our study is greater
than or at least comparable to that of most prior Android app
characterization studies (e.g., 27 apps [22], 125 [26], 1,260 [23],
3,568 [34], 4,323 [16], 12,466 [25]). Our study scale was mainly
limited by the substantial run-time profiling cost (i.e., 10 minutes
per app).

The selected apps covered 48 out of the total 49 distinct
functionality categories (available by 2019) of apps [35] currently
listed on Google Play (e.g., Sports and Medical). The only
one that was not covered was Wear OS by Google, which is
the category of apps developed for Android wearable
devices—our study was not intended to cover these specialized
apps. All the 17 game categories were represented by our
benchmark suite. The percentage of our benchmarks in each of
these 48 categories ranged from 8.85% (Tools) to 0.06%
(Music games). Figure 1 depicts with a pareto chart the detailed
percentage distribution of our 17,664 samples over these
functionality categories. Separately for each year, our yearly
benchmark set also covered all categories available on Google
Play in that year except for those specialized for wearable
devices—the number of app categories on the store has been
changing (growing) over the years.

The reason we filtered out repackaged apps was because these
apps would have substantial overlapping in terms of functionality
and construction with other apps. Including these apps would
confound our study results (e.g., two apps, with one app being a
repackaged version of the other, would be counted as two distinct
apps although they mainly only represent one unique app’s
behavior; also, this would falsely promote the representativeness
of that kind of behavior). The reason we attended this issue was
because repackaging has been a common practice for quick
production of apps in Android. To detection repackaged apps, we
utilized a state-of-the-art tool [36] dedicated for this purpose that

1. Since our study focuses on benign apps in Android, not being malware is
an implicit criterion: for each candidate benchmark, we used VirusTotal [33]
to scan it; as long as any of the VirusTotal tools found it as malware of any
type, we discarded it.

is publicly available and highly efficient. It identifies repackaging
relationship between two apps based on their APK content
similarity. By default, the similarity threshold for recognizing the
relationship is 0.7—a similarity score of 0 indicating entirely
disparate apps while a score of 1 indicating two identical apps.
To be conservative, we dismissed an app during the benchmark
selection if it was detected to be similar to any other
already-selected app with a score≥ 0.5. Eventually, among the
chosen apps, 94.5% of the app pairs across years and 84.9% of
those of the same year had a similarity score of 0.

During the selection process, there were several reasons why
a candidate app cannot be processed thus was discarded: (1) the
app could not be unzipped (e.g., corrupted apps); (2) the app
could not be statically-analyzed and instrumented (e.g., apps with
damaged bytecode or missing resource files); and (3) the
instrumented app could not be executed for successful tracing.
The failed executions were mainly because of compatibility
issues [37], [38] (e.g., an app relies on outdated framework APIs
that are no longer supported on the our platform of API level 22).
Another cause was that there were apps that self-check their
integrity (e.g., signature) which was broken during the
instrumentation. In our study, there were on average 4.2%
(ranging from 2.1% to 6.6%) of candidate apps across the studied
years that were discarded due to one or more of these three
reasons.

Input generation. Previous dynamic studies of Android apps,
using much smaller benchmark suites, mostly resorted to manual
(expert) inputs [29], [39], [40], [41], [42], because the coverage
of automatically generated Android inputs was considered low.
We chose to use automatically generated inputs for two reasons.
First, manually manipulating various apps is expensive, subject to
human bias and uneven expertise, and is an unscalable strategy
for dynamic analysis, especially at our scale. Second,
state-of-the-art automatic Android input generators can achieve
practically as high code coverage as human experts [32] and they
are scalable.

With these considerations, we chose Sapienz [31] because of
two reasons. First, it is a state-of-the-art automated input
generator that works for Android, having achieved a superior
level of average code coverage than many peer tools including
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DynoDroid [32], PUMA [43], and Monkey (Android’s
standard/built-in UI automator) [44]. Second, it has been being
maintained and used as an industry-strength tool for mobile app
testing at Facebook [45]. We applied the 60% coverage criterion
to make sure that the majority of user code in the studied apps is
exercised, so that our dynamic features reflect a substantial
portion of apps behaviors. The eventual line coverage of our
per-app traces ranged from 60% to 100% (mean=74.25%,
median=71.4%, standard deviation=10.73%)—if we include the
apps discarded due to falling short of the minimal (60%)
coverage, the range remains the same with mean=71.2%,
median=70.1%, and standard deviation=11.1%.

3.2 Metrics and Measures

TABLE 2: Summary of characterization metrics and measures

Metric Dimension Measure Description

Structure

Class distribution
percentage distribution of all
method calls over different
code layers (in class and
method granularity levels),
app component types, and
callback categories

Method distribution

Inter-layer interaction

Component distribution

Callback invocation

Callback categorization

Communication

ICC invocation percentage of ICC calls and
their percentage distribution
over different ICC types and
data transfer means

Connection type

Data payload

Sensitive Access

Source usage
percentage of source/sink calls
and their percentage
distribution over different
source/sink categories

Sink usage

Source categorization

Sink categorization

We characterize run-time behaviors along with static
characteristics of Android apps via 122 metrics in three
complementary categories/dimensions each consisting of several
supporting measures. Thus, our characterization is systematic
relative to relevant prior works in terms of the study scope.
Table 2 gives a brief summary of these metrics, as elaborated and
justified below—we refer to the focus and scope of each
metric/measure, rather than its name, for brevity.

• Structure metrics. Metrics of this dimension characterize an
app with respect to its functionality composition and the
structure of its execution, consisting of six measures.
– Class distribution (i.e., percentage distribution of classes)

and method distribution (i.e., percentage distribution of
methods) measure, at class and method level respectively,
how the exercised functionalities of an app are distributed
over three layers of the app code: user code (UserCode),
third-party libraries (3rdLib), and the SDK (SDK).

– The communication among these layers is captured at
method level through the inter-layer interaction (i.e.,
calling relationships across code layers) measure.
Component distribution (i.e., percentage distribution of
components) also measures the functionality distribution,
but at component level.

– We capture the usage of callbacks via the
callback invocation (i.e., invocation frequency of
callbacks) measure. With another, complementary
measure, callback categorization (i.e., callback invocation

percentage distribution over callback categories), we look
further into that usage with respect to different categories.
For lifecycle methods, the categories are the five top-level
enclosing classes: Activity, Service, BroadcastReceiver,
ContentProvider, Application (see Section 2). for event
handlers, the categories are five types of user interfaces
(UIs) that are associated with the handlers: App bar,
Media control, View, Widget, Dialog, as well as five types
of system events handled: App management, System
status, Location status, Hardware management, and
Network management [26].

• Communication metrics. The interaction between
components is captured in this dimension by three measures.
– The ICC invocation (i.e., invocation frequency of ICCs)

measure captures the usage of ICCs.
– The connection type (i.e., percentage distribution of ICCs

over ICC types) measure quantifies how ICCs in the app
are distributed over four types: the four pair-wise
combinations of scope (i.e., internal and external) and
specificity (i.e., explicit and implicit) of the
inter-component linkage.

– The data payload (i.e., ICC data transfer mechanism)
measure captures the means by which data can be carried
in ICCs—URI (the data field of Intent) or bundle (the
extras field of Intent), or both—which informs the type
of the data transferred between app components via ICCs
hence is a key indicator of ICC-induced app behaviors.

• Sensitive Access metrics. We capture app characteristics rel-
evant to sensitive data access (via sources and sinks) by four
measures.
– We examine the prevalence of sensitive access through the

overall source usage (i.e., source call frequency) and
sink usage (i.e., sink call frequency) measures.

– The source categorization (i.e., source call percentage
distribution over source categories) measure checks
deeper into the semantics of exercised sources concerning
the information they access. Similarly, the
sink categorization (i.e., sink call percentage distribution
over sink categories) measure checks deeper into the
semantics of exercised sinks concerning the operation
they access. Based on preliminary results in this
regard [26], we consider five categories of information
that sources mostly retrieve: Account info, Calendar info,
Location info, Network info, and System settings, and six
categories of operations sinks mostly perform: Account
setting, File operation, Logging, Network operation,
SMS/MMS, and System setting.

Two views: static and dynamic. As mentioned earlier, our study
includes both static and dynamic characterizations. Accordingly,
across the above three dimensions of metrics, we examine two
views of each measure: dynamic and static. The dynamic view is
associated with the full execution traces, while the static view is
associated with the app code. The dynamic view captures the
run-time behaviors of apps with call frequency while the static
view considers specific callsites in the apps code. These two
views are thus complementary, together conveying the code
characteristics and run-time behaviors of Android apps.

Illustration. To illustrate, consider the class distribution and
method distribution measures in the Structure dimension.
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Suppose an app’s code contains three classes A, B, C, defined in
UserCode, 3rdLib, and SDK while having 2, 3, 4 methods,
respectively. Further suppose the app’s execution trace has two
calls A::f→B::g and B::m→C::h. Then, the class
distribution is characterized by three numbers (1/3, 1/3, 1/3) in
the static view and (1/4, 2/4, 1/4) in the dynamic view. The
numbers for method distribution are (2/9, 3/9, 4/9) and (1/4, 2/4,
1/4) in the static and dynamic view, respectively.

