
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Hybrid Program Dependence Approximation for
Effective Dynamic Impact Prediction

Haipeng Cai

Abstract—Impact analysis determines the effects that program entities of interest, or changes to them, may have on the rest of the

program for software measurement, maintenance, and evolution tasks. Dynamic impact analysis could be one major approach to

impact analysis that computes smaller impact sets than static alternatives for concrete sets of executions. However, existing dynamic

approaches often produce impact sets that are too large to be useful, hindering their adoption in practice. To address this problem, we

propose to exploit static program dependencies to drastically prune false-positive impacts that are not exercised by the set of

executions utilized by the analysis, via hybrid dependence approximation. Further, we present a novel dynamic impact analysis called

DIVER which leverages both the information provided by the dependence graph and method-execution events to identify runtime

method-level dependencies, hence dynamic impact sets, much more precisely without reducing safety and at acceptable costs. We

evaluate DIVER on ten Java subjects of various sizes and application domains against both arbitrary queries covering entire programs

and practical queries based on changes actually committed by developers to actively evolving software repositories. Our extensive

empirical studies show that DIVER can significantly improve the precision of impact prediction, with 100–186% increase, with respect to

a representative existing alternative thus provide a far more effective option for dynamic impact prediction. Following a similar rationale

to DIVER, we further developed and evaluated an online dynamic impact analysis called DIVERONLINE which produces impact sets

immediately upon the termination of program execution. Our results show that compared to the offline approach, for the same

precision, the online approach can reduce the time by 50% on average for answering all possible queries in the given program at once

albeit at the price of possibly significant increase in runtime overhead. For users interested in one specific query only, the online

approach may compute the impact set for that query during runtime without much slowing down normal program operation. Further,

the online analysis, which does not incur any space cost beyond the static-analysis phase, may be favored against the offline approach

when trace storage and/or related file-system resource consumption becomes a serious challenge or even stopper for adopting

dynamic impact prediction. Therefore, the online and offline analysis together offer complementary options to practitioners

accommodating varied application/task scenarios and diverse budget constraints.

Index Terms—Static program dependence, dynamic analysis, impact prediction, online impact analysis, precision, efficiency

✦

1 INTRODUCTION

M ODERN software is increasingly complex and undergoing

constant changes rapidly. Those changes, while necessary

for any successful software system, also pose serious risks to

its quality and reliability. Therefore, it is crucial to analyze and

evolve these systems with respect to the changes efficiently and

effectively. A key activity in this evolution process is impact

analysis [1], [2], [3], [4], [5], [6], [7], [8], [9], which identifies

the effects that program entities of interest or changes to those

entities can have on the rest of the software. Impact analysis can be

performed in different scopes, from specifications and architecture

to test cases and source code [10]. Further, concerning source

code, the analysis can be performed at various levels of granularity,

ranging from component and class to method and statement. Also,

impact-analysis techniques can be developed with either static or

dynamic approaches, or combinations of both.

Different approaches to impact analysis provide different

tradeoffs in accuracy, costs, and other qualities for computing

impact sets (i.e., potentially affected entities). Static analysis can

produce safe but overly-conservative impact sets [11], [12], [13].

In addition, textual and repository analysis can capture comple-

mentary developer intents from source code [2], [6], [8]. Dynamic

• The author is with the School of Electrical Engineering and Computer

Science, Washington State University, Pullman, WA, 99163, USA.

E-mail: hcai@eecs.wsu.edu.

Manuscript received May 8, 2015; revised Jan 28, 2017.

impact analysis, in contrast, uses runtime program information

such as coverage [14] or execution traces [15] to produce smaller

and more focused impact sets than static analysis but only for

particular inputs, hence the corresponding operational profiles, of

the program [5], [16], [17]. Nevertheless, users looking for or

utilizing actualized program behaviors, as represented by a set of

executions, would prefer obtaining the execution-specific impact

sets [15], making dynamic impact analysis an attractive option.

Different dynamic impact analyses also provide different

cost-effectiveness tradeoffs, although most of them work at the

method level. For example, COVERAGEIMPACT [14] is based

on runtime coverage and ignores execution order, which makes

it very efficient but also very imprecise [5]. Another technique,

PATHIMPACT [15], is more precise by using execution order

but is less efficient because it requires whole-program method-

execution tracing [5]. For intermediate tradeoffs, optimizations of

PATHIMPACT have been proposed [18], [19], [20], including an

incremental version [21]. The most efficient one that preserves

the precision of PATHIMPACT is based on execute-after sequences

(EAS) [18]. We call this optimized technique PI/EAS.

Unfortunately, existing approaches including PI/EAS can still

produce too many false-positive impacts [22]. An alternative

would be forward dynamic slicing [23], [24], [25], but this

technique works at the statement level which would have to

be applied to all locations in a method, making it excessively

expensive for a method-level impact analysis. At the method

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

level, hybrid techniques combining static and dynamic analysis,

such as INFLUENCEDYNAMIC [16], have been attempted to attain

better effectiveness (precision) [26], [27], [28]. However, these

techniques improve precision over PI/EAS only marginally yet

at a much greater cost [16]. Another hybrid technique combines

runtime coverage with text analysis [3], but it works at the change-

request level while relying on various sources of information

that might not always be available, such as change requests

and changed code entities that exhibit certain patterns, repository

commits/logs and code comments amenable to data mining, nat-

ural language processing, and/or information retrieval techniques,

and well-documented bug reports, etc. These data are typically

only available if the development team followed good software

practices. Also, it remains unclear how this technique [3] performs

with more precise dynamic data.

When impact analysis is used for changes, there are two usage

scenarios [1]: predictive impact analysis (e.g., [15], [18]) before

changes are designed and descriptive impact analysis (e.g., [29],

[30]) after changes have been made. The former type predicts

the impacts of changing code to help developers assess risks,

budget, design, and propagate changes [31], [32]. The latter type

describes impacts after changes are applied [7], [33]. In this work,

we focus on predictive impact analysis, which is also applicable

to dependence-based tasks other than change-impact analysis.

For a predictive method-level dynamic impact analysis that

relies on no any other information than the concrete set of execu-

tions that developers work on (thus are always available), PI/EAS

remained the most precise technique at its level of efficiency in the

literature, to the best of our knowledge. However, in an average

case, at least half of the methods reported as impacted by this

technique are false positives [22], [34].

In this paper, to address the imprecision of dynamic impact

analysis at acceptable costs, we leverage static program depen-

dencies and dynamic method-execution events to develop a novel

hybrid dynamic impact analysis technique, called DIVER [35].

For one thing, DIVER exploits the static dependencies to guide the

computation of dynamic impacts so as to improve the precision

of impact prediction. At the same time, it leverages an approxi-

mation of the traditional finest-grained (heavy) static dependence

model [11] while utilizing the light form of dynamic information

(the method events) to achieve practical efficiency. The goal of this

approximate dependence model is to provide crucial information

to dynamic impact analysis that helps it discard spurious impacts

that it would otherwise report. Unlike call graphs, this approx-

imation captures interprocedural data and control dependencies

among methods, like the system dependence graph (SDG) [11]

did but much more lightly. For dynamic impact analysis, the static

dependencies are computed only once for the entire program to

support any number of impact-set queries afterward.

DIVER incurs the same runtime costs as PATHIMPACT but

can be much more precise. PATHIMPACT uses the execution order

of methods to identify all possible runtime impacts of a method

m, which can be quite imprecise because, in general, not all

methods executed after m are affected by m. DIVER, however,

applies static dependencies to shrink the impact set (the set of

potentially impacted methods) to only those methods that could

have depended on m at runtime. Since it prunes, from impact sets

computed purely based on the execution order, only methods that

are definitely not exercised by the dynamic method events, DIVER

improves precision over PATHIMPACT without reducing recall. 1

Naturally, applying the static dependence information increases

the cost of querying the impact set of a method, but this cost per

query (the method for which impacts are to be queried) can remain

acceptable and multiple queries can be processed in parallel.

We implemented DIVER and applied it to ten Java subjects of

up to 356K lines of code, and compared the results with those of

PI/EAS as the baseline. We also implemented PI/EAS for Java

with a technical improvement that addresses the recall drawbacks

of its original implementation as presented in [18] in the presence

of unhandled exceptions. Our implementation of both DIVER and

the improved PI/EAS is available to the public for download. 2

To thoroughly evaluate our technique, we computed impact

sets of both every single method of each subject as a query

(single-method query) and groups of methods where those in

each group together as a single query (multiple-method query),

using DIVER and PI/EAS separately. Furthermore, to estimate

how effectively DIVER would perform in contrast to PI/EAS in

real-world usage scenarios, we extracted queries, both single- and

multiple-method ones, from three actively evolving open-source

repositories (repository query) and compared the impact sets

between the two techniques for those queries. At smaller scales,

we also verified that DIVER improves precision without penalizing

recall relative to PI/EAS through two validation studies.

Intuitively, an online dynamic impact analysis [19], [20] would

have the advantage of answering queries earlier than DIVER as

the analysis produces impact sets immediately when the program

execution finishes. Another merit of online analysis is that it does

not incur the storage and time costs of tracing as incurred by

DIVER. (Accordingly, a dynamic impact analysis like DIVER and

PI/EAS which records traces at runtime and computes impact

sets after program execution is referred to as an offline dynamic

impact analysis.) Thus, based on the core technique of DIVER, we

further developed an online dynamic impact prediction technique

DIVERONLINE for Java and evaluated it against the same ten

subjects used in the DIVER evaluation. With a similar rationale

for propagating impacts based on method-execution events, DI-

VERONLINE decomposes the DIVER impact-computation algo-

rithm into three run-time monitors that each handles one type

of method-execution events. At the core of DIVERONLINE, the

online algorithm processes an event and discards it immediately

afterward, thus it eliminates the need for tracing hence the cost

of trace storage and time for trace processing. DIVERONLINE

shares the static-analysis phase with DIVER, yet it moves the

offline, impact-analysis phase in DIVER to the runtime phase

where DIVERONLINE carries out the online impact-computation

algorithm. We explored the pros and cons empirically of online

versus offline dynamic impact prediction by comparing DIVER

with DIVERONLINE in terms of efficiency. To accommodate users

of varied demands, DIVERONLINE may work in two different

modes: All-in-One computing impact sets of all possible queries

in a given program, and One-by-One computing the impact set for

a specific query only. The implementation of DIVERONLINE also

is freely available in the DIVER package.

Our results confirm the imprecision of PI/EAS, whose impact

sets often contain hundreds of methods. DIVER, in contrast,

computed impact sets containing in most cases a few dozen

methods only. Our findings for these subjects are dramatic: the

1. We use recall to represent the fraction of true impacts in the impact set.

2. Source code, demo, and documentation are at chapering.github.io/diver.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

impact sets of DIVER are 35–50% the size of the impact sets of

PI/EAS while remaining as safe. 3 Indeed, our validation studies

confirm that DIVER results are safe for the underlying execution

data utilized. This means that DIVER improved the precision of

a representative existing technique by 100–186%. We also found

that in most cases it takes reasonable storage of a few dozen mega-

bytes while its time costs are acceptable at less than a minute per

query on average, and in common cases only a couple seconds.

Our evaluation of DIVERONLINE reveals that, based on the same

rationale and equal amount of program information, the online

approach (in the All-in-One mode) can be much faster than the

offline analysis for computing at once all queries in the program

under analysis, reducing the time cost of the latter by 5–95% (50%

on average). For computing the impact set of a specific query

only, the online approach can well accommodate also with its

One-by-One mode albeit with slightly higher runtime slowdown.

Moreover, in cases where trace storage causes serious challenges

to DIVER, either mode of DIVERONLINE can be greatly favored

or even become an enabling option for dynamic impact prediction

as it does not generate or store any traces. In general, the online

and offline analysis complement to each other to together offer

flexible options to users for varied needs and diverse use scenarios.

We have thoroughly compared the two modes of DIVERONLINE

with DIVER, both qualitatively and empirically.

Through this work, we have demonstrated how dynamic im-

pact analysis can be made much more attractive for developers

to use in understanding their software and identifying potential

impacts of changes for typical use scenarios. We also show

that, even without specialized runtime environments [19], online

dynamic impact prediction can be a much better option than

offline alternatives in terms of cost-effectiveness especially when

tracing and trace storage costs become challenges and/or when

users would like to incur higher runtime overhead at once to

compute impact sets for all queries for a program with respect

to a test suite. In addition, our publicly-available implementation

of DIVER, DIVERONLINE, and PI/EAS allows developers and

researchers to use and study these techniques for other Java

software, and develop relevant new techniques.

In summary, the main contributions of this work include:

• A new dynamic impact analysis technique DIVER and its online

counterpart DIVERONLINE that combine statement-level static

program dependencies and method-level dynamic execution

trace to compute more precise impact sets than existing tech-

niques, both safely and efficiently, and provide diverse options

to accommodate different use scenarios.

• An open source implementation of DIVER and DIVERONLINE

along with an improved version of PI/EAS which both offers

representative dynamic impact analysis tools to developers and

provide reusable facilities to other researchers.

• A comprehensive evaluation that shows the significant ad-

vantages of DIVER over existing options in overall cost-

effectiveness, and thus demonstrates how dynamic impact

analysis can be made more practically useful.

• A detailed comparative study (first of this kind to the best of our

knowledge) of online versus offline dynamic impact prediction

techniques that reveals the pros and cons of each approach both

qualitatively and quantitatively.

3. In this paper, we regard a method in the dynamic impact set as a true
positive if the method is dependent on the query via exercised data and/or
control dependencies. Further, the impact set is safe if it includes all true
positives and the analysis is sound if it always produces safe impact sets.

In the rest of this paper, we first further clarify our problem

statement and motivation in Section 2, and then outline back-

ground concepts and techniques with an illustrating example in

Section 3. The core techniques of DIVER and DIVERONLINE are

detailed in Section 4 and key implementation issues are discussed

in Section 5. Next, Sections 6 through 10 present our research

questions and four empirical studies answering them. Then, we

address various threats to the validity of our empirical results in

Section 11. Finally, we discuss previous work related to ours in

Section 12 before giving concluding remarks in Section 13.

2 PROBLEM AND MOTIVATION

Impact analysis is an integral part of software development, and its

importance has been widely recognized both by researchers [36],

[37] and the software industry [38], [39], [40], [41]. Yet, existing

impact-analysis techniques are facing many challenges that hinder

their adoption in practice [38], [40], [42], [43]. Among others,

two critical challenges are the uncertain results often produced by

existing techniques [39], [41], and the limited resources available

to developers for impact analysis [41], [43].

One major cause of the challenge due to uncertain results lies

in the imprecision of the analysis technique used. In light of our

recent study [22], [34], current dynamic impact analyses such as

PI/EAS can be too imprecise to be practically useful—on average,

merely about one half of the methods it produces are actually

impacted. In particular, for methods at the core of a program,

PI/EAS can include in their impact sets most or all methods in the

program. For example, if querying the entry method of the Apache

performance-gauging application JMeter, the developer using PI/-

EAS will end up inspecting all 732 methods executed by the test

suite, making the analysis almost impossible to realistically adopt.

Since analyzing the effect of candidate changes is essential

before applying them, more precise, hence potentially smaller,

impact sets are clearly more desirable to developers, as long

as the safety of the results is preserved (i.e., no true dynamic

impacts are missed). For one thing, more precise impact analysis

is crucial for the direct use of the analysis in change planning

and management as false impacts may misguide developers to

introduce buggy changes into existing code. In addition, smaller

yet safe impact sets are more likely to be fully inspected, not

only reducing potential risks of missing important impacts but

also avoiding costly waste of time and other resources. The latter

benefit also implicitly mitigate the other challenge that comes from

the resource constraints developers are usually subject to.

Moreover, reducing false-positive impacts implied enhancing

the effectiveness in various client analyses of impact analysis. For

instance, when applied to regression testing [14], imprecise impact

sets would end up with unnecessarily large numbers of test cases

selected or prioritized, and the false-positives could also cause

incorrect test selection or ranking. Similarly, in other applications

such as fault localization [44] and changeability assessment [45],

giving imprecise (excessively large) results apparently reduce the

cost-effectiveness of such tasks. In consequence, the adoptability

of imprecise impact analysis tends only to be compromised.

When studying the predictive accuracy of dynamic impact

analysis [34], we found that the large imprecision of PI/EAS

mainly results from its overly-conservative nature: It utilizes

method execution order only to infer impact relations, whereas in

general methods executed after a query are not necessarily affected

by it. A natural way to reduce this conservativeness hence the

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

1public class A {

2 static int g; public int d;

3 String M1(int f, int z) {

4 int x = f+z, y = 2, h = 1;

5 if (x > y)

6 M2(x, y);

7 int r = new B().M3(h, g);

8 String s = "M3 rets " + r;

9 return s;}

10 void M2(int m, int n) {

11 int w = m - d;

12 if (w > 0)

13 n = g / w;

14 boolean b = C.M5(this);

15 System.out.print(b);}}

16public class B {

17 static short t;

18 int M3(int a, int b) {

19 int j = 0;

20 t = -4;

21 if (a < b)

22 j = b - a;

23 return j;}

24 static double M4() {

25 int x = A.g, i = 5;

26 try {

27 A.g = x / (i + t);

28 new A().M1(i, t);

29 } catch(Exception e) { }

30 return x;}}

31public class C {

32 static boolean M5(A q) {

33 long y = q.d;

34 boolean b = B.t > y;

35 q.d = -2;

36 return b;}

37 static int M0(String[] l) {

38 int a = 0, b = -3;

39 A o = new A();

40 String s = o.M1(a, b);

41 double d = B.M4();

42 String u = s + d;

43 System.out.print(u);

44 return 0;}

45 }

Fig. 1: An example program E used for illustration throughout this paper.