3.3 Procedure
For each app, we characterize its static code traits through simple
static analysis, which results in the 122 metric values in the static
view for the app. To compute the dynamic-view values of these
metrics for an app, we first collect the operational profile of the
app in the form of a method-call and ICC-Intent trace. To that
end, we instrumented each app for monitoring ICC Intents and all
method calls. Next, we ran each instrumented app on a Samsung
Galaxy S4 smartphone with the Android SDK 5.01 (API level 22),
2G RAM, and 4G SD storage.

To avoid possible side effects of inconsistent device settings,
we started the installation and execution of each app in a clean
environment of the device (with respect to built-in apps, user data,
and system settings, etc.). For each individual app, test inputs
generated by Sapienz were provided for 10 minutes of execution.
We chose this execution-time length because (1) after 10 minutes,
the code coverage gain seen by Sapienz was generally very small,
and (2) given the scale of our study (tracing our entire benchmark
suite for 10 minutes per app took over five months), we had to
balance between the code coverage achieved and total time cost of
the study.

With this procedure, our studies took over eight months, the
majority of which was spent on collecting the app traces for the
dynamic characterization. The total storage cost of the studies was
over 400GB, mainly due to the space of execution traces.

4 STUDY PIPELINE AND IMPLEMENTATION

This section elaborates important details about the
implementation of our study pipeline. We focus on the key
aspects of the study toolkit that are essential for understanding
and interpreting the characterization results presented next.
Further engineering details can be found in [46].

Figure 2 depicts the workflow of our study with respect to
one app, including its three inputs (the APK of the app, the
predefined list of sources and sinks, and the predefined list of
callback interfaces), and a single ultimate output (the study result
report). There are three major steps that compute this output
using the inputs, as detailed below.

4.1 Pre-processing
This step aims to compute the information needed for both the
static and dynamic characterizations afterwards. For static
characterization, the static code analysis module identifies the
three code layers and all callbacks methods. Identifying the latter
requires sophisticated static analysis, due to the event-driven
nature of Android apps. In our study, the callback methods were
iteratively found through a state-of-the-art callback control-flow
analysis for Android as offered by the GATOR toolkit [47]. Our
static metrics also require knowledge about the component type
of each class (i.e., the top component class it inherits), for which

we performed a class hierarchy analysis (CHA). The same CHA
was also used for identifying the interfaces each class
implements, which later supports the categorization of callbacks.
Computing these kinds of static app information was enabled
also by Flowdroid [6] for its various analysis utilities for Android
apps. Both GATOR and Flowdroid use Soot [48] for lower-level
bytecode analysis and manipulation.

For dynamic characterization, in addition to computing the
static app information, we instrument the APK (specifically the
Dalvik bytecode in it) of the given app at the Jimple intermediate
representation (IR) provided by Soot. The instrumentation probes
for method call profiling and ICC Intent tracing, and results in
the instrumented APK to be executed in the next step. To
instrument the bytecode in a given APK, we used our own
home-made bytecode instrumentation and manipulation
framework [46] developed based on the Soot framework—Soot
itself provides basic bytecode instrumentation capabilities, based
on which our framework provides more usable APIs through
encapsulation and/or wrappers.

4.2 Profiling
The second step installs an instrumented app to the device (i.e., the
Samsung Galaxy S4 smartphone). Once installation is completed,
our toolkit launches the Sapienz input generator to feed the app
with test inputs for 10 minutes. Our toolkit (including Sapienz)
ran on a Ubuntu 16.04 desktop with a 16GB RAM and a 3.4GHZ
i7 processor. The inputs generated by Sapienz were sent to the
device through the Android Debugging Bridge (adb [49]), which
is a toolkit as part of the Android SDK. When the app executes, the
logging statements (invoking the Android Log APIs [50]) probed
for each method call and (each Intent field of) each ICC will be
invoked to produce the method-call and ICC Intent traces for the
app. The logs (execution traces) were transimitted back to the
desktop also via adb (using its logcat functionality [51]).

4.3 Characterization
As the final step, we characterized each app by computing static
and dynamic metrics. Static metrics were computed using the
results of the static code analysis, along with the lists of sources
and sinks as well as the list of callback interface. The source/sink
lists were immediately used for identifying sources/sinks in the
code. In particular, we used the lists of sources and sinks
produced by SuSi [52]—these lists have been widely used by
other researchers. Moreover, we manually improved the training
set of SuSi hence produced a more precise source/sink
categorization, used for computing the corresponding metrics
(e.g., percentage distribution of sources invoked in app code over
the five source categories). In order to categorize event handlers,
we utilized a predefined categorization of callback interfaces,
which we manually produced from the uncategorized list used by
FlowDroid [6]. We did the categorization based on our
understanding of each interface according to the official Android
SDK documentation. Lifecycle callbacks were categorized using
the same CHA as used in Step 1 (i.e., Pre-processing).

To compute the dynamic metrics, we analyzed the trace of
each app by first building a dynamic call graph. Each node of the
graph is the signature of an executed method, and each edge
represents a dynamic call which is annotated with the frequency
(i.e., number of instances) of that call. Also, for each ICC, the
graph has an edge going from the sending API (e.g.,
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Fig. 2: The overall workflow of our characterization study, including the inputs and outputs.

startActivity) to the receiving API (e.g., getIntent) of
that ICC, established according to the fields of the Intents at the
sending and receiving sites. More specifically, for explicit ICCs,
the linking is based on the explicit target specified in the Intent of
the sending site; for implicit ICCs, we follow the standard
approach of matching the action, category, and data fields of the
Intents with respect to the Intent filters specified in the sending
app’s manifest file. Particularly for external ICCs, since we do
not trace the external apps, we use virtual nodes to represent the
external ICC API sites hence establish the ICC edge to add to the
call graph. For an explicit external ICC, only one such virtual
node is needed, while for an implicit sending Intent, one or more
virtual external nodes may be needed, depending on how many
external (built-in apps’) components can be implicitly matched
using the same matching rules used for internal implicit ICC
linking—we first try to match internal Intents, and external ICC
edges are established only when internal matching fails. Once the
call graph construction is completed, this phase computes metric
values in the dynamic view using the call graph and the static
information computed in the first phase.

To facilitate reproduction and reuse, we released the
open-source implementation of our study utilities as an
open-source toolkit DROIDFAX [46], including a line coverage
tracking tool directly working on an APK. Given a configured
Android device (either an emulator or real device) and a set of
apps, the automated study workflow produces both metrics values
and their visualizations and tabulations. Also available are our
study results, the categorization of event handlers we created, the
improved source and sink categorization we generated, and other
documentation including the detailed definition of the 122
metrics used.

5 RESEARCH QUESTIONS

The primary goal of our study is to understand how applications
in the Android ecosystem are coded and behave so as to inform of
more cost-effective app analysis (static or dynamic) and security
defense strategies. With respect to the metrics we define for the
study, we seek to answer the following research questions. Each
question is explored with an evolutionary perspective in mind.

RQ1: How are code and executions of Android apps structured
with respect to user code, SDK, and other libraries?

This question addresses the construction of Android apps in
terms of their use of different layers of code and the interaction
among them. Answering this question offers empirical evidence
on the extent of the framework-intensive execution of Android
apps—previous works only suggested the existence of that nature

through static analysis [5], [7]. RQ1 is answered using the first
three measures the class/method distribution and inter-layer
interaction measures of the general metrics.

RQ2: How are lifecycle and event-handling callbacks used in
Android apps?

It is well known that callbacks, including lifecycle methods
and event handlers, are widely defined or registered in Android
app code [4], [6], [11]. This question additionally addresses their
actual usage in Android app executions, that is, the frequency of
callback invocation and the distribution of different types of
callbacks. RQ2 is answered using the callback invocation and
callback categorization measures of the general metrics.

RQ3: How are different types of components used and commu-
nicating in Android apps?

ICC has been a major security attack surface in Android [8],
[53], [54] as well as a feature of Android application programming
that sets it apart from ordinary Java programming. Much prior
research has targeted Android security concerning ICCs [8], [9],
[53], [54], yet it remains unclear how often ICCs occur relative to
regular function calls during app executions, how different types
of ICCs are used, and whether all ICCs constitute security threats.
The answers to each of these questions are subsumed by RQ3, and
are investigated using the ICC metrics.

RQ4: How are sensitive information and critical operations ac-
cessed in the code and executions of Android apps?

Addressing the secure usage of sensitive information has been
the focus of various prior works on app security, including taint
analysis [4], [6], privilege escalation defense [7], [40], and data
leakage detection [53], [55]. However, how often that usage is
attempted in code and exercised at runtime, and which kinds of
sensitive information/operations are mostly accessed, have not
been studied. RQ4 explores these questions with Security metrics.
We note that although our study does not immediately address
specific security problems (e.g., data leaks), the security-relevant
characteristics of apps we examine (e.g., sensitive data access
through source/sink API calls) represent app behaviors that are
commonly relevant to a range of those specific problems.

6 RESULTS

This section presents the results of our study with respect to the
relevant research questions. We focus on explaining the results
themselves here, and discuss their implications in Section 7.

For callback and source/sink categorization, we rank the
categories for each app and report for each category the mean
rank across all benchmarks and the standard deviation of the
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Fig. 3: Percentage distribution (y axis) of the three code layers in
terms of callsites (left) and call instances (right) of all apps.

ranks. For each of the other metrics, consistently expressed as a
percentage, we first calculated the percentage for each app
separately. Then we report the distribution of all these
percentages using boxplots or their summary statistics (mean and
its standard deviation) using tables. In each boxplot, the lower
whisker, the lower and upper boundaries of the box, and the
upper whisker indicate the minimum, the first and third quartiles,
and the maximum, respectively. The horizontal line in the box
indicates the median and the diamond indicates the mean. We
have set the whiskers to extend to the data extremes (so no
outliers are shown). In addition, we present the evolutionary
pattern with respect to a metric based on the average metric
values of apps from each year.