PATHIMPACT: M0 M1 M2 M5 r r M3 r r M4 r r x DIVER: M0e M1e M2e M5e M2i M1i M3e M1i M0i M4e M4i M0i x

PATHIMPACT impact set of M2: {M0,M1,M2,M3,M4,M5} DIVER impact set of M2: {M2,M5}

Fig. 2: An example execution trace of E used by PATHIMPACT and the corresponding one by DIVER (top row), along with the impact

set produced by the two techniques for the same example query M2 (bottom row).

consequent imprecision could be to utilize dependence analysis to

guide the execution-order-based impact computation. In addition

to the method execution traces, we can leverage static code

dependencies to identify impact propagations across executed

methods, so as to prune false positives from the set of methods

executed after the query. For example, a method m invokes two

methods int f1() and char f2() in sequential order to do

two separate computations, and the two methods do not share any

data. Then while f2 will certainly be executed after f1, obviously

any change made within f1 would not affect f2. Yet, PI/EAS will

report f2 as potentially impacted by f1, which is a false positive

in the PI/EAS impact set of f1. With static dependence analysis,

this false positive would be discovered and eliminated since the

analysis will reveal that f2 is not dependent on f1. In general,

a method that follows yet would never depend on (according to

static dependence analysis) the query in the execution can be

removed as a false positive, which hence improves the impact-

analysis precision. Although such hybrid (i.e., combining static

and dynamic analysis) approaches have been explored previously,

most of them have not been able to significantly improve over

PI/EAS [16], [26], [27], [28]; others targeted different application

scopes [3], [28]. Nonetheless, we believe a better design would

lead to significant improvements in precision without much in-

crease in overheads, and we show how to achieve that goal through

the development of DIVER.

Like DIVER, most dynamic impact prediction approaches [15],

[16], [18], [27], [28], [35], [46] are offline in that they first collect

program traces and then compute impact sets from the traces after

program execution. Dynamic impact prediction can be performed

online as well [19], [20], in which the impact sets are computed

during program execution and the analysis results are immediately

available as soon as the execution terminates. Intuitively, one merit

of online analysis against offline analysis is that the former does

not incur trace storage and trace processing costs as the latter does.

The merit can be significant when such costs become substantial—

serializing/deserializing large traces of long-running programs

may necessitate heavy I/O (time cost) and/or large disk/database

spaces (storage cost). While traces can be reused for different

queries in offline analysis (i.e., on-demand querying), users could

better instead produce the impact set of any possible query all at

once and later pick impact sets on demand—where the online

analysis can be more desirable since the otherwise extra run-

time overhead due to the need for executing the program multiple

times would be avoided, especially if the (time and/or storage)

cost savings are appreciable. Yet, existing online dynamic impact

prediction techniques [19], [20] suffer from the same imprecision

as PI/EAS. Therefore, we will explore an online approach to

dynamic impact prediction that achieves the level of precision at

least comparable to that of DIVER.

3 BACKGROUND AND EXAMPLE

This section presents the background of this work and an illustrat-

ing example. In Figure 1, program E inputs two integers a and b

in its entry method M0, manipulates them via M1 and M4 and prints

the return values concatenated. M4 updates the static variable g to

be used by M2 via a call to M1. M3 and M5, invoked by M1 and

M2, include field accesses, conditionals, and arithmetics.

3.1 Program Dependencies

Program dependencies are classified as control or data dependen-

cies [47]. A statement s1 is control dependent [48] on a statement

s2 if a branching decision taken at statement s2 determines

whether statement s1 is necessarily executed. In Figure 1, for ex-

ample, statement 22 is control dependent on statement 21 because

the decision taken at 21 determines whether 22 executes or not.

This dependence is intraprocedural because both statements are

in the same procedure (function or method). Another example is

the set of statements 11, 12, 14, and 15 which all are control

dependent on statement 5, whose decision determines whether M2

is called. These dependencies are interprocedural [49] because

each of them crosses different procedures.

A statement s1 is data dependent [50] on a statement s2 if a

variable v defined (written) at s2 is used (read) at s1 and there

is a definition-clear path in the program for v (i.e., a path that

does not re-define v) from s2 to s1. In Figure 1, for example,

statement 36 is data dependent on statement 34 because 34 defines

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

b, 36 uses b, and there is a path 〈34,35,36〉 that does not re-define

b. Data dependencies can also be classified as intraprocedural or

interprocedural. In our work, we treat formal parameters as defined

at the entry of each procedure (function or method) and also as

data dependent on the corresponding actual parameter at each call

site for that procedure. For example, the formal parameter q at

statement 32 is a definition of q and also data dependent on the

actual parameter this at 14.

Incorporating both types of program dependencies together, a

dependence graph [11], [48] is a static program representation

where nodes represent statements of the program and edges

represent both control and data dependencies among those state-

ments. In comparison, the program dependence graph (PDG) [48]

addresses dependencies of single procedures (methods, functions),

while the SDG [11] models dependencies of a program consisting

of multiple procedures.

3.2 Dynamic Impact Analysis

Dynamic impact analysis uses execution data to find the runtime

impacts that program entities such as methods or changes to those

entities have on the program. In this paper, we focus on predictive

impact analysis [1], [15] which has no knowledge of any actual

changes to the program. Such a dynamic impact analysis takes a

program P , a test suite T , and a set of methods M as inputs, and

outputs an impact set containing the methods in P to be potentially

impacted by M when running T on P .

One example technique is PATHIMPACT [5], [15], which

collects runtime traces of executed methods. For each method m in

M that is queried for its impact set, PATHIMPACT uses for impact

prediction the method execution order found in the runtime traces

of P for T . The analysis identifies as impacted m and all methods

executed in any trace after m. Thus, the impact set includes all

methods called directly or transitively from m, all methods below

m in the call stack (those into which the program returns after m),

and all methods called directly or transitively from those in the

call stack below m.

Figure 2 shows an example trace for PATHIMPACT, where r is

a method-return event and x the program-exit event. The remain-

ing marks indicate the entry events of methods. For query M2,

for example, PATHIMPACT first finds {M5, M3, M4} as impacted

because these methods were entered after M2 was entered and then

finds {M0, M1} because these methods only return after M2 was

entered. Thus, the resulting impact set of M2 is {M0, M1, M2, M3,

M4, M5} for this trace. In cases where more than one trace exists,

PATHIMPACT returns the union of the impact sets for all traces.

Method traces are much shorter than statement traces. Also,

traces can be compressed. Nevertheless, the execute-after se-

quences (EAS) optimization [18] exists to reduce the space costs

of PATHIMPACT without losing essential information needed by

the analysis. This approach exploits the observation that only the

first and last occurrence of each method in a trace, captured by

the first entry event (denoted by e) and last returned-into event

(denoted by i), respectively, are required. The resulting technique,

PI/EAS, keeps track at runtime of those two events (occurrences)

per method without collecting full traces.

Another example technique is INFLUENCEDYNAMIC [16],

which utilizes interface-level data dependencies in addition to

method execution order to improve impact-analysis precision

against PI/EAS. The technique first builds the influence graph of

the input program, via which parameters and return values passed

between methods are represented. Next, it checks dependencies

from the graph while traversing method execution sequence to

identify potentially impacted methods of a given query. As an

example, for the same inputs (query, program, and trace) as

above, INFLUENCEDYNAMIC will report the whole program as

the resulting impact set as PI/EAS did. In all, this technique was

shown only marginally (3–4%) more precise but much (10x) more

expensive than PI/EAS [16].

Finally, dynamic slicing [24], in its forward form, could

be an option for dynamic impact analysis. And as it performs

the finest-grained dependencies at statement level, this technique

can produce impact sets of much higher precision than PI/EAS

and INFLUENCEDYNAMIC. However, for a method-level impact

analysis, dynamic slicing tends to be overly heavyweight in nature

and would incur excessive overheads.

In sum, despite its age, PI/EAS remains the most cost-

effective technique prior to DIVER [35] for predictive dynamic

impact analysis that relies on no extra inputs (but P , T , and

M only which should always be available to users adopting a

dynamic analysis). Therefore, we choose PI/EAS to represent

existing alternatives to our technique for comparative studies.

4 TECHNIQUES

We now present our new approaches to dynamic impact analysis.

First, we give an overview of the DIVER approach using an

example, focusing on the overall process of our analysis with

DIVER. Next, we describe the approximate static dependence

model underlying DIVER, with emphasis on the construction of

the dependence model. Then, we present in detail the impact

computation algorithm at the core of DIVER, which shows how the

static dependencies are exploited to prune false-positive impacts

from execute-after sets of methods in the method-event trace.

We also present DIVERONLINE, our online version of DIVER,

including a comparison between offline and online dynamic im-

pact prediction and the online impact computation algorithm of

DIVERONLINE. Finally, we clarify the practical applications of

our techniques and discuss their limitations.

4.1 Overview

For our new impact analysis DIVER to be safe with respect to an

execution set and also precise and practical, we need something

better than the execute-after relation of PI/EAS, which is too

conservative. Reaching a method m′ after a method m at runtime

is necessary for m to impact m′, but not all such methods as

m′ necessarily depend on m. To fix this problem, we build first

a whole-program static dependence graph (referred to hereafter

as dependence graph for brevity), and then use it to find which

of those methods dynamically depend on m. This dependence

graph is more conservative but lighter-weight than traditional full

dependence models [11], [51] it approximates. And it is computed

only once (before running the program) to be reused for all

possible impact-set queries with respect to the single program

version under analysis and any executions of that version.

4.1.1 Process

The process of computing the dependence graph and using it for

dynamic impact analysis is shown in Figure 3. It works in three

phases: static analysis, runtime, and post-processing. The inputs

for the entire process are a program P , a test suite (execution set)

T , and a query set M . To optimize the static-analysis phase, the

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

at runtime only if the target method executes immediately after the

source. Thus, the type of a DD lets DIVER at post-processing

decide whether the dependence was exercised and the target

method of that dependence was impacted by the source.

To facilitate our presentation of DIVER, we refer to the specific

target statements of incoming interprocedural dependence edges

to, and the source statements of outgoing interprocedural edges

from, a method as incoming ports (IPs) and outgoing ports

(OPs) of that method, respectively. An impact propagating to a

method via an incoming edge e will enter the method through

the IP for e. If an impact propagates beyond this method through

outgoing edges, it will exit through all OPs that are reachable via

intraprocedural edges from the IP for e. An impact that originates

in a method will propagate through all OPs of that method.

4.3 Impact Computation

In the post-processing phase of DIVER, queries for impact sets

are answered using the dependence graph from the static-analysis

phase and the traces produced by the runtime phase. Algorithm 1

formalizes this process, which traverses traces to find methods

dynamically dependent on a given query directly or transitively.

The method traces indicate the order in which methods exe-

cuted and, based on the types of the interprocedural edges in the

dependence graph, if the fact that a method m′ executed after an

impacted method m in a trace implies that m′ will be impacted by

m. Whether this impact occurs depends on (1) the existence of an

edge ~e from m to m′ in the dependence graph, (2) that the source

(outgoing port) of ~e has already been identified as impacted, and

(3) the type of ~e, which may constrain m and m′ to be consecutive

in the trace (e.g., for parameter edges).

Algorithm 1 : COMPIS(Dependence graph G, trace L, method c)

1: ImpOPs := ∅ // map of edge type to set of impacted OPs
2: ImpactSet := {c} // impact set of c
3: start := false, pm := null // preceding method occurrence
4: for each method event e∈L do
5: if ¬ start then {start := m(e) = c; if ¬start then continue}

6: if e is a method-entry event then
7: if m(e)=c then
8: for each outgoing edge oe from n(m(e)) in G do
9: ImpOPs[type(oe)] ∪= {src(oe)}

10: pm := m(e) // method occurrence; continue

11: for each incoming edge ie to n(m(e)) in G do
12: if type(ie)=return∨src(ie)/∈ImpOPs[type(ie)] then
13: continue
14: ImpactSet ∪= {m(e)}
15: for each outgoing edge oe from n(m(e)) in G do
16: if src(oe) is reachable from tgt(ie) in G then
17: ImpOPs[type(oe)] ∪= {src(oe)}

18: else // e is a method-returned-into event
19: for each incoming edge ie to n(m(e)) in G do
20: if type(ie)=parameter∨src(ie)/∈ImpOPs[type(ie)] then
21: continue
22: ImpactSet ∪= {m(e)}
23: for each outgoing edge oe from n(m(e)) in G do
24: if src(oe) is reachable from tgt(ie) in G then
25: ImpOPs[type(oe)] ∪= {src(oe)}

26: if pm=m(e) then {continue}

27: for each edge type t ∈{parameter, return} do
28: ImpOPs[t] \= {z |z ∈ ImpOPs[t] ∧ m(z) = pm}

29: pm := m(e) // preceding method occurrence

30: return ImpactSet

The algorithm inputs a dependence graph G, an execution

trace L and a queried method c, and outputs the impact set of c.

It uses the following notations: m(e) gives the method associated

with a method event e; n(m) is the set of dependence-graph nodes

for all statements in method m; m(z) is the method to which port

z belongs; src(d), tgt(d), and type(d) are the source node, target

node, and type of edge d, respectively.

To maximize precision, an interprocedural edge d exercised

for the ith time in the trace propagates an impact to its target (IP

port) only if the source (OP port) of d for that ith occurrence has

also been impacted. To that end, an impacted OP set per edge type,

which starts empty at line 1, is maintained at lines 9, 17, and 25.

These sets track impact propagations on ports to ensure that only

the methods transitively reachable from c through impacted ports

are reported as impacted. The impact set starts with the queried

method c (line 2) and grows as the trace is traversed (lines 4–29).

Methods executed before the first occurrence of c cannot be

impacted, so their events are skipped using a flag start (lines 3

and 5). Methods executed after c are checked to determine if they

are impacted, for which two key decisions are made. First, the

algorithm decides that the impact of c propagates into a method

m(e) if there is an impacted port in ImpOPs that is the source of

an interprocedural edge of the same type to m(e) (lines 11–14 for

method-entry events and lines 19–22 for returned-into events).

The second key decision is to determine whether an impact

propagates out of m(e) by finding the OP ports of m(e) that are

reachable, via intraprocedural edges inside the method, from the

impacted IP ports of that method (i.e., the target ports of impact-

propagating edges according to the first decision). Those impacted

OPs are added to ImpOPs to continue looking for impacts in the

rest of the trace (lines 15–17 for method-entry events and lines

23–25 for returned-into events). As for the queried method c, all

of its OPs are added to ImpOPs when c executes (lines 7–10).

To determine impact propagations through interprocedural

edges on the dependence graph, those edges are classified into two

categories, as described next, such that all edges in each category

share the same propagation rules.

Adjacent edge. DD edges of types parameter and return are

classified as adjacent edges. An adjacent edge from method m

to method m′ models an interprocedural DD between the two

methods. Through these edges, an impact can propagate from m

to m′ only if m′ executes immediately after m. To realize this

rule, an OP z that is the source of an adjacent edge is added

to the impacted OP set ImpOPs, as other impacted OPs, when

found to propagate the impact beyond m(z) in the trace. The port

is then removed from that set (lines 26–28) after matching it to an

IP in the immediate caller or callee when an event for a different

method occurrence is found, because the corresponding parameter

or return value should not be matched to any other IPs of methods

that occur later in the trace. The method occurrence is tracked by

pm, initialized at line 3 and updated at lines 10 and 29.

Execute-anytime-after edge. All other interprocedural edges are

execute-anytime-after edges. Such an edge from m to m′ models

an interprocedural CD or heap DD between these two methods

such that an impact in m propagates to m′ if and only if m′

executes anytime after m in the trace. Such edges propagate

impacts to their targets as long as their sources (OPs) are impacted

when the targets are reached later. Thus, the sources of these edges

are never removed from the impacted OP set ImpOPs once added

to that set (lines 27–28 ignore these edge types).

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

It is worth noting that the way in which propagation rules

are applied depends on the type of method event being processed

in the trace. For instance, no return edges are considered for

impact propagation at method-entry events (lines 12–13) and no

parameter edges are considered at returned-into events (lines 20–

21) because of the semantics of those event types (see Section 3).

Also, all OPs of the queried method c are marked as impacted at

each entry event found for c. Thus, it is not necessary to do the

same for the returned-into events of c because the OPs of c are

already marked as propagated at the entry of c in the trace.

In sum, according to the propagation rules of DIVER, for each

event in the trace, the method associated with that event is added

to the impact set if it is determined that at least one of its IPs is

directly or transitively impacted by the queried method. After all

events of the trace are processed in order, the algorithm returns

as its output the resulting impact set for that trace (line 30). If

multiple traces are available, one run of the algorithm per trace

is required and the result is the union of the individual impact

sets. Also, for computing the impact set of multiple methods, the

algorithm can be run once per method, or can be easily adjusted

to treat c as a set of those queried methods for efficiency.

4.4 Online Impact Prediction

DIVER computes the impact set for any queries in the third phase

by reusing the static dependencies and dynamic method-event

traces from the previous two phases (see Section 4.1.1). As such,

DIVER is an offline impact analysis. Yet, as we mentioned earlier

(Section 2), online analysis could be more desirable in some usage

scenarios when its cost savings over offline analysis are significant.

As follows, we first further motivate the development of our

online analysis, called DIVERONLINE, by qualitatively comparing

online versus offline dynamic impact prediction in general. Then,

we describe the overall workflow of DIVERONLINE in relation to

that of DIVER, followed by the detailed presentation of the online

impact computation algorithm at the core of DIVERONLINE.