6.1 RQ1: Functional Structure of Code and Executions
To gain a general understanding of Android app behaviors, we
investigated the structure of their code and execution in terms of
three layers of functionality (i.e., UserCode, SDK, and 3rdLib),
the interaction among these layers, and their distribution.

6.1.1 Composition of Code and Execution
The composition of an app’s code and execution is characterized
through the percentage distribution of callsites (i.e., in the static
view) and that of call instances (i.e., in the dynamic view) over the
three code layers, respectively. Figure 3 shows the distribution of
these layers in all the 17,664 apps, with each group of boxplots
depicting both class and method granularity.

The static view reveals that consistently all the apps referred
to library functionalities extensively, especially the SDK, for
completing their tasks. On average, at both class and method
levels, only about 5% or less of code in these apps was actually
written by the developers (i.e., UserCode layer). In comparison,
14% of all classes and 10% of all methods were in various
non-SDK libraries. The rest (over 80% of classes and methods)
were defined in the Android SDK/framework (and invoked by the
apps). Clearly, the results show that the SDK dominated the code
of these apps, and suggest that an average Android app tended to
be heavily dependent on a diverse2 set of SDK APIs. A main
reason for the dominance and dependence is that Android
applications are framework-based while the framework provides
rich functionalities that developers can easily reuse.

Counting all call instances, the dynamic view further confirms
the framework-dependent nature of Android apps. This view

2. Recall that the static view only counts unique methods invoked in app
code, thus the SDK dominance (as measured in terms of method calls) in
the static view suggested the diversity. According to our further analysis on
inter-layer interaction as discussed next and shown in Figure 5, these diverse
SDK APIs were invoked primarily within the SDK code layer with a few, and
increasingly fewer (as per Figure 6), being called from the UserCode layer.

0%
10%
20%
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40%
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60%
70%
80%
90%

100%
UserCode 3rdLib SDK

Fig. 4: The evolution of apps execution composition (y axis) in
terms of the three code layers over years (x axis).

shows that SDK code was executed the most frequently among
the three layers, suggesting that run-time behaviors of the SDK
dominate in those of the apps. The observation that over 82% (on
average) of all calls were to the SDK code in almost all apps
corroborates that Android apps are highly framework-intensive.
In contrast, these apps tend to execute their user code relatively
occasionally—in fact, only 25% of the apps had over 5% of their
calls target user code. These observations were plausibly due to
the fact that the Android platform offers immediate support for
apps to fulfill most of the common tasks targeted by the apps,
thus developers do not have to write much of their own code.

Figure 4 depicts how the composition of apps execution
evolved during 2010–2017, at the class level—the method-level
results were similar. Each bar shows the average percentage of
classes from each code layer over all benchmarks of a particular
year. The (proportion) contrast of the three layers for each year
was close to that of all benchmarks as shown in Figure 3: the
majority (at least 80%) of functionalities were realized through
the Android framework, followed by other libraries, while user
code was constantly the smallest portion (at most 13%). Our
results show that the portion of SDK and third-party libraries
increased, while that of user code decreased, over the time
period. These trends may be explained by the growing
capabilities of the Android framework during its evolution and
the rising number and diversity of third-party libraries available.

The evolution of code composition (i.e., in the static view,
not depicted here) was similar to Figure 4, except it revealed (1)
decrease in the apps’s use of SDK, (2) much slower decrease in
the portion of user code, and (3) slightly faster growth in the use
of third-party libraries, over the past eight years. Put in contrast to
the dynamic view (Figure 4), our results imply that, on average in
newer apps, each SDK callsite was executed more frequently and
each UserCode callsite was executed less frequently.

Finding 1: The Android apps relied heavily on the SDK, but
little on user code, to realize their functionalities. Over time,
the apps have been using slightly more third-party libraries, but
significantly less user-defined functionalities, both in their code
and executions; they also tended to increasingly use SDK code,
although these apps contained fewer SDK callsites.

6.1.2 Inter-layer Code Interaction

Figure 5 shows the percentage of call instances in each inter-layer
interaction category over the total call instances in all the
benchmark executions. The data points are categorized by calling
relationships, denoted in the format of caller layer→callee layer,
among the three code layers. Noticeably, the majority (27.5%) of
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call instances happened within the same layers, dominated by
SDK (41.5%). User functions were called very rarely by any
callers (<3% in total), reconfirming our previous observation
from Figure 3. The results reveal that the vast majority of calls to
third-party library functions were from the same code layer.

Calls to UserCode from SDK or 3rdLib were callbacks from
the framework and other libraries to application methods. The
much smaller numbers and lower frequencies of such calls show
that user-code callbacks were executed comparatively rarely. As
expected, calls (from all the three layers) to SDK dominated the
nine categories of calling relationships (73.05% in total). These
results further confirm the highly framework-intensive nature of
Android apps, indicating that the Android framework tends to do
the majority of application tasks while user code often just relays
computations to the SDK and various other libraries.

The evolutionary pattern of run-time app behaviors with
respect to inter-layer interaction is illustrated in Figure 6. Each
bar shows the average percentage of call instances in each of the
nine inter-layer call categories over all apps in a specific year.
Overall, the most substantial categories among apps in each year
were the same as those in the apps across all the eight years
(Figure 5)—3rdlib→SDK , SDK→SDK , 3rdlib→3rdlib,
UserCode→SDK , and UserCode→UserCode—albeit the
rankings by percentage differ. In particular, the number of call
instances within UserCode and those from UserCode to SDK
have been monotonically decreasing in the eight-year span. It is
probable that this phenomenon was caused by the fewer
UserCode call instances during executions of newer apps (see
Figure 4).

Calls within SDK, however, have seen steady growth over these
years. This indicates that newer apps tend to have even more of
their tasks completed by the Android framework alone (than by
collaborating with user code or third-party libraries). Plausible
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Fig. 7: Percentage distribution (y axis) of callbacks (x axis) over
all callsites (left) and all call instances (right) in all benchmarks.

reasons behind this trend include the platform’s capabilities being
enriched over time and developers getting increasing familiarity
with the SDK so that they know gradually better about how to
reuse the framework’s functionalities. Another possible reason is
that the SDK had increasing encapsulation (i.e., on average each
SDK method tended to do more), and/or encapsulation in the user
code grew over time (e.g., developers encapsulate calls to the same
SDK APIs in single UserCode methods/classes). In general, there
also has been a slight increase in the calls within various libraries,
while library calls targeting SDK did not change much.

Finding 2: The majority of calls in apps occurred within the
SDK, and most of the rest targeted either SDK or other libraries.
There were constantly very few calls targeting user code. Over
the eight years, apps have been performing tasks increasingly via
the SDK alone with decreasing portions of calls from user code.

6.2 RQ2: Usage of Callbacks
Due to their event-driven nature, Android apps typically contain
callbacks. We specifically examine the overall extent of use and
distribution of callbacks, both as invoked in code and as
exercised during app executions, over the major callback
categories (as described in Section 3.2).

6.2.1 Extent of Use
We first looked into the extent of callback usage (over all code
layers) in the benchmark apps through the percentage distribution
of callback invocations. As shown by Figure 7, on average no
more than 0.25% of all callsites (in the static view) targeted either
lifecycle callbacks or event handlers. Overall, there were more
(albeit very slightly) lifecycle-method callsites than event-handler
callsites defined in these apps. In a few apps, up to 3.5% of all
callsites were for event handling and there were no apps containing
more than 3% callsites targeting lifecycle methods.

The dynamic view indicates that callbacks were not invoked
very frequently either. The average percentage of either type of
callback invocations was under 2%, indicating that callbacks,
while prevalently registered in Android apps [6], [11], tend to be
called only quite lightly at runtime. For no more than a quarter of
the apps, up to 80% of callback instances were for managing
lifecycle of app components while 38% were for handling all
other events. Yet in the majority (75%) of the apps, these
numbers were never above the means. This observation is
consistent with our results on inter-layer interaction of Figure 5,
where we have seen relatively small numbers of calls invoking
user code from the SDK or other libraries—such calls correspond
to callbacks. In contrast, there were more lifecycle callbacks than
event handlers exercised out of all method call instances in these
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benchmarks, in accordance with the greater portion of lifecycle
callbacks invoked in the apps’ code (see the static view).

Examining the extent of callback usage in apps by year
reveals the evolutionary pattern, as depicted in Figure 8. First of
all, lifecycle methods were consistently used much more heavily
than were event handlers, in apps from any of these years. This is
consistent with the aggregate contrast of Figure 7. Across these
years, the proportions of both kinds of callbacks defined in apps
code remained generally steady. A possible reason is that, despite
the evolution of the Android framework, the callback methods
defined in the SDK did not change much. Yet the call frequency
tended to gradually drop overall. In all, callback usage appeared
to decrease over time within the studied span of years.

Finding 3: Among the very-small percentage of method calls
that were callbacks, lifecycle methods were used more often
than event handlers both in app code and execution. Callback
usage in apps has been dropping significantly in recent years.