4.4.1 Online versus Offline: Qualitative Comparison

One way to compare these two classes of analysis is to look at

the merits of each that are likely the drawbacks of the other in

the same regard. Without empirical evidences, the comparison is

mostly hypothetical for now. We will validate the qualitative un-

derstanding later through quantitative assessment in the evaluation

section (Section 10).

Merits of online analysis. An online analysis avoids the

cost of execution tracing that an offline analysis would incur,

including the space cost for storing traces and concomitant,

extra I/O overheads in the post-processing phase. Therefore,

intuitively, for computing all possible impact-set queries in an

one-off execution (hence avoiding to run the program multiple

times), an online analysis can be considerably faster than an

offline analysis. Although the online analysis incurs the time cost

of impact computation that the offline analysis would avoid in

the runtime phase, that extra cost may be counteracted by its

avoidance of the tracing cost incurred by offline analyses. Thus,

ultimately an online analysis do not necessarily cause much higher

run-time overheads than offline alternatives. In all, the online

analysis would better fit use scenarios where it answers queries

faster and/or the trace storage cost of an offline analysis becomes

substantial or even a stopper for practical adoption. To facilitate

discussion here and evaluation later on, we assume that the online

analysis computes the impact sets for all queries at once by default,

which we refer to as its All-in-One mode.

Merits of offline analysis. On the other hand, computing all

the impact sets regardless of which one of them is needed would

be apparently wasteful if the user is just interested in the impact set

of one specific query. To better accommodate this use scenario, the

online analysis may just answer one query in an one-off program

execution, which we refer to as its One-by-One mode. However,

with this mode users would have to run the analysis (and the

program) repeatedly for multiple queries, incurring the run-time

overhead of the analysis multiple times also. In contrast, the offline

analysis incurs the run-time overhead only once and answers

any queries on demand based on the collected traces without

rerunning the program. Also, with the offline approach, users do

not have to know the queries before the run time. To overcome this

comparative limitation, the online analysis may work in the All-

in-One mode as described above. In that mode, the online analysis

computes the impact sets for all possible (single-method) queries

of the program under analysis and then also answers queries

on demand—results for multiple-method queries can be simply

derived from the single-method query results for each member

method through iterative set-union operations. Since the offline

analysis only needs one-off executions and readily reuses traces

for on-demand impact computation, we only develop and focus on

its One-by-One mode.

Online analysis: All-in-One versus One-by-One . We expect

the online analysis to be generally more expensive when working

in the One-by-One mode than in the All-in-One mode due to

the extra run-time overheads (proportional to the total number

of queries) in the former. The One-by-One online analysis has its

potential merits, though, in comparison to the analysis in its All-in-

One mode: (1) the One-by-One analysis would incur likely much

shorter total time in use scenarios where users are just interested

in ad-hoc impact analysis for only a few times or just interested in

a particular query in mind; (2) in use scenarios where the original

program executions (i.e., without instrumentation) take relatively

long time and/or consume large memory, the One-by-One analysis

could be an enabling option: computing the impact sets of all

queries at once especially when the queries are in large numbers

may blow up memory or make the analysis unbearably slow (e.g.,

by awaking the paging process of the operating system).

In sum, the online and offline dynamic impact analysis each

has its own (unique) pros and cons, and they appear to be

complimentary to each other, in terms of efficiency and ability

to accommodate various, particular use scenarios. Thus, providing

both modalities would give more flexibility to users hence increas-

es the adoptability of our techniques.

4.4.2 Analysis Algorithm

The overall workflow of DIVERONLINE is similar to the process

of DIVER as shown in Figure 3. Specifically, the static analysis

phase is shared by the two techniques. The main differences are

that (1) the dependence graph constructed in the first phase flows

to the runtime phase of DIVERONLINE for the online impact

computation, (2) the runtime phase of DIVERONLINE takes the

query set M as an input, computes the impact set for M while

executing the instrumented program P ′, and produces the impact

set as the output, and accordingly (3) DIVERONLINE does not

produce any traces in the runtime phase and no longer has the post-

processing phase. By design, DIVERONLINE essentially uses the

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

same static and dynamic program information as DIVER does and,

for a given query set, both techniques produce the same impact set.

Algorithm 2 gives the pseudo code of the All-in-One online

analysis algorithm reusing the notations from Algorithm 1. For

better efficiency, we use bit vectors (BitSet) to maintain impacted

ports and the impact set for each method. We create a global

index midxs for the full set MP of methods in P and use the

integer identifier midxs[m] for a method m to mark the impact

status associated with m in relevant bit vectors. In addition, given

a map structure d, keys(d) returns the set of keys of d.

The algorithm takes the dependence graph G passed to it

from the static analysis phase as the input, and returns the map

ImpactSets from each method in MP to the bit vector representing

its impact set as the output. The two key components of the

algorithm, ONENTER and ONRETURNINTO, are the two run-

time monitors for method-entry and method-returned-into events,

respectively—they are invoked upon each of such events for each

executed method. For each program execution, ONINITIALIZE

is invoked only once when the program starts executing—right

before the first method execution; ONTERMINATE is also invoked

only once, when the program terminates—right after the last

method execution. In contrast, DIVER contains these four run-time

monitors too but uses them for recording method event traces.

Prior to online impact computation, the algorithm initializes

two hashmaps (lines 2–3) to maintain the impacted OPs per edge

type and the impact set for each method in MP (i.e., each possible

single-method query with respect to the input program P). As

in DIVER, it also keeps track of the previously executed method

(relative to the method being monitored) with pm (line 4). The

rationale of marking the impact status of ports for propagating

impacts within methods via static intraprocedural dependencies

and across method via interprocedural dependencies (lines 9–10,

16–18, and 31–33) is similar to Algorithm 1, so is the trivial

inclusion of a method itself in its impact set when the method first

executes (lines 6–8). The key difference lies in the need of doing

that for all methods that have executed at least once (lines 11 and

26) instead of for the given single query only as in Algorithm 1.

When a method m is entered (line 5), the algorithm checks

for each executed method x (loop of 11–18) whether the impact

originating from x has propagated to m through impacted ports

and incoming edges targeting any nodes in m (lines 12–14) and,

if so, adds m to the impact set of x (line 15) and continues to

propagate the impact out of m (loop of 16–18). Those impacted

ports of each executed method, except for m (line 21), that

expect to propagate the impact to a method other than m via

adjacent edges (line 22) will be removed (line 23) to avoid false-

positive impacts since such edges can propagate impacts only

one method away. When the execution is returned into m (line

25), the process is similar but parameter edges are dismissed for

impact propagation (line 28). As the program execution terminates

(line 40), ImpactSets contains the impact sets for all executed

methods (line 41). To obtain the impact set of a specific query

c on demand, DIVERONLINE simply traverses the bit vector

ImpactSets[midxs[c]] associated with that query to collect the

impacted methods by looking up the global method index midxs.

The algorithm for the One-by-One mode of DIVERONLINE is

the same in structure as Algorithm 2, having the same four run-

time monitors. However, the specific, known query is an additional

input and the algorithm maintains the set of impacted ports and

impact set for only that query. Also, all method events before the

first event of the query will be ignored. Thus, the algorithm itself

Algorithm 2 : ONLINEIMPACTCOMPUTE(Dependence graph G)

1: function ONINITIALIZE(void) // upon program start
2: ImOPs:= ∅ // map of edge type to impacted OPs per method
3: ImpactSets:= ∅ // map of each method to its impact set
4: pm := null // preceding method occurrence

5: function ONENTER(Method m) // upon entering method m
6: if midxs[m]/∈keys(ImpactSets) then
7: ImpactSets[midxs[m]] := new BitSet(|MP |)
8: ImpactSets[midxs[m]].set(midxs[m])

9: for each outgoing edge oe from n(m) in G do
10: ImOPs[midxs[m]][type(oe)] ∪= {src(oe)}

11: for each method x in keys(ImOPs) do
12: for each incoming edge ie to n(m) in G do
13: if type(ie)=return∨src(ie)/∈ImOPs[x][type(ie)] then
14: continue
15: ImpactSets[x].set(midxs[m])
16: for each outgoing edge oe from n(m) in G do
17: if src(oe) is reachable from tgt(ie) in G then
18: ImOPs[x][type(oe)] ∪= {src(oe)}

19: if pm=m then {continue}

20: for each method x in keys(ImOPs) do
21: if x=midxs[m] then {continue}

22: for each edge type t ∈{parameter, return} do
23: ImOPs[x][t] \= {z |z ∈ ImOPs[x][t] ∧ m(z) = pm}

24: pm := m // preceding method occurrence

25: function ONRETURNINTO(Method m) // upon returning into m
26: for each method x in keys(ImOPs) do
27: for each incoming edge ie to n(m) in G do
28: if type(ie)=parameter∨src(ie)/∈ImOPs[x][type(ie)] then
29: continue
30: ImpactSets[x].set(midxs[m])
31: for each outgoing edge oe from n(m) in G do
32: if src(oe) is reachable from tgt(ie) in G then
33: ImOPs[x][type(oe)] ∪= {src(oe)}

34: if pm=m then {continue}

35: for each method x in keys(ImOPs) do
36: if x=midxs[m] then {continue}

37: for each edge type t ∈{parameter, return} do
38: ImOPs[x][t] \= {z |z ∈ ImOPs[x][t] ∧ m(z) = pm}

39: pm := m // preceding method occurrence

40: function ONTERMINATE(void) // upon program termination
41: return ImpactSets

is very similar to Algorithm 1: the ONINITIALIZE component con-

sists of lines 1–3, the ONENTER and ONRETURNINTO monitors

correspond to the process upon method entry and returned-into

events, respectively, with both containing lines 26–29, and the

ONTERMINATE simply returns the result ImpactSet (line 30). We

omit the pseudo code due to the similarity.

4.5 Applications and Limitations

In contrast to descriptive impact analysis (e.g., [7], [29]), im-

pact prediction enables a proactive approach to reliable software

evolution—instead of leaving developers to deal with the after-

math resulting from changes that broke the software, it helps

developers identify and understand possible change effects before-

hand so as to avoid applying failure-inducing changes. Further,

compared to static impact prediction (e.g., [12], [43], [53]),

dynamic impact prediction is more useful when the developers

focus on a specific set of program executions thus are concerned

about the impact of potential change locations for those specific,

rather than all possible, executions. The resulting dynamic impact

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

sets can be used not only for planning changes but also for

understanding the program behaviour with respect to the concrete

executions. In fact, such understandings have even broader ap-

plications than program comprehension. For example, decisions

in regression-test selection and/or prioritization can benefit much

more from the dynamic impact sets specific to the executions

generated from relevant regression tests than static impact sets

(e.g., [14], [54]). As another example, when debugging, developers

need to concentrate on the faulty executions instead of all potential

program executions. Narrowing down the search space to the

dynamic impact set (with respect to those faulty executions)

of responsible change locations can greatly facilitate the fault-

localization process (e.g., [55], [56]). The approaches we proposed

in this paper aim at more precise dynamic impact sets than existing

peers to enhance the effectiveness of all these applications of

dynamic impact prediction. Moreover, our techniques are partic-

ularly attractive when only the program code (bytecode, rather

than source code) and executions/inputs of interest are available

without any additional artifacts (e.g., design specification and

repository information).

The merits of dynamic impact prediction above come with

related constraints, though. First, our techniques are applicable

only to the scenarios where the specific program inputs or concrete

executions are indeed available for the analysis. Second, how

well the inputs/executions cover and represent the behaviours of

the program under analysis may substantially affect the quality

and usefulness of the resulting impact sets. In general, the more

representative of the program behaviours the inputs/executions are,

the more effective the dynamic impact sets are for the applications.

In addition, since the concrete executions utilized are unlikely to

capture all possible program behaviours, the dynamic prediction

results hold for those particular executions but may not for other

executions. Note that these limitation are generally shared by any

dynamic analysis [57] rather than unique to our techniques.

5 IMPLEMENTATION

In this section, we describe key aspects of our implementation of

PI/EAS, the baseline approach to compare with ours, in addition

to that of our techniques DIVER and DIVERONLINE.

5.1 Exception Handling in PI/EAS

The original description of PI/EAS [18] deals with exceptions

handled in the raising method or its caller. However, if neither

method handles the exception at runtime, the returned-into events

for all methods in the call stack that do not handle the exception

will not be logged and those methods can be mistakenly missing

in the resulting impact set. To illustrate, consider the program of

Figure 1 with M2 as the query. If an exception is raised at M5,

which is called by M2 but never caught thereafter, the integers

used by PI/EAS to record the last returned-into events for M1 and

M0 will not be updated to reflect that these methods executed after

M2. Thus, M1 and M0 will be missing from the impact set of M2.

To address this problem, we implemented a corrected version

of PI/EAS, which we call PI/EASC . PI/EASC captures all

returned-into events by wrapping the entire body of each method

in a try-catch block to identify uncaught exceptions. The added

catch block, when reached by such an exception, creates the cor-

responding returned-into event (which would be missed otherwise)

and then re-throws the exception to continue the execution as

originally intended to preserve the semantics of the program.

5.2 DIVER

To build the dependence graph, we used our dependence-analysis

library DUA-FORENSICS [58]. For exceptional control dependen-

cies, our implementation takes the exceptional control flow graph

(ExCFG) provided by Soot [59] and applies both the classical

algorithm for control-dependence computation [48] and the ex-

tended algorithm for interprocedural control dependencies [49]. In

addition, we adapted multi-headed and multi-tailed ExCFGs by

adding virtual start and end nodes joining all head and tail nodes,

respectively. Also, many types of programs, such as service dae-

mons, contain infinite loops [60] which result in tailless ExCFGs.

Thus, we treated all jumping statements for the outermost infinite

loops as exit nodes. This treatment allowed us to directly apply

existing control-dependence analysis algorithms.

When computing interprocedural exception CDs, DIVER in-

cludes in the throwable set of each ExCFG node all exceptions,

both checked (declared) and unchecked (undeclared) for that

method, thrown by that node via a throw instruction or a method

it calls that throws unhandled exceptions. DIVER also reuses

the method-event monitoring we implemented for PI/EASC ,

although it keeps the whole traces it needs (just like PATHIMPACT)

instead of the two integers per method only needed by PI/EASC .

5.3 DIVERONLINE

DIVERONLINE reused the static analysis component of DIVER,

including the dependence graph construction and the instrumen-

tation for method event monitoring. The four event monitors

of DIVERONLINE for the All-in-One mode are implemented as

per Algorithm 2. For the One-by-One mode, the four monitors

are implemented primarily by refactoring the impact computa-

tion component of DIVER as per Algorithm 1 as described in

Section 4.4. The dependence graph is loaded (deserialized) at

the beginning of the runtime phase, as is the global method

index created as an extra step of the static analysis phase and

serialized as a separate file. Processing each method event upon

its occurrence immediately, according to our experience, can drag

the analysis significantly. Thus, we created a buffer of events

that are loaded in the ONENTER and ONRETURNINTO monitors,

and then in the monitor ONTERMINATE the events are processed

in a batch manner. As a result, the online analysis was greatly

accelerated thanks to the reduction in context switching (between

the execution of the original program and that of our run-time

monitors) and cache misses. Our current implementation used a

heap buffer of 4MB (for buffering 1M events).

Note that DIVERONLINE does not record the method events

or produce any traces, nor does it have a post-processing phase

as DIVER and PI/EAS have. For the All-in-One mode, though,

DIVERONLINE contains a helper script to facilitate looking up the

results (i.e., the impact sets of all possible queries) for the impact

set of a specific query on demand. The One-by-One mode does

not need such a script since it just outputs the impact set for the

specific query, which is passed as a (command-line) parameter to

the runtime phase.

6 RESEARCH QUESTIONS

This section introduces our empirical evaluation of DIVER with

PI/EASC as the baseline, using the implementation of the two

techniques as described in Section 5. The goal was to assess the

effectiveness of this new technique as well as its efficiency. In

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

addition, we explored the performance of DIVERONLINE versus

DIVER to empirically examine the pros and cons of online dynam-

ic impact prediction as we qualitatively discussed in Section 4.4.

Accordingly, we formulated five research questions:

RQ1 How effective is DIVER with respect to existing method-

level dynamic impact analyses for arbitrary queries?

RQ2 Is DIVER practical to use in terms of time and space costs?

RQ3 What are the effects of query sizes (the number of methods

in one query) on the effectiveness of DIVER?

RQ4 How effective would DIVER be for repository-based queries

in practical application scenarios compared to its effectiveness for

arbitrary queries?

RQ5 Is online dynamic impact prediction with DIVERONLINE

efficient in comparison to its offline counterpart DIVER?

To answer these questions, we conducted four empirical s-

tudies. Our first two studies aim at the effectiveness of DIVER

with respect to arbitrary changes limited to single methods and

across multiple methods (RQ1 and RQ3), respectively, in addition

to gauging the practicality of DIVER in terms of its efficiency

(RQ2). The third study focuses on using real changes actually

made by developers to examine the practical effectiveness of

DIVER (RQ4), complementary to the first two studies. For studies

on arbitrary changes, we compare DIVER against the baseline for

any possible changes to be made in a single method for each

query (referred to as single-method query) or in multiple methods

as one query (referred to as multiple-method query). For the third

study, we regard all methods actually changed in one commit as

a query (referred to as repository query), which can be either a

single- or multiple-method query. The fourth study focuses on the

efficiency of DIVERONLINE in contrast to DIVER in terms of the

time cost of impact computation and runtime slowdown (RQ5).

All our studies were performed consistently on a Red Hat Linux

workstation that is configured with a Quad-core Intel Core i5-2400

3.10GHz processor and 4GB RAM.

Recall. Since a method would not be impacted by a given

query if that method never executed after the query, the impact

sets produced by PI/EASC are always safe because they include

conservatively any methods that executed after the query. DIVER

improves the precision of PI/EASC by pruning from executed-

after-query methods (i.e., PI/EASC impact sets) that are not

data/control dependent on the query. Importantly, since DIVER

prunes a method only if there was no any exercised data or control

dependencies of that method on the query, it only removes false

positives but no true positives from the PI/EASC impact set

with respect to the execution examined. Thus DIVER impact sets

still include all methods that could actually be impacted through

data/control dependencies in the utilized executions.

In sum, results (impact sets) from DIVER and PI/EASC are

always guaranteed to hold for the analyzed executions, hence

both techniques are soundy [61]—we consider our analyses (the

static analysis part in particular) soundy instead of sound as they

do not have a fully sound handling of all dynamic features in

Java that are well recognized/accepted not to be fully handled

(e.g., reflection API and native method calls, dynamic loading,

customized class loaders, and exceptions and related flows, etc.)

in order to obtain reasonably acceptable analysis precision and

scalability [61]; however, our analyses are sound as dynamic

analyses [57] otherwise—we even handled exceptional control

flows as described before for which our static analyses may

TABLE 1: Subjects for the Arbitrary-Query Studies

Subject #LOC #Classes #Methods #Tests

Schedule1 290 1 24 2,650
NanoXML-v1 3,521 92 282 214
Ant-v0 18,830 214 1,863 112
XML-security-v1 22,361 222 1,928 92
BCEL 5.3 34,839 455 3,834 75
JMeter-v2 35,547 352 3,054 79
JABA-v0 37,919 419 3,332 70
OpenNLP 1.5 43,405 734 4,141 344
PDFBox 1.1 59,576 596 5,401 29
ArgoUML-r3121 102,400 1,202 8,856 211

dismiss the full handling to remain soundy [62]. Therefore, in

the following studies, we treat as safe every impact set computed

by either technique, and thus use impact set size ratios to measure

relative precision between these two techniques. To empirically

verify this assumption, we conducted two validation studies,

including an automated validation using dynamic slicing and a

manual validation based on understandings of the source code and

runtime program behaviours (Section 7.3.3).

7 STUDY I: SINGLE-METHOD QUERIES

In this study, we evaluate the effectiveness and efficiency of

DIVER against the baseline technique for arbitrary locations or

changes but limited to single methods. To that end, for each

subject, we compute and compare the impact sets of the two

techniques exhaustively for every method in the subject as a

separate query.

7.1 Subjects

We chose ten Java programs of various types and sizes, as

summarized in Table 1, for our study. The size of each subject is

measured as the number of non-comment non-blank lines of code

(LOC) in Java. The first column gives the name of each subject

with the version (or revision number) we used. The other columns

list the number of total classes (#Classes), methods (#Methods),

and test cases (#Tests) that come with the respective subject.

Schedule1 is part of the Siemens suite [63] which represents

small modules. NanoXML is a lean and efficient XML parser.

XML-security is an Apache library for signatures and encryption.

JMeter is an Apache application for performance testing. Ant is

a cross-platform build tool. We took these subjects and their test

suites from the SIR repository [64] and picked the first available

version of each. JABA [65] is a Java-bytecode analyzer obtained

from its authors, coming with a full set of regression tests. For

each of the other four subjects, we checked out a stable release,

including the test suite, from its SVN repository. BCEL [66] is

the Apache library that manipulates Java class files. PDFBox [67]

is a PDF document processing tool, also from the Apache project

as is OpenNLP [68], a machine-learning based toolkit for natural

language processing. Finally, ArgoUML [69] is an open-source

UML modeling tool.

7.2 Methodology

For our experiments, we applied PI/EASC and DIVER separately

to each subject. To obtain the method traces, we used the entire

test suites provided with the subjects. Using each of the two tech-

niques, we separately computed the impact sets for all methods in

each subject. As expected, some methods are never executed and

thus have empty dynamic impact sets. We excluded data points

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

0

5

10

15

20

25

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(a) Schedule1

0

50

100

150

200

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(b) NanoXML

0

200

400

600

800

1

4
5

8
9

1
3
3

1
7
7

2
2
1

2
6
5

3
0
9

3
5
3

3
9
7

4
4
1

4
8
5

5
2
9

5
7
3

Im
p
a
ct
�s
e
t�
si
ze

Query

PI/EASc Diver

(c) Ant

0

200

400

600

800

1

4
7

9
3

1
3
9

1
8
5

2
3
1

2
7
7

3
2
3

3
6
9

4
1
5

4
6
1

5
0
7

5
5
3

5
9
9

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(d) XML-security

0

200

400

600

800

1000

1200

1

7
8

1
5
5

2
3
2

3
0
9

3
8
6

4
6
3

5
4
0

6
1
7

6
9
4

7
7
1

8
4
8

9
2
5

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(e) BCEL

0

200

400

600

800

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

Im
p
a
ct
�s
e
t�
si
ze

Query

PI/EASc Diver

(f) JMeter

0

200

400

600

800

1000

1200

1

8
2

1
6
3

2
4
4

3
2
5

4
0
6

4
8
7

5
6
8

6
4
9

7
3
0

8
1
1

8
9
2

9
7
3

1
0
5
4

Im
p
a
ct
�s
e
t�
si
ze

Query

PI/EASc Diver

(g) JABA

0

500

1000

1500

2000

1

1
2
9

2
5
7

3
8
5

5
1
3

6
4
1

7
6
9

8
9
7

1
0
2
5

1
1
5
3

1
2
8
1

1
4
0
9

1
5
3
7

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(h) OpenNLP

0

200

400

600

800

1

4
3

8
5

1
2
7

1
6
9

2
1
1

2
5
3

2
9
5

3
3
7

3
7
9

4
2
1

4
6
3

5
0
5

5
4
7

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(i) PDFBox

0

200

400

600

800

1000

1200

1

8
0

1
5
9

2
3
8

3
1
7

3
9
6

4
7
5

5
5
4

6
3
3

7
1
2

7
9
1

8
7
0

9
4
9

1
0
2
8

Im
p
a
ct
�s
e
t�
si
ze

Query

PI/EASc Diver

(j) ArgoUML

Fig. 4: Impact set sizes (y axis) of DIVER versus PI/EASC for each query (x axis) and subject (caption under each single plot) from the

study on single-method queries. The queries are sorted in non-ascending order of impact set sizes of PI/EASC to facilitate comparisons

between the two techniques. For every single query, the DIVER impact set was always a subset of the corresponding PI/EASC impact

set. Given the soundiness [61] of both techniques, smaller impact-set size implies higher precision.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

TABLE 2: Relative Precision of DIVER Measured by the Size Ratios of Its Impact Sets over PI/EASC per Subject and Overall

Subject
#Queries PI/EASC Impact Set Size DIVER Impact Set Size Impact Set Size Ratio Wilcoxon
(methods) mean stdev median mean stdev median mean stdev median p-value

Schedule1 20 18.0 1.6 18.5 12.8 4.7 13.0 71.3% 24.5% 75.0% 6.65E-05
NanoXML 172 82.6 48.1 68.0 37.1 28.9 48.0 51.7% 33.1% 60.8% 2.40E-30
Ant 607 159.5 173.4 79.0 17.9 34.3 4.0 25.7% 33.6% 6.9% 2.94E-100
XML-security 632 199.8 168.4 194.0 45.1 68.1 7.0 28.8% 30.3% 12.4% 4.79E-102
BCEL 993 446.0 280.1 515.0 69.2 92.5 15.0 17.4% 18.2% 10.5% 2.29E-164
JMeter 732 149.6 172.6 96.0 12.3 18.5 4.0 18.8% 25.1% 6.6% 8.58E-122
JABA 1,129 677.0 301.2 705.0 471.9 308.2 550.0 66.9% 33.7% 84.0% 1.51E-186
OpenNLP 1,657 146.9 202.4 53.0 17.6 31.2 7.0 26.8% 28.8% 14.7% 1.23E-272
PDFBox 588 258.2 172.6 276.0 146.8 141.6 131.0 57.8% 38.3% 80.8% 2.38E-98
ArgoUML 1,098 151.0 261.2 54.0 27.6 44.9 13.0 31.5% 26.0% 33.3% 1.66E-181

Overall average 278.1 299.8 151.0 105.4 205.9 11.0 34.54% 33.87% 23.08% 0

for those queries from our results as they are not applicable for

data analysis of the study. For each query, we report the union of

per-test impact sets and cumulative querying cost for all individual

test cases in the entire test suite when calculating the effectiveness

and efficiency of a technique on that query, respectively.

To compare the analysis precision between the two techniques,

we calculated for each query the impact-set size for DIVER

and PI/EASC and the size ratio of the first to the second. We

computed the means, medians, and standard deviations of those

metrics for all queries per subject and all subjects. As we discussed

earlier, both techniques over-approximate the concept of semantic

(true) dependence [47], their results are dynamically safe (i.e.,

safe with respect to the test suites utilized). Thus, the ratios

reflect relative precision improvements that DIVER attains over

PI/EASC for executions from those test suites, although they may

not indicate the absolute precision relative to ground-truth impacts

which are unknown until actual changes are available. And in all

of our studies, for either technique, smaller impact sets indicate

higher effectiveness; for DIVER, the higher the relative precision

it has, the more effective it is.

To measure and compare the efficiency of the two techniques,

we computed for each subject the time and space costs of their

respective static-analysis and runtime phases. This was needed

only once per subject and technique because all queries at post-

processing reuse the results of the first two phases. For the post-

processing phase, we collected the time costs per query and report

the means, medians, and standard deviations of these costs for all

queries per subject and overall for all subjects.

7.3 Results and Analysis

This section presents the results of the study on single-method

queries. We report and discuss the relative precisions of DIVER

versus PI/EASC and the costs that both techniques incur.

7.3.1 RQ1: Effectiveness

Figure 4 presents the details of effectiveness results for DIVER

and PI/EASC from the study on single-method queries. For each

subject, the area chart depicts the impact set sizes given by the

two techniques for all queries for that subject. In each chart, the

x axis represents the queries and the y axis the resulting impact-

set sizes. To facilitate visual comparisons, results are sorted by

non-increasing PI/EASC impact-set size. For example, for the

first query in Schedule1, PI/EASC reported 20 possibly-impacted

methods for Schedule1’s test suite whereas DIVER reported (safe-

ly) that only 15 of them could have been impacted.

The charts confirm that, for all queries, DIVER never produced

a larger impact set than PI/EASC . We also verified that, for

every query, the DIVER impact set was constantly a subset of the

corresponding PI/EASC impact set. Moreover, for a majority of

queries, DIVER reported much smaller impact sets and, therefore,

achieved a much greater precision overall. The contrast between

DIVER and PI/EASC is considerable and it is particularly sharp

for six of the eight largest subjects for which, on average, DIVER

computed impact sets as less than 30%, and as little as 17%, large

as the ones reported by PI/EASC .

Table 2 provides three statistics per subject and overall (the

last row) for the corresponding data points of Figure 4: the mean,

standard deviation (stdev), and median of the impact-set sizes.

The #Queries column lists the number of single-method queries

per subject, which is equal to the respective method-level test

coverage. To the right, the table presents the same statistics but

for the impact-set size ratio of DIVER to PI/EASC . As in other

tables of this paper, the overall average is the statistic over all data

points of all subjects rather than over the per-subject statistics.

Results in the table reaffirm the major findings from Figure 4.

Large numbers of false positives from PI/EASC were identified as

such and discarded by DIVER. For example, PI/EASC identified

151 methods on average in its impact sets for ArgoUML, whereas

DIVER reported only 28 with a mean ratio of 31.5%. (These values

are means of per-query ratios, not ratios of per-query impact-set

size means, as in other similar tables.) Also, the large standard

deviations indicate that the impact-set sizes fluctuate greatly across

queries for every subject except Schedule1. The comparatively-

small median sizes in many cases imply that large deviations are

caused by a few queries with large impact sets.

For Ant, XML-security, BCEL, JMeter, OpenNLP and Ar-

goUML, the medians are especially small compared to the means,

which indicates that DIVER has an especially-greater precision

than PI/EASC for many queries. The results also suggest that

DIVER is mostly even stronger with respect to PI/EASC for

larger subjects, which are more representative of modern software.

For JABA and PDFBox, however, DIVER has larger impact sets

and ratios. We examined these two subjects and found that they

have generally much tighter inter-module couplings than other

subjects. Thus, PI/EASC , which reports impacts simply based

on execution order, tends to guess correctly more impacts than for

other subjects. Nevertheless, DIVER can be quite beneficial even

in these worst cases as its reductions peak at queries that have

the largest impact sets, where developers would spend the most

excessive efforts with PI/EASC . Finally, for the smaller subjects

Schedule1 and NanoXML, DIVER is less effective than average

possibly due to the proximity and interdependence of the very few

methods in these programs.

We applied two statistical analyses to these results. The first

one is the Wilcoxon signed-rank one-tailed test [70] for all queries

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

TABLE 3: Time Costs in Seconds of DIVER and PI/EASC , Including the Overheads of Profiling Uncaught Exceptions for DIVER

Subject Prof.
Static analysis phase Runtime phase

Post-processing phase
PI/EASC DIVER

PI/EASC DIVER normal PI/EASC DIVER mean stdev median mean stdev median

Schedule1 12.7 4.8 5.6 4.0 10.1 15.7 0.7 0.1 0.8 14.6 6.0 14.2
NanoXML 12.1 11.3 14.4 0.4 1.0 5.4 0.1 0.1 0.1 6.2 8.8 0.5
Ant 29.2 27.3 142.4 1.2 1.5 2.0 0.1 0.1 0.1 3.2 7.6 0.1
XML-security 37.1 33.4 157.7 4.3 4.8 14.8 0.1 0.1 0.1 7.4 9.6 0.4
BCEL 47.7 32.9 1,717.2 4.8 7.4 20.9 0.1 0.1 0.1 116.1 105.6 192.8
JMeter 50.5 38.3 371.9 12.1 12.6 14.8 0.1 0.1 0.1 2.3 7.8 0.2
JABA 62.1 55.3 289.2 11.0 11.9 14.0 0.3 0.2 0.3 78.3 82.5 59.2
OpenNLP 53.7 50.6 734.8 51.6 56.8 58.7 0.1 0.1 0.1 75.2 228.5 0.4
PDFBox 69.6 59.2 689.7 6.9 9.8 11.8 0.1 0.1 0.1 113.2 149.7 25.6
ArgoUML 190.1 172.3 7,465.2 8.2 9.7 11.2 0.1 0.1 0.1 15.9 58.2 0.1

Overall average 70.3 61.7 1,614.1 16.8 19.0 23.0 0.1 0.2 0.1 55.4 133.8 1.6

in each subject. This is a non-parametric test that makes no

assumptions about the data distribution. The last column in Table 2

shows the resulting p-values. For α = .05, the null hypothesis

is that DIVER is not more precise than PI/EASC . The p-values

show strongly that the null hypothesis is rejected and, thus, the

superiority of DIVER is statistically significant for these subjects

and test suites. In the bottom row, the combined p-value of 0

calculated using the Fisher method [71] shows that the significance

is particularly strong over all queries of the ten subjects—the

Fisher method provides a means to aggregate multiple individual

p-values to provide an overall view of the statistic significance.

The second analysis is Cliff’s delta [72] for the effect size

of the precision differences, which is also non-parametric. We

used a 95% confidence level (i.e., α=0.05) per subject with the

impact-set sizes of DIVER and PI/EASC as the experimental and

control groups, respectively. For all subjects but Schedule1, the

effect sizes are 0.98 to 1.0 with confidence intervals within [0.95,

1.0]. For Schedule1, the effect size is 0.95 within [0.78, 0.98].

These values mean that, if the results were normally distributed

(just for the sake of the effect-size interpretation), about 84% of

the DIVER impact sets would be smaller than for PI/EASC [73].

For the other 16%, the impact sets would be the same (because

PI/EASC cannot outperform DIVER).

Limitations of test inputs. As Tables 1 and 2 together

suggested, the coverage of test inputs used for some of the subject

programs was relatively low. Consequently, the execution data uti-

lized by our technique on those subjects (e.g., PDFBox) might be

less representative of their behaviors than the data generated from

the test inputs that achieved higher coverage for corresponding

subjects (e.g., NanoXML). In general, the evaluation results on

the effectiveness of our analyses are limited by the quality of

test inputs utilized in our studies. To minimize the effect of such

limitations, we purposely chose subjects for which we can access

quality test inputs. It is noteworthy that these are limitations of the

evaluation results presented with respect to the particular subjects

rather than those of our technical approach itself. Also, according

to the results obtained (Figure 4 and Table 2), the effectiveness

of DIVER did not seem to be clearly correlated with the test

coverage—DIVER achieved no greater/lower impact-set reduction

on subjects with higher/lower-coverage test inputs. Nevertheless,

we would not claim that the limited test coverage does not affect

the validity and generality of our empirical results and associated

conclusions, either in this study or the following ones. Instead, the

effectiveness results reported should be understood with respect

to the test inputs and corresponding execution data (i.e., method-

execution events) we actually used for the impact analysis.

In all, for ten Java subjects of different types and sizes, DIVER

can safely prune 65% of the impact sets computed by PI/EASC .

This amounts to an increase in precision by a factor of 2.86 (i.e.,

by 186%) over the (almost) best (most precise and cost-effective)

existing method-level technique prior to DIVER [35].

7.3.2 RQ2: Efficiency

Table 3 shows the time costs of each phase of each technique,

including the time of uncaught exception profiling (column Prof.),

static analysis, test-suite execution for the non-instrumented pro-

gram (normal) and for both techniques, and post-processing. All

costs except for post-processing were incurred only once per

subject. For the last phase, we show per subject and overall the

mean, standard deviation (stdev), and median of per-query costs.