6.2.2 Callback Distribution over Major Categories

To look further into the callback usage, we categorized lifecycle
callbacks by their enclosing classes with respect to the four types
of app components and the Application type corresponding to the
android.app.Application class defined in the SDK. The
rank (by the number of callsites and that of call instances) of each
category is listed in Table 3, including the means and associated
standard deviations over all benchmarks (in parentheses).

As shown, Activity lifecycle methods dominated the targets of
all lifecycle-method callsites in code and also were invoked most
frequently among all lifecycle-method call instances. The second
most handled lifecycle events were associated with the application
as a whole. Events handled by the other three types of components
were close in their ranks, and were all considerably lower than
the two dominant categories (i.e., Activity and Application). The
ranks suggest that the vast majority of lifecycle method calls were
dealing with Activities, hinting at the pattern that Android apps
typically have abundant user interfaces (UI) and rely on frequent
user interaction. Further, the standard deviations suggest that the
pattern was pretty consistent across the benchmark apps. Also,
the pattern did not vary much from the static view (i.e., callsite
diversity) to the dynamic view (i.e., call frequencies).

TABLE 3: Breakdown of lifecycle methods by categories with
rank averages and standard deviations (in parentheses)

Category Static view Dynamic view
Activity 1.11 (0.37) 1.12 (0.38)
Application 1.77 (0.52) 1.78 (0.53)
ContentProvider 2.06 (0.72) 2.07 (0.72)
Service 2.09 (0.70) 2.09 (0.70)
BroadcastReceiver 2.11 (0.73) 2.11 (0.73)

TABLE 4: Breakdown of event handlers by categories with rank
averages and standard deviations (in parentheses)

Category Static view Dynamic view
UI View 1.07 (0.28) 1.08 (0.28)
UI Widget 1.20 (0.44) 1.20 (0.45)
System System status 1.22 (0.47) 1.21 (0.46)
UI Dialog 1.23 (0.47) 1.23 (0.47)
UI Media control 1.23 (0.49) 1.23 (0.49)
System Hardware mgmt. 1.24 (0.49) 1.24 (0.49)
UI App bar 1.24 (0.50) 1.24 (0.50)
System Location status 1.24 (0.50) 1.24 (0.50)
System App mgmt. 1.24 (0.50) 1.24 (0.50)
System Network mgmt. 1.25 (0.51) 1.25 (0.50)

Table 4 presents a two-level breakdown of event handlers
according to our manual categorization of those callbacks (see
Section 3.2). Overall, in most of these apps, there were more
callbacks triggered by UI events than those handling system
events. A more detailed look reveals that the majority of UI event
handlers dealt with two particular kinds of user interfaces, View
and Widget, while user events on Dialog or Media control were
less frequent. On average, most system event handlers responded
to events that serve system management (mgmt.), with a few
others dealing with hardware, location, and app management. The
standard deviations of the average ranks imply that the sample
means stably capture the general traits of the benchmark apps.
Also, the ranking was quite consistent between the two views.

Figure 9 depicts how lifecycle method distribution evolved in
terms of call instances over the past eight years. Results in the
static view were very similar. Overall, the ranking of the lifecycle
callback categories in both views was steady: the ordering was
nearly constant albeit the ranks varied slightly. The top two
categories were consistently the callbacks for managing the
lifecycle of Activity and Application components. Also, for any
year, the ranking in the static view was almost the same as the
ranking in this dynamic view, suggesting that (1) the more
dominant categories defined in the apps code generally led to
their accordingly greater dominance in the apps execution, and
(2) all the categories were exercised almost proportionally.

The evolutionary trend of event-handler category ranking in
terms of call instances is illustrated in Figure 10 (ranking in the
static view was similar). Like the lifecycle callback category
ranking, the category distribution of event handlers appeared to
be generally stable over the years (even more so than the category
distribution of lifecycle methods). The top UI categories were
constantly the callbacks that handle View and Widget events,
while the top system callbacks were always those that handle
System status. The usage of different categories of event handlers
in code was also always consistent with the usage of
corresponding categories at runtime. In contrast to
lifecycle-method categorization, most of the event-handler
categories always had very small differences in their ranks, which
contributed to the ties in overall (i.e., across all years) ranking
seen in Table 4.
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Finding 4: The most often used callbacks were constantly those
managing the lifecycle of Activity components or handling View
and System status events. The ranking of callbacks by categories
remained generally stable over the past eight years.

6.3 RQ3: Component Distribution and Communication
ICCs constitute the primary communication channel between the
four types of components as well as a major attack surface in
Android. We first look at component distribution in the apps code
and executions before examining the interaction between them
through Intent ICCs. We then characterize whether data payloads
are carried in the (Intents of the) ICCs.

6.3.1 Component Distribution
Figure 11 shows the distribution of callsites defined in code and
call instances at runtime over four different component types.
According to the static view (left chart of the figure), in the
majority of the benchmarks at least 50% (54.1% on average) of
components used in the code were Activity. Broadcast Receivers
were used substantially too (over 26.5% on average), consistent
with the previous observation that these apps had significant
percentages of callbacks handling system events over all invoked
callbacks (Table 4). Service and Content Provider components
accounted for on average 10.1% and 9.4% of all components
referred to in apps code, respectively. In a few outlier apps,
almost all components were Activity, and there were apps in
which up to 70–90% of components were one of the other three
types. Meanwhile, there were also apps without including one of
these four types of components—in particular, 25% of the 17,664
apps did not include any Service component.

The dynamic view (right chart), however, revealed that
component distribution was even more skewed. In particular, the
Activity components were extremely heavily exercised: on
average, among all components executed in the benchmarks,
84.9% were Activity components. More specifically, in over 75%
of these benchmarks, the percentage of Activity components was
above the average. In contrast, other three types of components
were executed very lightly—in the majority of our benchmarks,
no more than 7% of run-time component instances were of any of
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Fig. 11: Distribution (y axis) of callsites (left) and call instances
(right) over four component types (x axis) in all benchmarks.
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Fig. 12: The evolution of component type distribution (y axis) in
the static (left) and dynamic (right) views over years (x axis).

the other types. Notably, despite their considerable portions in the
apps code, Services and Content Providers that were exercised
were almost negligible in terms of their portions among all
exercised components. For the component types other than
Activity, the outlying means indicated that only a few outlier apps
had noticeable percentages of components of such types
exercised, while in the executions of the majority of the apps the
percentages were negligible.

Figure 12 shows how the component distribution in the apps
code and execution evolved over the years. As expected, Activity
components always dominated (accounting for 60% or above) in
the apps components in each year, with the dominance being
even greater at runtime (accounting for 70% or above). This is
consistent with the observation from the entire set of apps across
years (Figure 11). Notably, during the eight-year span, the slow
drop in the usage (both in code and execution) of Activity
components suggests a slight reduction in UI elements and
activities in apps. A possible reason for the reduction is that
newer apps have been becoming more diverse in terms of their
structural composition, involving more non-GUI functionalities,
which caused the drop of the Activity components’ dominance.

Newer apps tend to include and exercise more Broadcast
Receiver components, reflected in an increasing presence of these

11



components in the apps’ code and execution. This trend might be
the result of growing functionalities of newer Android devices
and platforms (hence more needs for receiving system events
associated with the richer hardware and system software
features). Inclusion of Service components has been growing too.
In contrast, increased inclusion of Service components has not
resulted in an increased percentage of Service call instances. A
possible reason is that app developers started adopting more
service-oriented design by which more (non-GUI) components
are structured as services to run in the background, yet app users
still focus on exercising GUI components.

Notably, while newer apps tend to include fewer Content
Providers in code, the execution frequency of these components
has been growing substantially, especially in the last three years.
A plausible explanation for these sharply contrasted patterns is
that the apps increasingly dealt with data storage and
management tasks at runtime, but the newer Android platforms
have been making these tasks easier for developers thus fewer
relevant calls are required in the code.

Finding 5: Over the past eight years, Activity has been con-
stantly the most dominating component type, but with a slowly
decreasing percentage of component executions. Newer apps de-
fined more Broadcast Receivers and Services, using the former
with increasing (but latter with decreasing) frequency. Newer
apps defined fewer Content Providers, but exercised them more
frequently.

6.3.2 Component Communication
The component-level communication in apps is realized through
ICC APIs (e.g., startActivity, getIntent). On average,
there were only 0.34% callsites and 0.58% call instances in all
the studied benchmarks dedicated to ICC. In the majority (75%)
of these apps, calls to ICC APIs accounted for only a marginal
portion of all method calls. This result suggests that the
overwhelming majority of calls were between methods within
individual components. With respect to all call instances,
components communicated with other components only
occasionally (e.g., when the computation within a component
completed and results were ready to deliver). In addition, more
than half of all ICCs were between two Activity components;
among the other ICCs, over 60% were either initiated by or
aimed at Activity components. These observations are not
surprising, given the dominance of Activity among all component
types (see Figure 11). One implication of these observations is
that the predominant use of ICCs in Android apps is to serve the
communication among various user interfaces.

After understanding the usage of different types of
components (Section 6.3.1), we break down all exercised ICCs
(i.e., links between components) over the four categories
(connection types, Section 3.2). Since static ICC linking would
be highly conservative (hence very imprecise), we only examine
ICC links that we created from app execution traces (by matching
monitored Intent objects). Among all dynamic ICCs, the
dominating type (37.92%) was internal explicit, followed by
external explicit (36.77%) and external implicit (25.2%). There
were only a negligible portion of ICCs being internal implicit
(0.12%). Thus, components within an app almost always
communicated explicitly, yet components across apps could
communicate either implicitly or explicitly (albeit the connection
was slightly more often explicit). Note that although we executed
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Fig. 13: The evolution of ICC use extent (y axis) in the static and
dynamic views over years (x axis).
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Fig. 14: The evolution of ICC category distribution (y axis, dy-
namic view) over years (x axis).

each individual app separately, they still often communicated
with external apps (i.e., built-in/system apps such as photo
viewer, web browser, and camera).

As depicted in Figure 13, the presence of ICC callsites in
apps code fluctuated but very slightly, yet run-time invocation of
ICCs has dropped noticeably since 2011. This implies that apps
components have become more and more cohesive and the
inter-component coupling has been gradually reduced in general.
The absolute decrease was relatively small, though, given the tiny
portion (<1.3%) of method calls devoted for ICCs overall.

Figure 14 shows how the ICC distribution by connection type
evolved during the eight-year span. Due to their marginal
presence in apps execution, internal implicit ICCs are not always
visibly represented. Overall, the proportion of external implicit
ICCs has increased, possibly due to the growing set of
built-in/system apps on more recent platforms which the newer
benchmark apps targeted: recall that user apps often
communicate implicitly with built-in/system apps. Explicit ICCs,
whether they were internal or external ones, tended to decrease
(albeit slightly) over time, which implies that component-level
decoupling (both with and across apps) was increasingly
promoted in newer apps (e.g., for greater flexibility and easier
upgrading of individual apps).

Finding 6: ICC calls were a marginal percentage of all call in-
stances, which dropped over time. Components within an app
rarely communicated implicitly, and components across apps
communicated more often explicitly than implicitly. Over the
years, the percentage of explicit ICCs tended to slowly shrink in
both the internal and external categories, while the percentage of
implicit ICCs across apps tended to increase.

6.3.3 ICC Data Payloads

Part of the reason that ICCs have been a major security attack
surface is that they can carry, hence possibly leak, sensitive
and/or private data. There are two ways in Android in which
ICCs can carry data in an Intent: via the data field of the ICC
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Fig. 15: The evolution of ICC data payload distribution (y axis,
dynamic view) over years (x axis).

Intent object, specified only through a URI, and via the extras
field of that object (i.e., a bundle of any additional data accessible
as a key-value structure). We refer to these two forms as standard
and bundle data, respectively.

Over all of our benchmarks, on average 4.83% of ICC calls
executed carried standard data only, 24.72% carried bundle data
only, and 0.4% carried both forms of data. Thus, most (70.1%) of
the exercised ICCs did not carry any form of data in the
associated Intent object. Very few ICCs carried both standard and
bundle data at the same time. Bundles were clearly favored over
URIs to transfer data at runtime. Thus, for data-leak detection,
checking only the data field of Intents is inadequate as it would
miss the majority of potential data leaks. Instead, security
analyses of ICC-based data leaks should carefully examine the
bundles contained in ICC Intents [42].

From an evolutionary perspective, Figure 15 shows that the
percentage of data-carrying ICCs as a whole first rose until 2013
and then started dropping (albeit not monotonically). ICCs
carrying both forms of data were always marginal and did not
change much over time. In general, apps have had continuous
decrease in exercised ICCs that carried standard data only
throughout the years. Our results further show that standard data
was mostly carried in external implicit ICCs (accounting for
92.7% of all standard-data-carrying ICCs), while bundle data was
typically (50.4%) carried in internal explicit ICCs. Among the
30% of ICCs that carried data by any means, 55.67% were within
apps and the others were across apps. This indicates that ICCs
across apps carry data generally as likely as ICCs within apps
doing so.

Finding 7: Most (70%) ICCs did not carry any data at runtime,
while in others bundle data was clearly preferred over standard
data. Apps rarely carried both forms of data. Over the entire
time interval, ICCs with standard data only have decreased as a
percentage of all ICCs executed, and the total percentage of all
data-carrying ICCs has dropped slowly from a high of 30% in
2010 to 25% in 2017, a noticeable difference of 5%.

6.4 RQ4: Sensitive Data Access

Android security analysis has been largely concerned with
inappropriate access in apps to security-sensitive data. To
understand the implications of sensitive access, we investigated
(1) the usage of sensitive and critical APIs and (2) the categories
of data the sensitive APIs (sources) accessed and categories of
operations the critical APIs (sinks) performed.
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Fig. 16: Percentage (y axis) of sources and sinks (x axis) over all
callsites (left) and all call instances (right).
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Fig. 17: The evolution of source/sink usage (y axis) in the static
(top) and dynamic (bottom) views over years (x axis).

6.4.1 Usage of Sources and Sinks

Since sensitive data in Android is accessed via invocations of
sensitive and critical SDK APIs, understanding the production
and consumption of sensitive data requires examining the
existence and frequency of API calls that are data sources or
sinks as a percentage of all method calls, as shown in Figure 16.
On overall average, the apps only had a small portion of callsites
targeting sensitive access (1.34% for sources and 0.63% for
sinks). However, these sensitive callsites were exercised quite
frequently: on average in each app, over 13.1% of call instances
retrieved sensitive data, and almost 4.6% of call instances
performed critical operations. Note that the exercised sources and
sinks were run-time projections of the predefined lists [52] of
(17,920) sources and (7,229) sinks, respectively. Thus, the
percentages of source and sink calls we reported were relative to
these lists.

Figure 17 plots the evolutionary pattern of source/sink usage in
terms of percentage of callsites (top) and call instances (bottom)
for sensitive access. As shown, for both sources and sinks, the
percentage of callsites (i.e., static view) experienced continuous
growth in the first five years and then remained stable afterwards.
In contrast, the dynamic view revealed that the run-time invocation
of sources remained roughly stable in terms of their percentages
over total method call instances despite fluctuations, whereas the
calls to sinks have been steadily dropping throughout the eight
years. Thus, newer apps tend to execute every sensitive-access
callsite, especially sink callsite, less frequently over time.

Finding 8: Sources and sinks together represented only a tiny
percentage (<2%) of all callsites in apps, although sensitive ac-
cess was performed noticeably (up to 18%) at runtime. Over
time, percentages of sources invoked in code and at runtime
have remained generally stable, whereas sinks were executed
decreasingly often despite their growing presence in code.
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TABLE 5: Breakdown of sources over the top five categories with
rank averages and standard deviations (in parentheses)

Category static view dynamic view
Network information 1.0 (0.02) 1.0 (0.04)
System settings 2.08 (0.61) 2.06 (0.60)
Location information 2.11 (0.66) 2.14 (0.68)
Calendar information 2.12 (0.70) 2.13 (0.71)
Account information 2.25 (0.83) 2.26 (0.83)

TABLE 6: Breakdown of sinks over the top six categories with
rank averages and standard deviations (in parentheses)

Category static view dynamic view
Account setting 1.05 (0.24) 1.11 (0.35)
Logging 2.00 (0.74) 2.02 (0.80)
System setting 2.28 (0.86) 2.33 (0.89)
File operation 2.71 (1.11) 2.76 (1.14)
Network operation 2.73 (1.14) 2.77 (1.17)
SMS/MMS 2.79 (1.18) 2.82 (1.19)

6.4.2 Categorization of Sensitive Data Access

One way to further examine how Android apps use sensitive and
critical API calls is to look into the information itself accessed by
the apps and operations that may leak such information. To that
end, we categorized the source and sink API calls according to the
kinds of data retrieved by the sources and the kinds of operations
performed by the sinks. Knowing which of these kinds are most
often accessed can inform end users about the potential risks of
leaking security-sensitive data when using the apps, as well as
help security analysts make right choices and/or configurations of
security-inspection tools.

Table 5 lists the rank (by the numbers of source callsites and
source call instances accessing sensitive information) of each
source category, in the same format as Table 3. Only the top five
categories are presented. Network information was dominant,
constantly ranked first in any benchmark app, in both views.
Network information was previously noted as widely accessed in
Android apps [14], yet such consistent dominance of this
category has not been reported. System settings, location info,
calendar and account related data were also among the most
commonly used categories of sensitive data [13], [14], [56].

A similar breakdown of sinks over six significant categories is
shown in Table 6. The dominant category was account setting,
suggesting that the apps deal with account management
intensively relative to other kinds of critical operations. Applying
possibly sensitive data in managing accounts does not seem to
constitute a data-leak risk, yet such risks can occur when a user
shares account settings across apps (e.g., user age and location
data used in the settings for an account on one app may be
disclosed to another app where the user logs in to the same
account). The second most prevalent potential consumer of
sensitive data was logging operations, which can disclose data via
external storage. Similarly to account-setting operations, API
calls for system settings can lead to data leakage as well. Lastly,
file, network, and message-service operations are capable of
leaking data through network connections or file-system I/Os to
remote apps and devices. In fact, these categories of sinks were
previously recognized as the major means of leaking data out of
Android apps or the mobile device [13], [29].