The profiling numbers suggest that automatically finding the

static-analysis settings is cheap—a minute or less for most subjects

and three minutes for the largest program ArgoUML. As expected,

for static analysis, DIVER incurred higher costs than PI/EASC .

For both techniques, these costs increase with the size of the

program, with DIVER growing faster, in all subjects but BCEL.

Our manual examination reveals that this exception is mainly

due to a few abnormally long static initializers each consisting

of a large number of constant initializations in BCEL, slowing

down dependence computations hence the dependence-graph con-

struction. And the long sequence of constant initializations in a

single method is mainly used for speeding up symbol lookups for

bytecode parsing and manipulation, which could be regarded as a

special case of application domain. However, other than BCEL and

ArgoUML, the DIVER static analysis finished within 12 minutes,

which is reasonable because this is done only once per program

version to support impact computation for all possible queries

during the post-processing phase. For an application of special

domain such as BCEL and large (industry-scale) subject such as

ArgoUML, a half- to two-hour static analysis seems acceptable

too, which can be done during nightly builds.

For the runtime phase, both techniques had small overheads:

in one minute at worst. For the post-processing phase, due to the

traversal of longer traces, DIVER needed more time than PI/-

EASC . However, the average cost of 55 seconds per query seems

practical, albeit a little less for BCEL and PDFBox. For BCEL,

the higher cost is mainly due to the same reason that causes the

long static-analysis time relative to its size; while for PDFBox the

reason is more likely to be what causes the relatively lower impact-

set size reductions seen in Figure 4, as discussed earlier. Yet, less

than two minutes per queried method still seems acceptable, and

multiple queries can be processed in parallel. In fact, the small

median implies that in most cases, a single query will cost only a

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 15

TABLE 4: Space (Storage) Costs of DIVER and PI/EASC

Subject
Runtime (trace) data (MB) Dependence

graph (MB)PI/EASC DIVER

Schedule1 1.5 5.4 0.1
NanoXML 0.4 1.6 0.9
Ant 0.3 1.7 5.5
XML-security 0.4 1.8 5.4
BCEL 0.3 23.1 11.6
JMeter 0.2 0.7 9.0
JABA 0.9 9.8 20.4
OpenNLP 0.3 83.9 20.9
PDFBox 0.1 14.8 17.1
ArgoUML 0.7 3.9 40.8

Overall average 0.4 24.7 18.1

couple seconds. Moreover, note that the query cost for each query

was the sum of per-test querying costs for all tests in the whole

test suite. In some application scenarios, such as debugging and

comprehension, developers may just need to use a subset of all

tests hence expect even lower post-processing overhead. It is also

noteworthy that the cost DIVER incurred did not monotonously

grow with program sizes. Thus developers would not necessarily

expect even longer analysis time when applying the technique to

an even larger (than 100KLOC) program.

Table 4 shows the space costs of the two techniques for

relevant phases. As expected, the DIVER traces use more space

than the PI/EASC integers. In addition, DIVER incurs the cost

of storing the dependence graph during static analysis for use

later in query processing. One expected correlation can be seen

between space use—especially trace sizes—and post-processing

times (Table 3), which is that longer traces mostly lead to greater

post-processing costs. However, these space costs of DIVER at a

few dozen MB or less are quite low for today’s storage availability.

In all, DIVER achieved significantly greater effectiveness for

these subjects at acceptable time and space costs. Only the

static-analysis cost for BCEL and ArgoUML suggests that more

optimizations in our implementation or the dependence-graph

construction and impact-computation algorithms, or both, might

be needed for larger subjects with longer executions and those

of special application domains. In addition, our tool is currently

not tuned or optimized but rather a research prototype; thus, it is

reasonable to expect considerable reduction in the analysis time

from a well-optimized implementation. Finally, we used only a

commodity machine for our study; a better-configured hardware

platform, with larger memory for example, would see even higher

efficiency of DIVER.

Given the drastic reduction of false-positive impacts it achieves

relative to the baseline, DIVER offers a much more cost-effective

option: The time developers would spend on inspecting 65%

more false impacts, particularly in the cases of very-large impact

sets, should easily pay off, by far, the extra one-time cost of at

worst a couple of hours and additional querying time of no more

than a couple of minutes.

7.3.3 Validation of Recall

We assumed that DIVER is soundy and a sound dynamic analy-

sis [57] (Section 6) as per our definition of true positive, safety,

and soundness (Section 1). Further, we empirically validated the

safety of impact sets produced by DIVER using two case studies.

It is worth pointing out that only if we can show that each DIVER

impact set is safe, can we then use the relative impact-set size

ratios as a measure of precision and effectiveness for RQ1.

Methodology. In the first case study, for each of the ten

subjects, we computed the method-level forward dynamic slice of

each method in that subject program using our trace-based forward

dynamic slicer [74]. The dynamic slicer works at statement level

as usual. To obtain the method-level slice of a method m, we used

each statement (along with the variable defined there, if any) in

m as a slicing criterion to calculate the statement-level forward

dynamic slice for the same test inputs used by DIVER. Then, we

took the union of all such slices [75] for m, and lifted the slice to

method level (by picking the enclosing method of each statement

in a slice). As such, we computed the forward dynamic slice for

each (single-method) query (i.e., each method covered by any of

the given test cases) for which DIVER computed the impact set in

Study I. We used the slice of each query as the ground-truth impact

set to validate the recall of DIVER with respect to the query.

In the second study, we randomly picked twenty out of all the

queries from each subject and manually identified the ground-truth

impact sets for the same test inputs DIVER used in Study I. (For

Schedule1, the entire subject was covered by the validation study

since it happened to have 20 queries.) We limited the scale and

scope of this study such that during the random query selection,

queries for which the DIVER impact set had more than 50 methods

were skipped. The reason was because the manual inspection

was both extremely time-consuming and tedious. In identifying

the manual ground-truth impact set for each query, we exploited

our code comprehension of the subject program and followed the

program execution paths with respect to the associated test suite

in a debugging setting (within the Eclipse IDE).

Results. In both case studies, our results confirmed that DIVER

impact sets were constantly safe (i.e., it had always 100% recall)

relative to the above ground-truth impact sets for corresponding

queries and test inputs, although for most of the selected queries

we did find false positives in the DIVER impact sets. This con-

sistency shows that DIVER has indeed remained soundy while

pruning false positives from the PI/EASC impact sets. As the

results of Study II were directly derived (through unionization)

from the impact sets of single-method queries and Study III used

the same impact-computation algorithm as Study II, we skipped

the recall validation for those studies.

Note that while we used dynamic slicing for recall-validation

purposes, dynamic slicing itself is not a competing solution to

dynamic impact prediction against our approach—as confirmed in

our validation study, dynamic slicing would be too heavyweight

and expensive to be practically adoptable. In our experiments,

computing a single method-level dynamic slice costed over 30x

time on average compared to computing an impact set for the

same query with the slicer implementation sharing the same un-

derlying analysis facilities (e.g., pointer analysis and dependence

computation algorithms) as used by DIVER.

DIVER achieves a constant perfect recall of 100% according

to our exhaustive, automatic validation and selective, manual

validation of its resulting impact sets against the ground-truth

impact sets for each possible query. Thus, the relative impact-set

size ratios can be used as a precision and effectiveness measure

as per our experimental methodology.

8 STUDY II: MULTIPLE-METHOD QUERIES

The goal of this second study is to continue to investigate the

performance of our technique for arbitrary program locations or

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 16

TABLE 5: Average Impact-Set Size Ratios of DIVER over PI/EASC for Multiple-Method Queries with Query Sizes 1 to 10

Subject
Query size (number of methods in each query)

1 2 3 4 5 6 7 8 9 10

Schedule1 0.71 (0.25) 0.78 (0.17) 0.82 (0.13) 0.85 (0.11) 0.87 (0.10) 0.90 (0.09) 0.89 (0.10) 0.92 (0.07) 0.92 (0.07) 0.91 (0.09)
NanoXML 0.52 (0.33) 0.52 (0.30) 0.53 (0.27) 0.53 (0.24) 0.54 (0.22) 0.54 (0.20) 0.54 (0.19) 0.55 (0.18) 0.56 (0.18) 0.56 (0.18)
Ant 0.26 (0.34) 0.25 (0.32) 0.24 (0.31) 0.24 (0.30) 0.23 (0.28) 0.23 (0.27) 0.22 (0.26) 0.22 (0.25) 0.21 (0.23) 0.21 (0.22)
XML-security 0.29 (0.30) 0.29 (0.29) 0.29 (0.29) 0.29 (0.28) 0.30 (0.27) 0.30 (0.26) 0.31 (0.25) 0.32 (0.25) 0.32 (0.24) 0.33 (0.23)
BCEL 0.17 (0.18) 0.18 (0.18) 0.18 (0.18) 0.19 (0.17) 0.19 (0.17) 0.20 (0.17) 0.20 (0.17) 0.21 (0.17) 0.22 (0.16) 0.22 (0.16)
JMeter 0.19 (0.25) 0.18 (0.24) 0.18 (0.23) 0.17 (0.23) 0.17 (0.22) 0.17 (0.21) 0.16 (0.20) 0.16 (0.19) 0.16 (0.18) 0.16 (0.18)
JABA 0.67 (0.34) 0.69 (0.32) 0.70 (0.29) 0.72 (0.27) 0.73 (0.25) 0.74 (0.23) 0.75 (0.21) 0.76 (0.19) 0.77 (0.18) 0.77 (0.16)
OpenNLP 0.27 (0.29) 0.25 (0.27) 0.24 (0.26) 0.23 (0.24) 0.22 (0.23) 0.21 (0.21) 0.21 (0.20) 0.20 (0.19) 0.20 (0.18) 0.19 (0.17)
PDFBox 0.58 (0.28) 0.58 (0.38) 0.59 (0.38) 0.59 (0.38) 0.60 (0.37) 0.60 (0.37) 0.61 (0.37) 0.61 (0.36) 0.62 (0.36) 0.62 (0.36)
ArgoUML 0.32 (0.26) 0.32 (0.26) 0.32 (0.26) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25) 0.32 (0.24) 0.32 (0.24)

Overall average 0.35 (0.28) 0.35 (0.28) 0.35 (0.27) 0.35 (0.25) 0.35 (0.24) 0.35 (0.23) 0.35 (0.23) 0.35 (0.22) 0.35 (0.21) 0.35 (0.20)

changes. In the previous (single-method) study, for each single

query, we limited those location or changes to single methods to

exhaustively gauge the ability of DIVER to assess the effect of each

individual method on the rest of the program. By contrast, this

study focuses on queries each containing multiple methods. For

one thing, multiple-method queries are common in use scenarios

where developers plan a large code change consisting of a few

smaller changes spread over multiple methods. Also, performing

such queries is necessary for assessing the collective effects of

multiple methods together on the entire program.

8.1 Experimental Setup

For a multiple-method query, we refer to as query size the number

of methods constituting that query. In this study, we experimented

with nine such sizes ranging from two to ten. We used the same

ten subjects with their test inputs as those in the single-method

study. To compute the impact set of a multiple-method query,

DIVER simply first computes the single-method impact set for

each constituent method in the query and then takes the union of

all those impact sets as the resulting impact set. Since the query-

ing process for each constituent method is independent of that

for others, the multiple-method querying is parallelized simply

via multi-threading (one thread per single-method querying). In

contrast, PI/EASC deals with a multiple-method query by first

finding the earliest entrance event of all constituent methods and

then taking as the impact set the set of methods whose returned-

into events occurred after that entrance event [18].

For each subject and query size, we computed impact sets of

multiple-method queries such that each of the entire set M of

methods in the program was included exactly in one query. To

that end, for every query size qs from two to ten, we randomly

picked, and removed afterwards, qs unique methods from M to

form a query, iteratively until no more methods left in M . As

a result, the last query might not be of size qs, but we simply

treat it as a qs-size query. To reduce biases in these random se-

lections, we repeated the entire process 1, 000 times with varying

randomization seeds. We then computed the means and standard

deviations of impact set sizes from DIVER and PI/EASC , and the

same statistics of impact-set size ratios of DIVER over PI/EASC

for all queries in the 1, 000 repetitions.

8.2 Results and Analysis

This section presents the results of Study II on multiple-method

queries. We use the results to primarily answer RQ3 but also to

further answer RQ1 and RQ2.

8.2.1 RQ1: Effectiveness

Table 5 summarizes the mean impact-set size ratios of DIVER

over the baseline (i.e., the relative precision of DIVER), with

standard deviations of means (stdev) shown in the parentheses, for

all the impact-set data points collected following the experimental

procedure described above. The bottom row shows the overall

average over all the ten subjects per query size. We put the results

of single-method queries, the same as shown in Table 2, in the

second column (for qs=1) to facilitate comparisons. Each of the

other columns to the right shows the results for one of the other

nine query sizes we studied.

For almost all of these subjects, the effectiveness (precision)

of DIVER relative to the baseline for multiple-method queries is

very close to that for single-method ones. More specifically, with

the increase in query size, most subjects saw a slight decrease

in the precision (i.e., increase in impact-set size ratios), implying

less overlapping among DIVER impact sets of constituent methods

than that among PI/EASC impact sets. Schedule1 and JABA,

however, had relatively large magnitude in such decreases, with

the impact-set size ratios growing by 20% and 10% as the query

sizes increasing from one to ten, respectively. One possible reason

is that the tighter coupling among methods in these two subjects

(relative to other subjects) leads to shorter distances among con-

stituent methods in the execute-after sequences, which results in

even larger overlapping among constituent PI/EASC impact sets

hence even slower growth in the size of their union.

Interestingly, on the other hand, for a few other subjects (Ant,

JMeter, and OpenNLP), DIVER achieved even greater impact-

set reductions relative to PI/EASC for larger queries. The most

noticeable such inverse correlation was seen with OpenNLP, for

which the impact-set sizes of ten-method queries are reduced

by 8% on average in contrast to those of the single-method

queries. This observation might be explained by possibly larger

size and number of dependence clusters [76], at least at the method

level [54], in the source code of these subjects than in others. The

existence of these dependence clusters lead to slower growth in the

size of the union of constituent DIVER impact sets in comparison

to PI/EASC impact sets for multiple-method queries.

Nevertheless, generally the effectiveness of DIVER appears to

be quite stable, as shown by the overall average impact-set size

ratios: When the query size grows from one to ten, the ratio over

all data points of the ten subjects keeps on a still value of 35%,

with steady variations as well. This finding implies that DIVER is

in general as effective for multiple-method queries as for single-

method ones. Also, given this overall closeness in effectiveness

measures (i.e., impact-set sizes and size ratios) between the two

classes of queries, we omit the statistical-testing and effect-size

analysis results, which were in fact quite similar too between them.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 17

0 5 10
0

10

20

Schedule1

0 5 10
0

100

200
NanoXML

0 5 10
0

200

400

Ant

0 5 10
0

200

400

600 XML−security

0 5 10
0

500

1000
BCEL

0 5 10
0

200

400

JMeter

0 5 10
0

500

1000

JABA

0 5 10
0

200

400

600

OpenNLP

0 5 10
0

200

400

PDFBox

0 5 10
0

200

400

ArgoUML

PI/EASc impact−set size Diver impact−set size

Fig. 5: Average impact-set sizes (y axis) of DIVER versus PI/EASC for multiple-method queries with query sizes 1 to 10 (x axis)

8.2.2 RQ2: Efficiency

Our study results also show that performing a query of larger sizes

did not incur appreciably higher costs than querying the impact

sets of single methods. In fact, with our implementation where the

impact sets for individual methods are computed in parallel, the

querying costs of multiple-method queries are very close to, no

more than 10% in the worst case than, those for single-method

queries, both on average and in individual queries. Otherwise,

since the variation in query sizes is irrelevant to the first two phases

of DIVER, the overheads of those two phases did not change with

varying query sizes. Therefore, we omit detailed efficiency metrics

for this study here.

8.2.3 RQ3: Effects of Query Size

As can be seen from the summary results on impact-set size ratios

in Table 5, overall the relative precision of DIVER did not seem to

fluctuate much with the changes in query sizes. Nevertheless, to

help further investigate the effects of query size on the effective-

ness of DIVER, Figure 5 delineates the underlying data points for

those size ratios: the impact set sizes, in ten individual plots. Each

plot summarizes the contrast in impact-set sizes between DIVER

and PI/EASC for the query sizes from one to ten (as listed on the

x axis) per subject (shown as the plot title), represented by curves

with square and circle markers, respectively. For each query size,

the markers on the curves indicate the means of impact-set sizes of

all queries of that size, and the error bars extending toward above

and below the markers indicate the associated standard deviations.

Some of these error bars for PI/EASC impact-set size means are

not invisible because they are covered by overlapping error bars

for corresponding DIVER means.

For any query and subject, the impact set of DIVER is no-

ticeably smaller than that of the baseline, as we expected since

the same contrast holds for each constituent method in the query

as seen in the previous study. And in terms of composition, the

DIVER impact set of any multiple-method query is constantly

a subset of the PI/EASC impact set of the same query, since

the same inclusion relation holds for single-method queries as

well. There are two additional major observations. First, with

growing query sizes, the impact sets of both techniques grow

monotonically, but the differences in slope between each pair of

curves exhibit a slower growth of DIVER impact sets than that

of the baseline ones, for all subjects except Schedule1. On the

other hand, however, due to the increasing absolute sizes of the

impact sets, the size ratios of DIVER to the baseline keep relatively

steady in most cases with the same exceptions as discussed earlier

on the size-ratio numbers of Table 5. A second observation is

that DIVER saw a much smaller variations in impact-set sizes than

PI/EASC , according to the standard deviations shown by the error

bars, except for PDFBox in which a few queries had very-large

impact sets. Our inspection reveals that those queries are mostly

dispatching or coordinating methods at the core of this program.