Next, we examine the evolution of source/sink distribution
over the top categories. It is important to note that, despite
variations in the ranking, the top five (six) source (sink)
categories of apps in both views remained the same throughout
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Fig. 18: The evolution of source category rank (y axis) in the
dynamic view over years (x axis).
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Fig. 19: The evolution of sink category rank (y axis) in the dy-
namic view over years (x axis).

the years, which are also the same as the top categories with
respect to all benchmarks as a whole (Tables 5 and 6). Figure 18
depicts how source categorization evolved, showing that the
ranking of source categories did not change much over time in
the dynamic view (the results were similar in the static view). For
any specific year and category, the ranks in both views were
almost the same, suggesting that source callsites of varied
categories were exercised quite proportionally in these apps.

The evolution of sink category distribution in terms of call
instances is illustrated in Figure 19 (the results in terms of
callsites were similar). The highest ranked category
(ACCOUNT_SETTING) was also the most stably ranked one.
Logging operations have been increasingly targeted by more
sinks (despite the slow growth), while the rank of system-setting
operations has slightly dropped—higher ranks are associated with
lower rank values. Overall, the relative ranks of these six sink
categories have remained stable over the time interval studied.

Finding 9: Network information and account setting was the
most accessed data and operation by sources and sinks, respec-
tively. The ranking of the top source and sink categories re-
mained generally stable over time, in code and at runtime.

7 LESSONS LEARNED AND RECOMMENDATIONS

In this section, we discuss the implications of our major empirical
findings and make recommendations on improving code-based
static/dynamic app analysis and security defense in Android.

7.1 On Functional Structure
Lessons learned. The structure metrics show that Android apps
depend heavily on the platform in construction and also are
highly framework-intensive at runtime. While it is intuitive and
straightforward that framework-based applications generally rely
on the functionalities of the underlying framework (e.g., through
SDK APIs), the peculiar dominance of the capabilities and
behaviors of the framework in those of user apps as revealed in
this study has not been reported before. In accordance with this
degree of dominance, the little proportion of user code in apps
partly explains the prosperity of the Android ecosystem powered
by the prominent richness, tremendous number, and great
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diversity of user applications—developing a functionality-rich
user app in Android is much facilitated, hence the effort needed
for app development largely reduced, by what the platform can
offer. Another implication of the framework dominance in app
construction and execution is that a clear, deep understanding of
the Android platform and its interface with user apps is essential
for analyzing and securing Android apps.

Moreover, from an evolutionary perspective, the increasing
dominance of calls within the SDK (Finding 2) indicates growing
support of the Android platform for continuously improving app
development productivity. Meanwhile, the fact that the proportion
of user code in apps and their executions shrunk steadily signifies
the trend that the code that Android developers needed to write
continually decreased. Given the relatively long (compared to
most prior Android app evolution studies [18], [19], [23], [34])
span of our study, there is a reasonable likelihood that these
trends would continue (albeit probably for only a limited number
of years—and then the trend will stabilize).

Recommendations. Our results indicate that the security of the
Android framework itself deserves continuous attention in
securing the whole Android software ecosystem. Thus, to secure
the Android ecosystem, researchers need to pay more attention to
analyzing the security of the Android platform itself when
developing an analysis technique for the security of Android
apps—current app security defense solutions tend not to analyze
the framework itself (e.g., they mostly focus on the security of
user apps themselves; although in some cases framework related
security features were utilized yet still the framework’s security
was rarely assessed directly) [2], [12]. Also, the overwhelming
involvement of SDK in app executions (Finding 1) uncovers
promising benefits of SDK optimizations for app performance at
runtime—the majority of method calls in an app targeted SDK
APIs. Thus, researchers and developers on performance
optimization techniques and tools for Android apps should first
and foremost address potential performance issues with the
platform itself. These opportunities are worthy of even more
attention and the recommendations more relevant as the
dominance of SDK continues to increase over time. In addition,
given the already substantial and historically growing third-party
code inclusion and execution in apps, analyses for app security
would be suggested to be preceded with an accurate third-party
library detection technique for problem isolation—e.g., these
libraries are often a source of vulnerabilities in the host apps [57].

7.2 On Callbacks
Lessons learned. Activity was the predominant target of lifecycle
method calls, which indicates that Android apps are generally
rich in user interfaces (UIs). Moreover, this predominance has not
changed much during the evolution of Android apps (Findings 4
and 5). While the indication seems to be self-evident and has
been implied in prior peer studies [16], [20]—after all, Activity
components are the standard building blocks used to develop UIs
in Android, the predominance has not been quantified before, nor
has the extent to which various types of components are exercised
at runtime been studied. This dominance also suggested that the
Android platform is most heavily involved in managing
Activities, compared to managing other types of components, and
that the majority of the rich and diverse base of Android apps are
interactive apps, as opposed to apps without UIs (e.g.,
background services).

Since the callbacks our study was concerned with are the
methods generically defined in the Android platform that are
overwritten by developers, the small proportions of callback
references in code and callback invocations at runtime implied
that app developers did not have to customize much of the
platform’s common capabilities. This also suggests that the
Android framework is designed in a way that can accommodate
most user applications’ needs immediately. Meanwhile, given
these callbacks are part of the user code, the small percentages of
user code in apps and their executions are a straightforward
reason why callbacks are neither extensively referenced in code
nor much called during executions of apps. The evolutionary
trend of callback usage continuously dropping further pointed to
the direction of Android framework moving toward greater
versatility. In addition, with respect to the dedicated functionality
domain of each callback category, both the stability of category
distribution of statically used callbacks and that of dynamically
invoked ones in apps corroborated that the overall functionality
distribution (e.g., how much of an app deals with UI versus how
much of the app deals with data storage and management) of
Android apps has sustained against the ecosystem’s evolution.

Recommendations. Given the largely UI-centered design of
Android apps, Android app analyses should carefully model app
behaviors that are relevant to UI elements (e.g., UI-induced data
and control flows). Since invocations of various callbacks account
for only small percentages of all method calls (Finding 3), it
would be practical (concerning efficiency and scalability) for
dynamic app analyses that desire to perform precise callback
data/control flow analysis to fully track callback data/control
flows at runtime, so as to produce fine-grained analysis results
(instead of substantially sacrificing effectiveness, for instance by
adopting a coarse granularity). Such a strategy would be
rewarding as regards to analysis accuracy (especially, for higher
precision). This is particularly relevant as callback usage in apps
code and execution has been dropping over the years.

Also, given the skewed distribution of callback categories
(i.e., prominent dominance by one or two categories), app
analyses like lifecycle modeling, taint checking, and callback
control flow analysis should consider prioritized analysis
strategies (i.e., giving priority to the very few top-ranked
categories of lifecycle methods and event handlers) in order to
achieve a greater level of cost-effectiveness (e.g., trading
accuracy for scalability with the gains considerably overweighing
the losses). For example, Flowdroid [6] remains a state-of-the-art
static taint analysis for Android, yet it can be highly
computation- and memory-intensive hence generally suffers
scalability barriers [58]; the later approach in [58] achieved
substantial improvement in efficiency and scalability, yet faces
usability challenges with the results it produces. With the
recommended prioritization strategy, we may configure
Flowdroid to only consider callbacks of the top two
categories—in our case studies with a dozen of large/complex
apps, the prioritization led to over 30% efficiency gains at the
cost of no more than 4% precision loss, resulting in a significant
cost-effectiveness improvement. This can be explained by the fact
that the iterative callback analysis in Flowdroid accounts for a
major portion of its overall time cost according to the nature of
its core algorithm. For another example, the dominance of
Activities justifies focusing on selected callbacks in modeling
lifecycles of an Android app as a whole, such as considering
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Activity only when analyzing static control flows for lifecycle
callbacks [11], to reduce analysis complexity and/or to achieve
better efficiency. Given that the ranking of these top categories
tended to be quite stable (Finding 4), such prioritization strategies
would also be a long-term methodology.

7.3 On Components and Their Interactions
Lessons learned. Our ICC characterization reveals that
components of the same apps communicate rarely through
implicit ICCs as opposed to through explicit ICCs. Between
components across apps, the proportions of explicit ICCs were
even more substantial than those of implicit ICCs—in contrast to
the general intuition that implicit ICCs would dominate external
ICCs given that connecting to external apps through explicit
Intents is less convenient/handy than explicitly targeting internal
components. Nevertheless, on average, over a quarter of ICCs
were implicit across apps. The implication of the presence of
implicit external ICCs during app executions concerns the
precision of static analyses of ICC-induced information flows,
which typically link components via implicit ICCs in a
conservative manner (i.e., through the action, category,
data matching tests [4], [8]). Apparently the conservative
linking leads to imprecision of the static app analyses. Moreover,
given that the presence of implicit external ICCs is pervasive and
substantial, this imprecision can be excessive.

Our study on ICC data payloads reveals that most ICCs did
not carry any data and those carrying data tend to do so
preferably via bundles instead of URIs. Moreover, ICCs carrying
data solely via valid URIs have been in decline over time
(Finding 7). An immediate indication of this contrast and trend is
that ICC-based data communications among components in and
across apps tend to be structured (i.e., the key-value map
structure of bundles) as opposed to scalar data (e.g., a string
holding the URI data). A plausible reason for the growing
preference of bundles over URIs lies in the former providing
more flexibility, capacity, and capabilities.

Recommendations. Since implicit ICCs are common, a static
app analysis needs to account for the effects of conservative
implicit ICC linking on the analysis’s effectiveness as a major
source of potentially considerable imprecision. On the other
hand, despite the imprecision, a sound app analysis, within or
across apps, should completely model the app’s (both implicit
and explicit) communication with external components—in
particular, an intra-app analysis would suffer from loss of recall if
it dismisses external ICCs, because individual apps may still
communicate with built-in apps via explicit/implicit ICCs. This is
peculiarly necessary as implicit ICCs across apps are on the rise
while explicit external ICCs have accounted for a stable,
significant percentage of all ICCs (Finding 6).

There is a need to carefully address bundles in ICCs for
ICC-involved security testing [42]—examining URI data
transfers is not sufficient. Especially, given the preference of apps
using bundles over URIs for data communication via ICCs, app
testing and security diagnosis techniques should perform deeper
analysis of the extras fields in ICC Intents. Meanwhile,
security analyses involving ICCs may benefit from prioritizing
examination of ICCs that carry data, especially those using
bundles, to obtain more effective results within a time budget,
because ICCs that do not carry any data would be less likely to
facilitate malicious behaviors or serve as attack surfaces than

data-carrying ICCs would do, according to our recent study on
ICC-induced communication risks in Android apps [59]. In fact,
in prior work [60], [61], we have demonstrated that the
prioritization strategy can substantially enhance the ICC analysis
performance for Android.

7.4 On Sensitive Accesses
Lessons learned. Our results on sensitive access in Android apps
(Finding 8) revealed that such access was not quite prevalent in
apps code (i.e., only <2% of all callsites aimed at such access).
However, a quite significant portion of method calls at runtime
were for sensitive access, implying that each of the sensitive access
callsites was exercised quite intensively. Thus, sensitive access
represented a kind of hotspots in apps.

In terms of the categories of information/operations
associated with it, the sensitive access generally did not target
broadly but was rather focused—the majority of the sources/sinks
accessed only very few kinds of sensitive data (e.g., network
information) and critical operations (e.g., account setting).
Notably, these categories are indeed highly relevant to the
common functionalities (e.g., networking, maintaining account
information) of mobile devices. Considering that the access in
app code reflects more of developers’ intentions while the access
in app executions reflects more of users’ intentions, the high
consistency between the static and dynamic views regarding the
categories of sensitive access implied the consistency between
developer and user intentions (in other words, developers seemed
to be able to capture user intentions in this regard).

Also, over time, these dominating categories and their relative
rankings remained almost the same (Finding 9). The specific ranks
were stable too, evidenced by the generally small variations of the
ranks across sample apps (Tables 5 and 6). These trends indicate
that the developer and user preferences on sensitive access have
been consistent against the Android ecosystem evolution.

Recommendations. Given the strong dominance of a few (one or
two) categories of sensitive access in terms of the underlying
sensitive data/operations in Android apps, app security diagnosis
and defense techniques based on information flow analysis
(e.g., [4], [6]) may be optimized (for better cost-effectiveness
tradeoffs) by prioritizing the search for sensitive information
flows in those that involve data and operations of the
predominating categories. The analysis performance might be
greatly boosted without increasing false negatives substantially
by ignoring a marginal portion of sensitive flows, resulting in
improved cost-effectiveness. End users and security analysts
should also pay more attention to these highly accessed
categories to make better decisions on permission management
and app vetting—for example, requests for permissions for the
app to access the top-category information can be regarded less
suspicious (hence deserve greater scrutiny) than permission
requests for much less common categories of sensitive access.

Further, the long lists of predefined sources and sinks used by
static taint analyses may be prioritized to focus on the ones used
most often: the taint analysis would just focus on computing taint
flow paths between the most often used sources and sinks, instead
of exhaustively checking against the long, full lists. For example,
based on our results, considering just one or two top categories
of sources and sinks would allow static taint analyses to capture
taint flows between over 80% of all sources and sinks, providing a
slightly unsafe but rapid solution—both previous studies and our
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experience suggest that cutting the lists significantly may lead to
substantial analysis performance gains [4], [6].

In addition, given the high consistency of sensitive access
category ranking over the years, the above optimization strategies
can be considered long-term approaches to cost-effective app
information flow analysis and its client techniques. Further, given
the consistency of the category ranking between static and
dynamic views, both static and dynamic approaches (information
flow analysis and its applications) can use similar prioritization
strategies for the purpose of cost-effectiveness optimization.

8 THREATS TO VALIDITY

The primary threats to the external validity of our study results
concern our choice of benchmark apps and the test inputs we
used for dynamic analysis. First, we studied a limited number of
Android apps from each of the eight years (mainly because of the
large overheads of the dynamic profiling needed), which may not
be representative of all Android apps on the market or in use
during that year. To mitigate this threat, we started with a much
larger pool of apps for each year from the respective source, and
picked each initial app from that pool randomly. In addition, our
benchmarks were originally from a large variety of sources:
AndroZoo [30] itself is a highly diverse collection of apps.
Nevertheless, given the huge total number of apps in the wild,
our sample apps only represent a small portion of the entire app
population per year, thus the empirical findings and our
conclusions based on the findings are best interpreted with
respect to the studied apps—we do not claim that our results hold
for all Android apps.

Second, like any other dynamic analyses, our empirical
results on run-time behaviors are subject to the coverage of the
test inputs used—some behaviors of the benchmarks might not
have been exercised. To reduce this threat, we only used
benchmarks for which the dynamic inputs did achieve a
reasonable coverage (60% at least and 74% on average).
Nonetheless, our conclusions and insights based on the metrics in
the dynamic view are limited to the exercised app behaviors.
Also, the coverage threshold applied during benchmark selection
potentially affected the representativeness of the apps we chose.

Another threat to external validity is that our static code
analysis of apps for computing metrics in the static view may not
be sound due to undetected obfuscation. It is well known that
Android apps widely adopt various obfuscation schemes [62].
Due to the obfuscation, the target of some callsites may not have
been recognized correctly, leading to the incompleteness of our
static analysis. Fortunately, obfuscation is more often used in
malware for evading anti-malware defense. A recent study
revealed that only a small portion (<25%) of benign apps are
obfuscated [63]. Moreover, since our static study only concerns
method calls and class hierarchy, only a few obfuscation schemes
could affect our results.

Concerning the external validity threats related to benchmark
selection, we also note that many of our findings were highly
consistent with what we found in a preliminary study against a
different, small, one-year dataset [26]. For example, both studies
found that the functionalities of Android apps heavily and
increasingly relies on those of the Android framework, lifecycle
callbacks mostly target Activity components which also
constantly dominated over other component types, user interface
events (as opposed to system events) were the main triggers of
event handlers, and sensitive data sources primarily retrieved

network information and system settings while sensitive data
sinks performed account setting and logging. These consistencies
hold despite small differences in the values of respective metrics,
which are expected given that different benchmarks were used. In
all, none of our main conclusions changed between that
preliminary study and the current study. Thus, this work further
confirmed the earlier results, corroborating the credibility of our
findings on the characteristics of Android apps (hence that of our
lessons learned and recommendations made). The result
comparisons between the two studies suggested that the test
generation tools chosen did not have much impact, at least for the
benchmarks studied in terms of the characterization metrics used.

The main threat to construct validity concerns the metrics and
measurement procedures we used to quantify the code structure
and behavior of the benchmarks. To mitigate this threat, we
considered a diverse set of metrics in three orthogonal
dimensions, which together constitute a sensible profile of app
characteristics. In addition, we adopted varied ways of
measurement including the full data distribution and summary
statistics (mean and standard deviations).

As none of the benchmarks were identified as malicious by
VirusTotal [33], a threat to conclusion validity is that our results
may not generalize to malware. Our results and observations
regarding callback and source/sink categorizations are subject to
the validity of the corresponding predefined lists (e.g., callback
interfaces and source/sink APIs). We have used the best such
resources we are aware of to reduce this additional threat.

It is important to note that the numbers we reported in our
results are not intended to serve as absolute and exact metric
values that precisely quantify Android app characteristics. With
different benchmarks and test inputs, those numbers are expected
to shift. However, comparing these results to those from our
previous study on different benchmarks [26] reveals that the
deviations were mostly small. More importantly, the major
observations remained almost the same. Nonetheless, rather than
making strong claims about the numbers in absolute terms, we
emphasize on the general trends (e.g., overwhelming dominance
of calls to SDK code, and among callbacks those to Activity
components), contrasts (e.g., ranking of callback categories), and
distributions (e.g., the majority of sources accessing network
information versus other categories of sources executed) that
constitute an overall understanding of app behaviors and their
evolutionary patterns. The numbers should be taken as estimates
that assist understanding.

9 RELATED WORK

Three main categories of previous work are related to ours:
general characterizations of Android apps, security of the
Android ecosystem, and analysis of code for Android.

9.1 Characterization of Android Apps
Empirical works targeting Android have emerged lately, covering
a broad scope of topics ranging from resource usage [14], battery
consumption [17], permission management [64], code reuse [16]
to ICC robustness [54], SDK stability [18], and user perception of
security and privacy [56]. In contrast, our work aims at the general
characterization of Android applications from the point of view of
language constructs and run-time behaviors.