In all, the query size did not appear to significantly affect the

ultimate effectiveness of DIVER relative to PI/EASC , despite the

relative precision of DIVER increased or decreased slightly with

varying query sizes in some situations. This finding also dovetails

what we found from the data presented in Table 5.

In general, DIVER achieves the same level of precision for

multiple-method queries with a variety of (ten) different query

sizes as for single-method queries at a close level of cost also,

with worst-case overhead increase of 10%. The query size does

not appear to much affect the cost-effectiveness of DIVER.

9 STUDY III: REPOSITORY QUERIES

In the previous two studies, we investigated the effectiveness

and efficiency of DIVER against the baseline technique with

respect to arbitrary (all possible) queries, which gives a general

estimation of DIVER performance. In practical use scenarios,

however, developers may just need to inspect the impacts of

specific sets of methods only. For instance, in the context of

change-impact analysis, such practical queries are commonly

those to which developers may plan to apply code changes. Thus,

to complement the studies on arbitrary queries, in this study we

further evaluate DIVER concerning how well it would perform

on queries of particular interests—methods actually changed by

developers between software revisions.

9.1 Experimental Setup

For this study, we intended to choose three open-source Java

programs that are currently in active evolution and retrieve streams

of consecutive revisions from their source repositories that reflect

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 18

TABLE 6: Statistics of Subjects Used for the Repository-Change Study

Repository (subject) Revisions downloaded #Valid revisions #LOC #Methods #Methods changed #Tests

XML-security 1.0.4 350313–350616 47 22,231–30,113 1,261–2,142 25.2 (95.6) 92
Ant 1.4.0 267546–269587 71 40,315–45,924 4,011–4,782 10.1 (13.9) 183
PDFBox 1.1.0 620304–928462 65 59,446–67,893 5,142–6,416 6.1 (16.1) 32

Total 183 121,992–143,930 10,414–13,340 11.7 (49.7) 307

series of code changes with different semantic focuses (each focus

primarily addressed one topic, such as fixing a bug or adding a new

functionality feature). For each subject, we started with the first

release (of the chosen version, such as 1.0.4 for XML-security)

as the original/starting revision and then continuously checked out

following revisions until we found all the revisions dedicated for

one semantic focus. To perform meaningful analyses, we only

kept revisions that included at least one non-blank non-comment

source-code change covered by the test inputs provided with the

subject. During this procedure, we also dismissed revisions that

only added new methods since the new methods are not known

to the previous version hence it is impossible to predict their

impacts. The remaining revisions were regarded as valid for our

experiments. We repeated this procedure for one or two more

semantic focuses (so that we consider changes of at least two

different focuses) for each subject, and then analyzed all the valid

revisions we gathered from the subject repository.

As a result, we got different numbers of valid revisions to

use for different subjects, but each pair of consecutive revisions

has at least one changed method that we use as the impact-set

query against the earlier version that DIVER analyzes. Table 6

lists, in the first three columns, the repositories (subject programs)

we selected, the ranges of all revisions we checked out from each

repository, and the number of code-changing revisions that we

actually analyzed per subject. The next three columns summarize

the range of source sizes in terms of non-common non-blank

lines of Java code (#LOC), range of total numbers of methods

(#Methods), and the average number of methods changed between

each pair of consecutive revisions (with the standard deviations

shown in the parentheses). The last column indicates the number

of test inputs available, and we actually used, for each subject.

Specifically, the 47 valid revisions of XML-security contained

two semantic focuses, the first on upgrading the entire codebase to

adapt to new versions of dependency libraries Xalan and Xerces,

while the second fixing xmlns:xml namespace-handling issues.

The 71 revisions of Ant focused on three series of semantic

changes: adding several build tasks (Tar, Ear, and Filter), fixing

usage examples of customized tasks, and enhancing the core build

engine. Finally, the 65 PDFBox revisions concentrated on two

topics, fixing bugs in the pdfbox.filter module and developing

patches for the Fonts package.

Note that these subjects are a subset of those used in our

previous two studies, although there are considerable gaps in

the versions and sizes for each corresponding subject: each in

this study has noticeably larger size than the same subject in

the previous two, especially Ant. This selection is driven by two

major considerations. First, we attempted to reuse experimentation

utilities (e.g., setup scripts) from previous studies. Second and

more importantly, we intended to get a sense of the practical lower-

bound effectiveness of DIVER, within the ten subjects at least, so

as to inform about the estimated worst-case benefits in saving

impact-inspection efforts that developers may expect from our

technique in real-world situations—albeit we do not claim that this

lower bound is valid with DIVER for developers in any application

scenarios in general. This second consideration led to the chosen

three because, except for subjects that have no accessible or active

version-control history of considerable length (e.g., JABA), these

three received the worst-case effectiveness for the largest query

size in Study II (recall that in most cases the relative precision of

DIVER seemed to continuously worsen with growing query sizes).

For the dynamic analysis, we utilized the set of test inputs

coming as part of the starting revision of each subject. In addition,

we consistently use that input set for all the following valid

revisions of that subject to avoid possible relevant biases in

computing aggregate statistics over all revisions: in fact, we did

not find code changes in test inputs among all the valid revisions

we utilized for any of these subjects.

To facilitate performing experiments with large numbers of

program versions in this study, we developed an experimentation

pipeline that automatically checks out a specified number of valid

revisions from a given SVN repository, starting from a particular

revision. In addition, the pipeline also configures, with some

manual intervention, and compiles all valid revisions, as well as

running DIVER and PI/EASC on each of those revisions. One

essential part of this tool is to find the set of methods changed

between two SVN revisions. For that purpose, we developed a

tool based on the srcML library [77], which represents the abstract

syntax tree (AST) of given source code in XML. By comparing the

ASTs of two revisions, the tool reports methods added, deleted, or

modified from the earlier to the later version of the code.

With these repository changes, we continue to evaluate DIVER

against PI/EASC in terms of effectiveness and efficiency using the

same metrics as in the other two studies. For each subject, among

all its valid revisions, we treat the methods changed between each

pair of consecutive versions as one query, whether it be a single-

or multiple-method query, and compute the impact set of the query

with DIVER and PI/EASC separately. Note that each of the valid

revisions we studied corresponds to a developer commit to the

code repository of the associated subject. Thus, each repository-

based query is essentially the group of methods that the developer

changed in that commit (on top of the immediately previous valid

revision/commit). Again, for each pair, both techniques are applied

only to the earlier version since the later version is not known to a

predictive impact analysis.

9.2 Results and Analysis

In this section, we present and discuss the results of the third

study, focusing on assessing the performance of DIVER relative

to the baseline technique in practical application contexts: for real

queries that developers would actually run with an impact-analysis

tool when evolving their programs. This study aims primarily

at RQ4 in addition to further answering the other two common

research questions (RQ1 and RQ2).

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 19

0

100

200

300

400

500

600

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(a) XML-security

0

200

400

600

800

1000

1200

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

Im
p
a
c
t�
se
t�
si
ze

Query

PI/EASc Diver

(b) Ant

0

200

400

600

800

1000

1200

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

Im
p
a
ct
�s
e
t�
si
ze

Query

PI/EASc Diver

(c) PDFBox

Fig. 6: Impact set sizes (y axis) of DIVER versus PI/EASC for

each query (x axis) and subject (plot caption) from the study of

repository-based queries, plotted in the same format as Figure 4.

9.2.1 RQ1: Effectiveness

The full effectiveness results on repository-based queries are

plotted by area charts in Figure 6, each for an individual subject

in the same format as the ones in Figure 4. For each of the two

techniques compared, the numbers of data points are those of the

repository-based queries listed on the horizontal axes, which are

also shown in the second column of Table 7.

The contrasts in impact-set sizes between the two techniques

demonstrate again the effectiveness advantage of DIVER over the

baseline approach: for two of these three subjects, DIVER impact

sets are less than half smaller compared to corresponding PI/-

EASC ones for almost all cases (queries). For PDFBox, however,

the improvement DIVER gained for most of the studied queries

is not as significant as in other subjects, although the impact-set

reductions are constantly noticeable. One plausible reason might

still be the relatively much tighter method-level couplings which

has made it among the worst-case subjects seen in our previous

studies. Nevertheless, the observation that DIVER reduces the

highest percentages (about 30%) of false impacts of PI/EASC for

the top (about 25%) queries that have largest impact sets implies

that our technique remains much more effective where it is most

needed: for queries that PI/EASC will report most false impacts.

This finding is also akin to what can be seen from Figure 4.

The area charts are plotted as such that the queries were listed

in an non-ascending order of corresponding baseline impact-set

sizes from the left to the right on the x axes. Meanwhile, the

number of methods that executed after a query was not necessarily

correlated with the number of methods that are dependent on the

query at runtime. Thus, the DIVER impact-set sizes appear to

fluctuate (and visually the area boundaries are jagged) along the

x axes. The variations in the magnitude of impact-set reduction

across different queries within each of the three subjects are

similar to those observed in previous studies: the visual differences

between Figure 6 and 4 with respect to these subjects are largely

due to the fact that the total numbers of the repository-based

queries are much smaller than those of arbitrary queries, hence

the much lower density of actual data points in Figure 6.

In the same format as Table 2, the summary results of compar-

ative effectiveness of DIVER are shown in Table 7. The absolute

numbers on impact set sizes and ratios generally consolidate our

observations from Figure 6, but even highlight the merits of

DIVER in an average case: It is able to prune 58–68% of false

impacts that would be produced by PI/EASC , corresponding to a

precision improvement by 138–213% over the baseline; even for

the worst-case subject, PDFBox, the impact-set reduction is 24%

on average, meaning an improvement by 32% in precision.

To gauge the magnitude of differences in impact-set sizes

between DIVER and PI/EASC , we conducted two statistical

analyses, the Wilcoxon hypothesis testing and Cliff’s Delta-based

effect size, in same procedures and settings as we did for Study

I. The p-values from the Wilcoxon tests for each subject and the

combined Fisher p value for all subjects are shown in the last

column of Table 7. The numbers confirm the strong statistical

significance of such differences both individually and collectively.

Results from the Cliff’s Delta analysis show that the effect size

for the three subjects is constantly 1.0, within a 0.95 confidence

interval of [0.7, 1.0], implying that at least over 76% of all queries

will receive an impact set from DIVER that is smaller than the

average impact-set size of the baseline [73].

9.2.2 RQ2: Efficiency

The static-analysis costs of these three subjects are all close to the

respective ones of similar sizes in Study I. Over all the studied

revisions, this cost ranges from 13 to 16 minutes in the slowest

case of Ant, slightly higher than 10 to 13 minutes for PDFBox.

XML-security only needs two to three minutes in this phase.

Runtime overheads are generally very low, with the highest of 27

seconds for Ant again, which has the largest number of test inputs

among these three. DIVER incurred 15s and 6s for PDFBox and

XML-security, respectively. In terms of storage costs, PDFBox

saw the largest but no more than 20MB: the maximal space costs

for the other two were both below 7MB.

The execution time of impact-computation in the post-

processing phase varied with the query sizes in any of the three

subjects (but not always proportionally). However, since multiple

queries were processed in parallel, the querying costs were gener-

ally close to the single-method cases of subjects of similar sizes

in Study I: the highest was seen by PDFBox, two minutes per

query on average; for Ant and XML-security, the average costs

were about one minute and 11 seconds,respectively.

In all, for programs at the scale of these three, the extra time

and storage costs DIVER incurred seem reasonably acceptable,

especially with respect to the effectiveness gains it brought. Even

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 20

TABLE 7: Effectiveness Results for Repository-Based Queries

Subject
#Queries PI/EASC Impact Set Size DIVER Impact Set Size Impact Set Size Ratio Wilcoxon

mean stdev median mean stdev median mean stdev median p-value

XML-security 47 303.3 113.5 283.5 127.3 95.6 159.5 42.25% 27.07% 52.70% 9.69E-06
Ant 71 459.6 368.5 237.0 111.2 124.1 66.0 31.53% 24.22% 22.87% 1.61E-04
PDFBox 65 426.8 262.8 555.0 372.8 240.7 502.5 76.49% 26.99% 88.04% 8.25E-11

Overall average 407.8 253.5 288.0 208.3 146.9 124.0 50.25% 31.31% 55.36% 1.27E-16

with PDFBox, for which DIVER appears to have the lowest cost-

effectiveness than for the other subjects, the inspection effort

saved by DIVER would still well outweigh those extra overheads.

Overall, the efficiency measures from this study are quite similar

to those from the previous two.

9.2.3 RQ4: Comparison to Arbitrary-Queries Studies

Compared to the effectiveness it achieved for arbitrary queries,

DIVER appeared to be appreciably less effective when working on

repository-change-based queries. For example, the overall average

impact-set reduction against the baseline was around 65% for

arbitrary queries, for varying query sizes within the range of one

to ten, while the reduction was 50% for repository-based ones.

There are at least three possible reasons for this gap.

The first one to note is the different sets of subjects used

between this study and the previous two. The three repositories

chosen for this study are connected to the three of same names

used in those two. Comparatively, however, the subjects in this

study are all considerably larger than the corresponding ones there.

For Ant, in particular, the one from its SVN repository is more

than twice as large as the one from SIR, thus they are effectively

two quite different subjects (the program changed dramatically).

The second one concerns the different construction of the

experimental results between the two groups of studies. In the

arbitrary-query group, for each of the subjects of large variety of

sizes, we consider all methods defined in the program as possible

queries and compute the overall metrics for all data points from

the relatively large set of ten subjects; while in the repository-

query group, which has much smaller number of subjects of

much lesser variety in size, we only consider a very small subset

of methods, namely those changed between consecutive code-

changing SVN commits, for computing the overall metrics. Note

that the overall metrics are essentially the weighted average of

per-subject averages where the weights are the number of queries

of each subject. In the first group, the subjects that account most

for the overall statistics, namely those having the largest numbers

of queries hence carrying the most weights, have the highest

reductions, around 70% or even over 80%, except for only one

(JABA) (Table 2); while in the second group, the subject having

the lowest reduction rate (PDFBox) carries nearly the largest

portion (of the three) of the total weight in the overall measure.

The last yet the most important reason is that, by our experi-

mental design, we purposely chose the subset of programs used in

the first group for which DIVER had the worst-case performance

for the purpose of gauging the effectiveness lower bound of our

technique in the second group. Although the actually used set

of three subjects differs, mainly in size, from that subset, the

50% average reduction DIVER achieved over the baseline can

still reasonably approximate the lower-bound relative precision

of DIVER with respect to PI/EASC .

In all, the results from Study III show that DIVER is able to

prune 50% false impacts produced by PI/EASC , or correspond-

ingly 100% improvement in precision, on average for more than

180 queries retrieved from three active open-source repositories.

While at the first glance the improvement for these repository-

based queries is apparently less significant than the one for

arbitrary queries, the former potentially represents the worst-case

performance of DIVER, within the chosen set of ten subjects

at least. Although we cannot claim that the relative precision

improvement (of 100%) is the lower-bound effectiveness of our

technique in general, this study suggests that developers using our

technique may expect at least such an amount of benefit in most

cases: saving their inspection effort that would be devoted to half

of the methods reported by PI/EASC per query.

DIVER reduced the baseline impact sets for repository-based

queries by 50% on average, with the same level of analysis cost

as seen with single-method queries. As an estimated effective-

ness lower bound, a precision gain by at least 100% relative to

the baseline can be expected by developers using DIVER.

10 STUDY IV: ONLINE VERSUS OFFLINE

As we discussed earlier (Section 4.4), online and offline approach-

es to dynamic impact prediction have respective pros and cons

and can be complementary to each other in terms of application

scenarios and efficiency. This study aims to quantify such pros

and cons by measuring the costs of impact analysis with these two

approaches. With subjects and their test suites used in there that

generally produce short traces, the first three studies seemingly

showed that the space costs of DIVER were negligible—thus

while DIVERONLINE further saved the space cost due to the

traces generated at runtime, the savings seemed to be practically

insignificant. To demonstrate the needs for and merits of online

analysis we hypothesized about before, we use two additional,

large-trace subject programs and recognize the challenges related

to space cost due to trace storage. The foregoing studies confirmed

that the query size did not much affect the time costs of our

dynamic impact prediction. Also, since multiple-method queries

are computed using the same sequence of method events (in

memory or traces) as for computing single-method ones, query

sizes do not affect the space cost either. Finally, the online and

offline approaches share the same static analysis phase. Therefore,

in this study we focus on the costs of other phases considering

only single-method queries.

10.1 Experimental Setup

In this study, we used the same subjects and same test inputs for

each subject as we did in Study I. For comparative evaluation of

the online versus offline approach, we reused the efficiency results

from that study too, including the querying time of each single-

method query and the execution time of instrumented programs.

To verify the functional correctness of DIVERONLINE, we also

computed the impact sets for individual queries and reused corre-

sponding results from Study I for comparison. We considered both

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 21

TABLE 8: Time and Space Costs of Computing Impact Sets for All Queries per Subject with DIVERONLINE versus DIVER

Subject (#queries)

Post-static-analysis time cost: seconds
Trace storage cost: MB (#trace files)DIVERONLINE

DIVER
DIVERONLINE:DIVER Ratio

One-by-One All-in-One One-by-One All-in-One DIVERONLINE DIVER

Schedule1 (20) 744.8 293.3 307.7 242.1% 95.3% 0 (0) 5.4 (2,650)
NanoXML-v1 (172) 1,132.7 1,012.2 1,071.8 105.7% 94.4% 0 (0) 1.6 (214)
Ant-v0 (607) 1,608.1 620.6 1,944.4 82.7% 31.9% 0 (0) 1.7 (112)
XML-security-v1 (632) 5,633.4 3,220.3 4,691.6 120.1% 68.6% 0 (0) 1.8 (92)
BCEL 5.3 (993) 13,079.6 4,796.8 115,308.2 11.3% 4.2% 0 (0) 23.1 (75)
JMeter-v2 (732) 12,177.7 1,207.6 1,698.4 717.0% 71.1% 0 (0) 0.7 (79)
JABA-v0 (1129) 109,581.6 81,032.3 88,414.7 123.9% 91.7% 0 (0) 9.8 (70)
OpenNLP 1.5 (1657) 123,395.5 65,639.3 124,665.1 99.0% 52.7% 0 (0) 83.9 (344)
PDFBox 1.1 (588) 166,344.0 54,790.8 66,573.4 249.9% 82.3% 0 (0) 14.8 (29)
ArgoUML-r3121 (1098) 99,862.4 1,500.4 17,469.4 571.6% 8.6% 0 (0) 3.9 (211)

Average (small trace) 73,714.1 31,771.5 63,554.9 116.0% 50.1% 0 (0) 24.7 (89)

JABA-v1 (1812) 322,823.9 160,189.4 196,917.8 163.9% 81.3% 0 (0) 42,227.1 (13,962)
OpenNLP 1.6 (2029) 3,235,134.9 1,183,737.6 2,705,960.2 119.6% 43.7% 0 (0) 15,381.1 (5,572)

Average (all) 672,363.5 255,856.7 552,097.4 121.8% 46.3% 0 (0) 9,409.1 (3,301)

variants of DIVERONLINE, All-in-One and One-by-One, when

evaluating the online approach.

In addition, we used two more subject programs, which are

upgraded versions of corresponding subjects in Study I: JABA-v1

and OpenNLP 1.6; and beyond functionality changes, these two

subjects come with augmented test suites that include 114 and 418

test cases, respectively. The total number of methods in JABA-v1

remained the same as JABA-v0 (3,332), and that in OpenNLP 1.6

increased to 4,594 from the 1.5 version. Of these methods, 1,812

in JABA-v1 and 2,029 in OpenNLP were covered by the new test

suites and were all used as impact-prediction queries.

To compare the efficiency of DIVERONLINE against DIVER,

for each subject, we first measure the total time cost incurred

by DIVERONLINE All-in-One for computing the impact sets of

all queries for the subject; with DIVERONLINE One-by-One, we

run the impact analysis per query and accumulate the total time

cost for all queries. Similarly, we obtained the total time cost of

DIVER as well by summing up the single-query time of the same,

full set of queries, yet with the run time added to the total cost

too for a fair comparison. In essence, this first metric includes

the time cost for obtaining all impact sets (of methods covered

by the corresponding test inputs) beyond the static analysis time

which is the same among all these techniques compared, giving

a holistic view of the comparative efficiency of each technique.

The second metric is the mean time cost per query incurred by

these techniques, which normalizes the total cost by the number of

queries in each subject, gauging how fast each of these techniques

would respond to a query from an average-case point of view.

For the two additional subjects, we continue to measure their

storage costs. Finally, we compare the runtime slowdown among

these techniques to investigate how practical it would be to apply

the impact analysis when running the programs for ordinary use,

mainly from a user-experience perspective. This last metric is

computed as, for a one-time execution of the subject on the

given test inputs, the ratio of the time incurred by each of these

techniques to the normal (original program) run time.

10.2 Results and Analysis

Our per-query impact set comparison between DIVER and (the two

variants of) DIVERONLINE confirmed that the online algorithm

did not change the effectiveness of our approach with respect to

the offline algorithm: the impact set produced by either mode of

DIVERONLINE was the same as DIVER for any of the full set of

queries. This consistency was expected because both algorithms

share the same rationale for dynamic impact prediction using the

same amount and types of program information (i.e., static de-

pendencies and method execution events). Therefore, we skip the

effectiveness and recall evaluation in this study. Next, we compare

the efficiency (in terms of time and space costs) of online versus

offline analysis concerning the four metrics described above.

10.2.1 RQ5: Efficiency of Online versus Offline Analysis

Table 8 lists the total time cost (in seconds) incurred by the two

variants of DIVERONLINE versus the offline approach DIVER for

computing the impact sets of all possible queries per subject. For

each subject, the number of queries involved in the computation

is shown in the parenthesis. Note that the DIVER numbers have

included the runtime costs as shown in Table 3. We also highlight-

ed two overall averages (weighted by the numbers of queries): the

average over the ten subjects used in foregoing studies which all

produced relatively small traces (Average (small trace)), and the

average over the full set of 12 subjects including the two additional

ones that produced large traces (Average (all)). To facilitate later

discussion, we hereafter refer to those ten as small-trace subjects.

The results reveal that the online analysis (in the default

All-in-One mode) was always more efficient than the offline

approach. By computing all the impact sets at once during runtime,

DIVERONLINE saved substantially the analysis time cost beyond

the first phase (where again the online and offline analysis share

the same cost), by 30% or above for the majority of the 12

subjects. Many individual subjects saw even much greater savings:

for example, with BCEL and ArgoUML the cost of the online

analysis was only less than 9% of the offline analysis cost; the cost

reduction by moving the impact analysis to runtime was dramatic

with Ant and OpenNLP as well. The reason that these four

subjects received the greatest time-cost savings was connected

to the observation that they were also among the subjects that

received the greatest impact-set reduction as seen in Table 2: their

underlying dependence graphs have relatively sparse interprocedu-

ral dependencies. As a result, in these programs the impact orig-

inating from each query mostly only propagated shortly, leading

to comparatively small impact sets; meanwhile, the computation

time for the impact propagation incurred by DIVERONLINE for all

the queries simultaneously tended to be often overweighed by the

accumulated time spent by DIVER on repeatedly traversing the

entire execution trace and performing associated I/O operations

(once per query). Despite the negligible (around 5%) differences

seen with the two smallest subjects Schedule1 and NanoXML,

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 22

1

10

100

1000

10000

100000

1000000

10000000 DiverOnline�(OnerByrOne) DiverOnline�(AllrInrOne) Diver�(Offline)

Fig. 7: Expected time cost (y axis in seconds) for obtaining the impact set of only one query with DIVERONLINE versus DIVER.

1

10

100

1000

10000

100000
DiverOnline�(OnerbyrOne) DiverOnline�(AllrinrOne) Diver�(offline) PI/EAS

Fig. 8: Runtime slowdown in a single program execution with DIVERONLINE versus DIVER.

the All-in-One online analysis saved the time cost of the offline

alternative by 50% on overall average, weighted by the per-subject

numbers of queries (as shown in the last but the fourth row of the

table), over the small-trace subjects. As we observed before, for

these subjects the savings in the space cost due to trace storage

were at most underwhelming. The overall savings for the 12

subjects were even greater (54%).

The One-by-One mode, however, rendered DIVER a favorable

option over DIVERONLINE in terms of the time cost in question.

For the two subjects, Ant and BCEL, with which the All-in-One

analysis exhibited the greatest efficiency advantage over DIVER as

mentioned above; now even in the One-by-One mode DIVERON-

LINE continued to reduce the offline-analysis time significantly

(by almost 20% and 90%, respectively). Yet, most of the small-

trace programs saw considerable penalty of repeatedly executing

the program in the One-by-One analysis. For NanoXML and

OpenNLP, the cost was at best comparable between the online

and offline analysis. The worst case was found with JMeter and

ArgoUML, for which the online approach was over seven and

five times (respectively) slower. On overall average across the ten

small-trace subjects, the One-by-One analysis users would need

to wait about 16% longer than DIVER to obtain the impact sets of

all possible queries for a given subject along with its test inputs.

Comparing between the two variants of DIVERONLINE re-

veals that One-by-One online analysis was constantly slower in

contrast to the All-in-One impact prediction, and in most cases

the difference was quite substantial. In the cases of PDFBox and

ArgoUML, for instance, the disadvantage of answering one query

at a time was highlighted: for ArgoUML, the largest subject out

of the ten in our study, the online analysis was about 100 times

slower in the One-by-One mode than it was when computing all

queries at once. The main cause was that the dependence graph,

also the largest among the ten subjects, needed to be loaded and

the test suite (211 test cases) needed to be fully exercised for each

query, while the inter-method loose coupling in this program (as

mentioned earlier) led to the relatively small difference in the cost

of computing all impact sets at the same time versus the cost of

computing the impact set for only one query as discussed before.

For an average-case look at the time cost of answering a single

query, Figure 7 depicts the contrast in the per-query time (shown

on the y axis in logarithmic scale) among the three algorithms

for each subject and overall (listed on the x axis). As shown,

the normalization by query numbers did not much change the

observation from Table 8 concerning the contrast between the

One-by-One online analysis and the offline approach: DIVER

was almost always noticeably (yet not hugely) more efficient

than DIVERONLINE One-by-One for any of these subjects. The

only exception was still Ant and BCEL with which the One-by-

One analysis achieved the best efficiency as seen before, which

implied that, on these two programs, computing the single query

(in DIVERONLINE) was even cheaper than serializing the traces

(in DIVER). Note that the per-query time cost of the One-by-One

analysis is at least greater than the normal runtime cost (as seen in

Table 3). Compared to its One-by-One mode, the All-in-One online

approach has its disadvantage relative to offline analysis revealed

conspicuously: DIVERONLINE All-in-One was overwhelmingly

more expensive than DIVER for all the subjects studied. The major

reason was that, even only a single query is requested, the All-in-

One still computes the impact sets of all possible queries—the

time cost remains the same as that for computing all impact sets

as seen in Table 8. Thus, for users interested in a single query

only, DIVER would be a better option in general.

The run-time slowdown imposed by a dynamic impact pre-

diction technique can affect its adoptability: if the technique

drags the ordinary program execution too much, it might not

be acceptable to use the analysis on a regular basis in practice.

In the cases of using user inputs or collecting field data [14],

large slowdown could be a serious applicability obstacle too.

Our results plotted in Figure 8 (with y axis in logarithmic scale)

suggest that using DIVERONLINE in the All-in-One mode can be

quite challenging in use scenarios where the impact analysis was

performed during normal program operation, as it slows down the

normal program execution enormously (typically causing an 100–

1,000-times overhead). This was expected, though, as the impact-

computation cost for all possible queries was included in the run

time of the analysis. Thus, the higher the impact-computation

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 23

TABLE 9: Comparison Between Offline and Online Dynamic Impact Prediction

Modality Advantages Disadvantages

Offline analysis

(DIVER)

• one-off program execution • additional time cost for tracing and trace processing
• reusable traces for on-demand, arbitrary queries • additional space cost for trace storage
• shorter waiting time for a single query only • longer total time for computing all queries
• low runtime overhead • additional file-system resource consumption

Online analysis

(DIVERONLINE)

• no tracing and trace-processing time cost • possible need for executing program multiple times
• no trace storage cost • on-demand querying: none or at high run-time overhead
• shorter time for computing impact sets of all queries • longer waiting time for a single query only
• much less consumption of file-system resources • additional program run-time slowdown

cost, the higher the overhead. The One-by-One online analysis,

albeit mostly also causing higher slowdown than DIVER, did not

drag the normal program operation as much as the All-in-One

approach. In fact, the overhead was mostly below 10-times and

the increase over the offline analysis was not dramatic either. With

two exceptional cases, Ant and BCEL, the online analysis caused

even lower overhead than the offline alternative, consistent with

the observation in this regard from Figure 7.

Space cost. As we mentioned earlier, for the small-trace

programs, the space-cost savings with DIVERONLINE relative

to DIVER were mostly trivial because the total trace storage

only needed 25MB on average (with the maximal of 84MB for

OpenNLP 1.5) as seen in Table 4. However, with certain programs,

long-running and/or complex ones for instance, the offline impact

analysis would need to produce huge amount of traces, even

to the extent the space cost may become a serious blockade

for the analysis adoption. Table 8 (the rightmost two columns)

shows the trace storage cost of DIVERONLINE versus DIVER. As

anticipated, DIVERONLINE as an online analysis did not incur any

space cost after the static-analysis phase, thus it did not produce

any trace files either. In contrast, DIVER always incurred space

cost in this regard, including not only the external storage space

but also a number of files (as listed in the parentheses of the last

column). Note that carrying a large number of files is not just

clumsy, but can also consume limited file-system resources (e.g.,

file descriptors in Unix systems).

As shown, DIVER consumed the amount of storage and file-

system resources (maximal of 2,650 trace files for Schedule1)

that could be considered reasonable with the small-trace subjects.

However, for the two added subjects, JABA-v1 and OpenNLP 1.6,

the traces demanded over 15GB (for OpenNLP 1.6) and even up

to 42GB storage with as many as 13K trace files (for JABA-v1).

To avoid run-time memory blowup, we implemented DIVER to

dump traces for each test case in possibly multiple segments such

that each segment never gets over 3MB in size and is saved in

a separate file. Alternatively, one may choose to buffer longer

even full traces in memory and dump at the end of execution to

fewer or even only one single trace file. However, for programs

like JABA-v1 and OpenNLP 1.6, the alternative solution would

very likely run out of memory. In contrast, an online approach

like DIVERONLINE, regardless of the working mode, saves all

these resources and associated costs in entirety. Thus, users who

do not want to incur these large costs would better choose an

online impact analysis over the offline approach. Moreover, when

such costs become unaffordable, the online mode may become an

enabling strategy for impact analysis.

Summary of empirical comparison. The online analysis and

offline analysis each has its own merits and drawbacks, as we

first discussed hypothetically in Section 4.4. Table 9 further sums

up the contrast between the two approaches based on the em-

pirical findings just discussed above. For a succinct comparison,

quantitative measures presented earlier are not repeated here in

the table. Generally, unless runtime slowdown is a major concern,

DIVERONLINE (in the All-in-One mode) would be more desirable

than DIVER in most situations because the online approach either

saves total analysis time or saves storage costs. The rationale for

the time saving with DIVERONLINE lies in that the extra time

spent on impact computation during runtime (compared to DIVER)

is readily paid off and is outweighed by the time that would

be spent on tracing-induced file-system I/Os (i.e., serializing and

deserializing the method-execution events at run time and post-

processing time, respectively). The rationale for the storage-cost

saving comes naturally from the nature of any online dynamic

analysis: since DIVERONLINE does the analysis in parallel with

the program execution, no tracing is performed thus no traces

need to be stored in the file system; the method-execution events

are discarded immediately after they are utilized for impact com-

putation (albeit possibly buffered in memory shortly depending

on the implementation/optimization strategies adopted). Important

for the second rationale, the online impact-computation algorithm

must be designed as such that all execution events are scanned

in the order they occurred and every event is processed only

once. According to Algorithm 2, DIVERONLINE satisfies this

requirement thus it eliminates the need for tracing.

Note that, in practical scenarios, both the additional space cost

incurred by DIVER (e.g., storage cost and file-descriptor usage)

and the additional time cost incurred by DIVERONLINE (e.g.,

runtime slowdown with the All-in-One analysis) could become

a serious obstacle for the adoption of these techniques. Yet, the

tremendous runtime overhead of the All-in-One online approach

might be counterbalanced by its great savings (by 50% on average)

in the total time for querying all impact sets at once. The great

savings, given its same level of precision as DIVER, imply large

improvement in cost-effectiveness as well. While its One-by-One

mode would not provide on-demand querying (the query needs

to be known before program execution), the online analysis can

do so in the All-in-One mode (by computing all impact sets and

supplying results for specific queries in trivial time) albeit at the

cost of causing large runtime slowdown.

All in all, the online approach would be favored in situations

where the trace size explodes during execution (due to very-long

loops, for instance), the consequent storage and/or file-system

resource consumption may not be easily afforded, or it is preferred

to compute all impact sets at one time faster. In contrast, the offline

approach may be favored in scenarios where users mostly do

ad-hoc impact-set querying for a specific method, the program

under analysis does not produce large traces, or users could

not afford high runtime overheads. (For online analysis, exploit-

ing specialized runtime environments such as dynamic compiler

technology [19] may reduce the run-time overheads.) Therefore,

providing both (online and offline) options in a dynamic impact

prediction solution would potentially better meet diverse needs.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 24

Compared to the offline approach to dynamic impact prediction

(with DIVER), the online approach (with DIVERONLINE) can

generally at least either save the total analysis time (considerably

in most cases) or save substantial storage cost (even to the extent

that it becomes an enabling option for the impact analysis). In

all, the online analysis and offline analysis complement to each

other, together meeting diverse needs hence making our holistic

solution more practically adoptable and useful.

11 THREATS TO VALIDITY

The main internal threat to the validity of our results is the

possibility of having implementation errors in DIVER and PI/-

EASC . However, the implementation of both techniques is based

on Soot and DUA-FORENSICS that have matured over many

years. In addition, we manually checked individual results of every

phase of DIVER and PI/EASC for our study subjects. Especially

for the post-processing phase, we manually verified the impact-

computation algorithm of DIVER against each subject using a few

sample queries. One more internal threat lies in the possible errors

in our experimental and data-analysis scripts, including the exper-

imentation tools used for Study III. To reduce this risk, we tested

and debugged those scripts and tools, especially the source-code

differencer that finds methods changed between two revisions, and

checked their operation for each relevant experimentation step.