A few prior studies also looked at the code structure of apps.
For instance, with 20 sample subjects, Minelli and Lanza aimed
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to understand how Android apps are different from traditional
software applications in terms of source size (LOC), use of
third-party libraries, and version history data [19]. They found
that the dominant proportion of calls targeted third-party
libraries, different from our finding that the majority of all
method invocations are calls to the Android SDK—they did not
particularly examine the extent of SDK calls. The study also
suggested substantial percentages of user code (referred to as
core elements) in apps, contrary to our results showing very small
proportions of user code (in relation to the heavy use of SDK).
While also applying an evolutionary view like our study, their
study looked at the historical versions of the same apps over a
period of time (according to the version history data available), as
opposed to our study looking at the varied apps across years as
representatives of the entire population of each year at a much
larger scale and longer span. On one individual app, they found
the number of user code entities grew over time, in contrast to
our finding that the proportion of user code kept shrinking over
years. These differences in findings can be attributed to the
differences in sample size (our 17,664 versus their 20 apps) and
methodologies (e.g., their looking at different versions of same
apps versus ours looking at apps of different years).

Use of third-party libraries is a kind of code reuse. Mojica et
al. conducted a large-scale study of Android apps concerning
code reuse through class inheritance, class reuse, and
(framework) reuse of whole apps [20]. The authors found that
18.75% of all classes in 208,601 apps studied inherited from an
Android platform base class, and 8.4% of all particularly
inherited from the Activity class. While our study shares these
perspectives, our findings are quite different in that our results
showed much greater extent of framework reuse (in terms of calls
to SDK APIs) and much greater dominance of Activity
components. A plausible reason for the differences is that their
study looked only at apps of a particular (early) year (i.e., 2011)
while we examined apps of eight different years and most of apps
we studied are much newer than their benchmarks. Following up
this study by Mojica et al., Linares-Vasquez et al. investigated the
effects of code obfuscation and use of third-party libraries on the
empirical studies of code reuse in Android [21], where the
authors found that code-reuse study results can be significantly
different between considering and dismissing third-party libraries
or obfuscated apps. Neither of the studies in [20] and [21]
investigated the evolutionary characteristics of apps over years as
we did, and accordingly they did not report findings on how the
studied app traits changed over time. Also, like the study by
Minelli and Lanza and that by Mojica et al., this study is static in
that no concrete app executions were analyzed, as opposed to our
study being dynamic in addition to considering static views.

Several Android app characterization studies only targeted
Android malware [23], [24], [25]. These studies either utilized
static analysis [25], [52] or relied on manual investigation [23]. In
contrast, we focused on understanding the run-time behaviors of
benign Android apps, which potentially complements those
previous studies. Like ours, the evaluation study in [34] also
applied an evolutionary lens to Android apps, yet focusing on the
code anti-patterns against general software quality. Also different
from our work is the methodology of examining the (3,568)
evolved versions of a few number of (106) same apps across two
years, versus ours of looking at thousands of apps as samples of
the yearly populations for eight consecutive years.

In preliminary study [26], we characterized a small set of

(125) apps from year 2015 to understand their dynamic traits. In
comparison, this paper largely expanded that study in multiple
ways. First, the experimental scale is largely extended: the
benchmark suite is enlarged by over 100 times. Second, the study
scope is expanded to include static characteristics in addition to
run-time behaviors, as well as the relationships between the two
views with respect to the characterization metrics. Third, by
examining apps from eight years (versus one particular year in
the earlier study), we further investigated the evolutionary pattern
of each metric to understand how Android apps evolve in their
code structure and behavioral traits, and discussed the
implications of new findings. Fourth, we ran the experiments on a
real device with a state-of-the-art industry-maintained Android
app input generator (Sapienz), versus the earlier study profiling
apps an emulator against inputs generated from the Monkey
tool [44].

9.2 Security of the Android Ecosystem
Regarding the analysis of sources and sinks in Android apps, our
study is not the first. Recent studies on taint analyzers for
Android [65], [66] investigated the effect of the lists of sources
and sinks considered on the effectiveness results reported in the
original evaluation study of respective analyzers. For a fair
comparison among selected analyzers, these studies used the lists
produced by SuSi [52] (independent of the study subjects) or
those extracted from the particular study subjects. Avdiienko et
al. [67] used FlowDroid [6] to compute taint flow paths between
sources and sinks identified by SuSi and then uplifted the paths to
the source/sink category level for building a one-class malware
classifier. Beyond presenting the classification technique, the
authors also characterized use of sources and sinks in the
benchmark apps in terms of the percentage distribution of taint
flow paths between various source/sink categories. These studies
are static in nature and they looked at the data flows between
sources and sinks. Our study is both static and dynamic while
simply examining the individual calls to sources and sinks
without computing the data flows. We also looked at the
evolutionary patterns of source/sink usage which is not addressed
in these prior peer studies.

Concerning the security of the Android platform, the study
in [68] offers a dedicated view into the varied types of
vulnerabilities in different layers (from the operating system
kernel all the way up to the user applications) of the platform
through a vulnerability taxonomy. The study also investigated the
extent to which different layers are affected by the vulnerabilities
as well as the timing of vulnerability fixes in Android. With a
focus on the security of SDK APIs (application framework layer)
of the platform, Thomas et al. studied the vulnerabilities of
JavaScript-to-Java interfaces with respect to their origins and
lifetime [69]. The authors found an exponential decay model that
describes the fix rate of these vulnerabilities, which is useful for
understanding their lifetime.

Similarly but focusing on a different perspective, Cao et
al. [70] examined the system services in the Android framework
particularly concerning input-validation vulnerabilities, measured
attack surfaces for these vulnerabilities, and developed a fuzzing
tool for detecting this kind of vulnerabilities in the Android
system services. In [71], the authors proposed a set of three
metrics (referred to as FUM) to quantify the critical vulnerability
factors as regards to the device manufacturers and network
operators in the Android ecosystem. Their study revealed that
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vulnerability fixes were generally not timely delivered albeit the
delivery varied across different parties, and that security updates
offered by manufacturers were not sufficient due to little
incentive. More recently, Jimenez et al. [72] manually inspected
Android system vulnerabilities archived in the National
Vulnerability Database (NVD) from 2008 to 2014 and
characterized these vulnerabilities regarding their code locations,
complexity, and fixing effort.

In sum, these studies called for more attention to securing
the Android platform against varied kinds of code vulnerabilities,
which our study echoes. Meanwhile, we raise the concern for the
general security of the Android platform based on their dominating
involvement in the functionalities of user applications, different
from these prior studies looking at particular security threats (e.g.,
input-validation vulnerabilities) of the platform (or part of it such
as system services) directly.

9.3 Code Analysis for Android Apps

While our study computes the proposed characterization metrics
in the static view, our static code analysis of apps is minor and
very straightforward. Thus, given the huge space of code analysis
for Android apps in general, we address only two aspects that are
most relevant to our study: dynamic analysis of Android apps and
code analysis for Android app security. A great survey of static
code analysis for Android apps can be found in [73].

Dynamic Analysis of Android Apps. A few dynamic analyses
focusing on Android involved tracing method calls as well, for
malware detection [74], app profile generation [22], and access
control policy extraction [75]. Yet, their main goal was to serve
individual apps thus different from ours of characterizing
Android application programming in general. In addition, their
call tracing aimed at Android APIs only, whereas our execution
traces covered all method calls including methods defined in user
code and third-party libraries.

Code Analysis for Android Security. There has been a growing
body of research on securing Android apps against a wide range
of security issues [1]. Among the rich set of proposed
solutions [2], modeling the Android SDK and other libraries [4],
[6], approximating the Android runtime environment [5], [7], and
analyzing lifecycle callbacks and event handlers [6], [11] are the
main underlying techniques for a variety of specific vulnerability
and malware defense approaches [2]. Examples of such specific
approaches include information flow analysis [29], [76] in
general and taint analysis [6], [77] in particular.

In comparison, we are concerned about similar aspects of the
Android platform and its applications, such as different layers of
app code and interactions among them, as well as lifecycle
methods and event handlers. However, rather than proposing or
enhancing these techniques themselves, we empirically
characterized sample Android apps with respect to relevant app
features and investigated how such features discovered from our
study could help with the design of those techniques. Also,
different from many of them that are purely static analyses, our
work combines static and dynamic analyses. Compared to
existing dynamic approaches to security analysis for Android
which were mostly platform extensions (i.e., modifying the SDK
itself), our work did not change the Android framework but only
instrumented in Android apps directly.

10 CONCLUSION

We presented a systematic, longitudinal characterization study of
Android apps that targets a general understanding of application
code structure and run-time behaviors, as well as their implications
for improving Android app analysis and security defense. Our
study investigated the functionality composition and distribution,
component distribution and communication, ICC data payloads,
use of lifecycle callbacks and event handlers, and sensitive data
access, of apps developed during eight past years.

Our extensive study has enabled a series of notable findings
about both the overall coding features (static profile) and
run-time behavioral traits (dynamic profile) of Android apps with
respect to the studied samples, and their evolutionary dynamics
with respect to the same profiles over the studied time span. In
particular, our study findings indicate that (1) Android apps are
increasingly framework-intensive and platform-reliant, with
growing use of various SDK APIs, (2) only a small portion of
method calls targeted lifecycle callbacks (mostly for Activities) or
event handlers (mostly for user interactions), and newer apps
tended to have lesser overall use of callbacks, (3) the majority of
executed ICCs did not carry any data payloads, others passed
data mainly via bundles instead of URIs, (4) sensitive and critical
APIs focused mainly on network information/operations, account
setting, and logging, and (5) ranking of callback and source/sink
categories remained stable during the studied span of years. In
addition, we offered insights into the implications of our
empirical findings that potentially inform of future code analysis
and security defense of Android apps towards better
cost-effectiveness tradeoffs.
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