Yet another internal threat is, when computing the dependence

graph for DIVER, the risk of missing static dependencies due

to Java language features such as reflection, multi-threading,

and native methods. However, we confirmed that, for our study

subjects running on the test suites we utilized, there was no use of

such features except for native methods in Java libraries, which are

modeled conservatively by DUA-FORENSICS [58], and reflection

APIs in JMeter, BCEL, and Ant, the only three subjects, out of

the ten we utilized, that used reflection. In these three subjects, the

reflection calls targeted only methods whose names are (or can

be readily resolved to) constant strings, which our analyses fully

handled through simple string analysis (mainly by intraprocedural

string-constant propagation [50]). Thus, for the chosen subjects

and test inputs, our analyses were not much affected by these

features that usually lead to unsoundness. Yet, in general, Java

programs may include more sophisticated uses of features and/or

constructs that our analyses do not fully handle. Therefore, it is

under the constraints against typical dynamic language features

(including reflection API and native method calls, dynamic load-

ing, and customized class loaders) that our analyses produce safe

results (however, our analyses are still considered soundy even

with those features used, as discussed earlier). Automatically iden-

tifying these constraints in a given program would be a promising

direction of future work. As another immediate next step, we plan

to empirically assess the impact of unsoundness resulted from the

constraints on the effectiveness of our techniques. Our analyses

currently do not deal with multi-threading in general: concurrent

program impact analysis would be addressed as a separate line of

effort [17]. Finally, for Schedule1, we used a version translated

from C to Java, so we verified that the outcomes of all 2,650

test cases remained the same as those from the original program.

There could still be potential biases (in terms of code structure

and program behaviors with respect to the original C version)

introduced in the translation, though. We chose this subject mainly

because it well represents a real-world, small program/module in a

distinct domain while coming with a large number of test cases—

we intended to include subjects of diverse domains and scales to

maximize the representativeness of our evaluation results.

The main external threat to the validity of out study is our se-

lection of Java subjects and their test suites. This set of ten subjects

does not necessarily represent all types of programs from a dynam-

ic impact-analysis perspective. To address this threat, we picked

our subjects such that they were as diverse as possible in size,

type of functionality, coding style, and complexity. Additionally

for the repository-query study (Study III), the three repositories

may not be generally representative of all such repositories, and

the chosen ranges of revisions may or may not represent the entire

respective repositories for the three subjects. To reduce this threat,

we purposely chosen repositories of a variety of source scales

and from varying application domains, and for each we studied a

reasonably large number of revisions.

Another external threat is inherent to dynamic analysis in

general: the test suites we used cannot exercise all behaviors of

the respective subjects. Many methods were not covered by the

test suites, so we could not apply the techniques to those methods.

In addition, some of subjects (e.g., PDFBox and ArgoUML) had

test inputs of relatively low coverage. Thus, our results must

be interpreted in light of the extent of the ability of those test

suites to exercise their subjects. The test suites we used were also

mainly focused on functionality testing, with which the program

behaviours exercised might deviate from those exercised by field

data [14] (i.e., executions collected from actual usage at real

users’ sites). To mitigate these issues, we chose subjects for which

reasonably large and complete test suites were provided—at least

from a functional point of view. Also, most of these subjects and

test suites have been used by other researchers in their studies, and

therefore they can be seen as good benchmarks. For the subjects

used, we presently do not have access to their field data. Thus, we

currently limited our program execution traces to those from the

functional test inputs. However, it would be rewarding to explore

the evaluation of our approach with respect to field data, which

is part of our future work. Another future line of research is to

empirically and systematically investigate the effects of the sizes

and coverage of test inputs on the effectiveness of dynamic impact

prediction techniques including our techniques. As a preliminary

evidence, our result showed no clear correlation between test

suite size and the effectiveness of our approach (see Table 2).

Importantly, the goal of the our techniques is to provide more

precise hence more usable impact sets at reasonable costs for the

provided executions, thus improving the quality of test inputs (e.g.,

coverage) is primarily a direction orthogonal to our approach.

For the study with multiple-method queries, one more possible

external threat comes from the range of query sizes we considered.

It is possible that the present range of sizes from one to ten is not

typical of actual numbers of methods changed in one repository

commit by developers in practice. Unfortunately, it is not feasible

to exhaust all possible query sizes. Nevertheless, comparative

results from ten different query sizes can still offer considerable

evidence for understanding the overall comparative effectiveness

of the two techniques compared and its variation with changing

query sizes. Also, note that for two of the three repositories we

chose, the average number of code-changing methods per revision

is just about ten or fewer, among the studied revisions at least.

And additional threat lies in our simplified treatment of multiple-

method changes dismissing the interaction between changes across

multiple methods. Instead, we simply unionized the single-query

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 25

results for all member methods in the such queries for a safe

approximation, which seems appropriate for a predictive analysis.

The main construct threat concerns the design and methodolo-

gy of our studies. Since we have no relevant knowledge about the

comparative importance of methods in each subject, we implicitly

treat each method equally in terms of its weight or importance

with respect to others in the subject. As a result, in cases where

developers see higher weights with certain methods than others,

the precision improvements from DIVER experienced by devel-

opers might not be exactly the same in practice as we reported.

In addition, we have translated the impact-set size ratios into

relative precision improvement between DIVER and the baseline,

which is based on the assumption that both techniques are soundy.

While the soundness of a dynamic analysis is indeed defined with

respect to the test inputs (accordingly the executions generated

from those inputs) utilized by the analysis [57], and in that sense

both DIVER and PI/EASC impact sets are safe, neither of the two

techniques can guarantee perfect recall for predicting the impacts

that actual changes will have if the changes modify control flows:

the technique does not know about those changes.

An additional construct threat is about the way we attempt to

identify the approximate lower bound of the effectiveness (relative

precision) of DIVER. We picked, from the pool of subjects for

the arbitrary-query studies that have a considerable length of

revision history, three subjects for which DIVER had the worst-

case effectiveness, and then used more recent revisions from their

online repositories for Study III, from which we assess the lower

bound. This decision is based on the assumption that, for all the

subjects that have available and usable repositories, changes in

their later versions do not affect much the performance of DIVER

relative to PI/EASC , so that their being the worst cases among

all in that pool is still valid. While we cannot guarantee about

this assumption, the nature of these subjects should be reasonably

stable during a relatively short length of evolution: in fact, for

two of the three subjects, the versions utilized in Study III do not

depart quite away from the one used in the previous two according

to the size differences. Nevertheless, we do not intend to claim that

the lower bound estimated from the repository-queries study can

generalize for DIVER and PI/EASC .

Finally, a conclusion threat to validity is the appropriateness

of our statistical analyses. To reduce this threat, we used a non-

parametric hypothesis test and a non-parametric effect-size mea-

sure which make no assumptions about the distribution of the data

(e.g., normality). However, due to the nature of the Cliff’s Delta

method, the interpretation of the effect sizes based on that method

is still subject to the assumption about the normality of underlying

data points. Therefore, the meaning of those effect sizes can only

be taken with respective constraints. Another conclusion threat is

that we could only compute meaningful impact sets for methods

that have at least been covered by one test input. As a result, our

statistical analyses are applied to those queries only. To reduce this

threat, we considered all possible such queries in each of the three

studies with respect to its query space and experiment goals.

12 RELATED WORK

In [35], we reported preliminary results on DIVER, including the

impact-computation algorithm that combines static dependencies

and dynamic method events. This paper substantially expanded

that work by presenting more details of the technique. Further-

more, the scale of the empirical evaluation has been largely

extended, including the increase in the number of subjects from

four to ten, and two additional studies (using multiple-method

and repository-based queries). Recently, on top of DIVER, we

developed a framework for dependence-based dynamic impact

analysis [46], [78]. In contrast, while this work continues to focus

on exploiting static program dependencies to attain much higher

precision than existing alternative options for dynamic impact

analysis, that framework explores a disparate direction—using

more dynamic information beyond method-execution traces—to

provide multiple cost-effectiveness tradeoffs of the analysis. Dif-

ferent from the central goal of reducing imprecision hence impact-

inspection effort in this work, the framework aims at providing

users with flexibility in tool selection so as to meet diverse needs

with various use scenarios and/or varied resource budgets [78].

Other previous work related to ours includes slicing and

dependence approximation, in addition to impact analysis utilizing

various artifacts, such as execution order, structural information,

and static dependencies.

Inferring execution order. As an initiative in method-level

dynamic impact analysis, the PATHIMPACT [15] technique intro-

duced by Law and Rothermel computes dynamic impacts purely

on the basis of execution order of methods by recording the

occurrences of method-entrance and method-exit events. Later,

they extended this approach to accommodate impact analysis of

a series of evolving versions of a program such that impact sets

for later revisions can be incrementally computed to obtain an

overall optimized efficiency [21].

On the other hand, to optimize PATHIMPACT for a single

program version, Apiwattanapong and colleagues present execute-

after sequences (EAS) [18] which avoids tracing full sequences of

method events so as to improve both time and space efficiency of

the analysis without loss of precision relative to PATHIMPACT.

Two more follow-up techniques are proposed by Breech and

colleagues also aiming at better efficiency over PI/EAS, such as

the online version relying on dynamic compilation techniques [19]

and another optimization which computes impact sets for all

functions in one pass of trace scan [20].

To develop DIVER, we employe the full sequence of method-

execution events as the single form of dynamic information for im-

pact analysis as PATHIMPACT did. However, DIVER also exploits

static program information that was not utilized by PATHIMPACT

or EAS. In comparison to other similar techniques following up

PI/EAS, the main goal of DIVER is to improve the precision of

method-level dynamic impact analysis while maintaining a prac-

tical level of efficiency, rather than only enhancing the efficiency

(i.e., reducing computation time and storage costs) of PI/EAS as

targeted by those techniques.

Exploiting structural information. Other than method ex-

ecution order, various types of structural information of pro-

grams have also been employed by many researchers for impact

analysis. Orso and colleagues present COVERAGEIMPACT [14]

which uses method-level test coverage and static forward slicing.

It was found to achieve greater efficiency but lower precision

than PI/EAS [5]. Similar to EAS, static execute-after approaches

(SEA) [12] also use execution orders to find impacted methods but

based on the static call graph [79] instead of runtime traces.

Other static impact analyses exist [1], [10], [17], including

those based on static slicing [80], coupling measures [6], change-

type classification [81], and concept lattices [9], [82]. Static impact

analyses are more conservative than dynamic ones, which makes

them less precise but more general. DIVER also performs a static

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 26

analysis—for the dependence graph construction—but, instead of

producing a conservative impact set directly from that graph, it

uses the dependence model to guide the analysis of runtime traces

for precise dynamic-impact analysis.

Impact-analysis techniques based on dependence analyses oth-

er than static slicing have been explored as well. Sun et al. propose

OOCMDG [81] and LoCMD [9] to model dependencies among

classes, methods, and class fields, which are directly derived

from class-method memberships, class inheritance, method-call

relations, and use relations between classes and methods. Their

techniques are also extended for impact analysis with hierarchical

slicing [83] and for multiple levels of granularity [84].

Unlike these approaches where only structural dependencies

(e.g., call edges) based on object-oriented features are considered,

we model all interprocedural data and control dependencies in the

DIVER dependence graph. CALLIMPACT [85] computes change

impacts with information on variable definitions and uses but,

like SIEVE [29] and CHIANTI [7], it is a descriptive impact

analysis: They rely on the knowledge of actual changes made

between two program versions to compute impact sets. DIVER

is a predictive technique, using potential change locations but

assuming no knowledge about actual changes to be made there.

Incorporating static dependencies. Similar to DIVER, IN-

FLUENCEDYNAMIC [16] combines dependence analysis and dy-

namic information for impact analysis. However, it considers

dependencies among methods with respect to parameter passing,

returned values, and global variables only, a subset of the de-

pendencies that DIVER models. Using such partial dependencies,

it is only able to prune very few false-positive impacts relative

to EAS. As a result, the precision improvement it gained over

PI/EAS is merely marginal yet at much greater cost than EAS. In

addition, its design and implementation suggest that this technique

primarily addresses (and is directly applicable only to) procedural

programs (while our approach targets object-oriented software).

Its experimental environment (e.g., GCC with customizations) is

not compatible with ours either. Thus, it is difficult to reproduce

or compare to the results of the technique, as would be required

for including it in our empirical studies.

Huang and Song [26] extend INFLUENCEDYNAMIC for

objected-oriented programs by adding dependencies between

fields, as the RWSETS tool does [86], and improve it further by

including dependencies due to runtime class inheritances [27]. An-

other hybrid technique, SD-IMPALA [28], extends its pure static-

analysis-based version IMPALA [4] to improve the recall of impact

analyses by utilizing the runtime traces of method events and

field accesses. Unfortunately, like INFLUENCEDYNAMIC, these

approaches also model partial data dependencies only and none

of them achieve a significantly higher precision than PI/EAS.

In contrast, DIVER uses the complete set of static dependen-

cies of the program under analysis, although for efficiency pur-

poses it approximates instead of directly adopting the fine-grained

dependence model (i.e., the system dependence graph [11]).

Also, different from INFLUENCEDYNAMIC and its follow-up

techniques, our approach targets and empirically achieved a signif-

icantly more precise dynamic impact analysis. Since it is known

that those previous techniques were unable to improve against

PI/EAS significantly, and they either target different environment

(e.g., INFLUENCEDYNAMIC for procedural programs) or would

require considerable extra efforts to implement (none of them have

implementation available to us), we could not include them in our

empirical comparisons but instead take PI/EAS as the baseline

technique for our evaluation purposes.

Slicing. Forward dynamic slicing [87] is, at first glance, an

option for dynamic impact analysis, but it can be too expensive for

that purpose [18], [21]. For method-level impact analysis, dynamic

slicing would have to be applied to most, if not all, statements

inside the queried method. Apparently, this fine-grained dynamic

dependence analysis would be overly heavyweight for method-

level impact analysis. In contrast, DIVER performs this task much

more efficiently and directly at the method level.

For static impact analysis, program slicing (static) has been di-

rectly applied to impact analysis [80]. In contrast to this and other

static approaches, DIVER follows a dynamic approach focusing on

concrete program executions to provide impact sets more relevant

to the specific program behaviour with respect to those executions.

Also, compared to the statement-level impact analysis based on

static slicing, DIVER produces method-level impact sets, although

both utilize fine-grained (statement-level) static dependencies.

With sensitivity analysis and execution differencing [88], a

quantitative approach to slicing [56] was proposed to predict

and prioritize dynamic impacts based on semantic dependence

quantification. To approximate the semantic dependencies from

which the quantitative impact sets are immediately derived, the

approach emulates a number of N changes to the query location

in the program under analysis at runtime, and identifies impacts

from the differences between the original program execution trace

and the traces of N modified executions. It further quantifies the

impacts according to the times each impacted entity appeared in

the execution differences (referred to as impact frequency) and

then ranks the impacts by their frequencies. The motivation was to

prioritize (through the ranking process) the entities in the impact

set that can be too large to fully inspect, hence allowing users to

prioritize their limited budget to focus on the most likely impacted

entities first. In contrast, this work focuses on reducing the impact

set produced by imprecise impact-prediction approaches through

utilizing static program dependence information, without differ-

entiating the entities in the impact set. Also, unlike our method-

level analysis, the quantitative impact-prediction technique works

at statement level. On the other hand, cutting off false-positive

entities of an impact set and prioritizing all entities within the

impact set share the common goal of reducing the effort of

impact inspection. Thus, the approach proposed in this paper is

complementary to the impact prioritization approach in [56].

Dependence approximation. In [89], an abstract system de-

pendence graph (ASDG) is proposed to directly model method-

level dependencies so as to assist programmers with code compre-

hension. Compared to the ASDG which is built by first construct-

ing the full SDG [11] and then simplifying statement-level edges

to capture only dependencies between corresponding methods, we

dismiss context-sensitivity of the original SDG when creating the

DIVER dependence graph. Thus, the static dependencies in DIVER

are cheaper to compute than those in the ASDG. Other approaches

directly modeling method-level dependencies exist (e.g., [90]),

which may benefit a method-level dynamic impact analysis. At

present, DIVER utilizes statement-level static dependencies with

method-execution traces to essentially compute method-level dy-

namic dependencies for impact analysis. It would be of interest to

investigate using method-level static dependencies directly for the

same purpose but even higher efficiency, as part of future work.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 27

13 CONCLUSION

Dynamic impact analysis provides a key approach to understand-

ing the impact of one set of program entities on the rest of the

program hence a fundamental technique for reliably evolving soft-

ware. However, this technique has not been extensively adopted in

practice. Different studies have shown that, among others, a major

obstacle is the lack of effective tool supports for this analysis. We

thus investigated the accuracy of existing such techniques [34] and

revealed that the PI/EAS approach, which represents almost the

most effective technique in the literature, is highly imprecise. This

imprecision is not surprising, though, given its overly conservative

nature. To make dynamic impact analysis practically useful and

adoptable, much better effectiveness is needed. More precise

impact analysis also potentially leads to increased effectiveness

of its applications, including testing, debugging, comprehension,

and various other dependence-based tasks.

We presented a new hybrid dynamic impact analysis DIVER

which combines approximate static dependencies and method-

level execution traces. DIVER tracks impact propagation and

prunes static dependencies that are not exercised by the method-

execution traces, so as to achieve, at acceptable overheads in

computation time and data storage, largely improved effectiveness

over the baseline PI/EAS. We also explored in detail the online

approach to dynamic impact prediction by developing and evaluat-

ing a technique DIVERONLINE and investigated the pros and cons

of online versus offline dynamic impact analysis on a common

basis. Our comprehensive evaluation showed that DIVER can

drastically remove false positives from the impact sets produced

by the baseline approach, translating to an average improvement

in precision by 100% or above. Meanwhile, DIVER keeps the

overheads of the analysis practically acceptable. Thus, it attains

a much higher level of cost-effectiveness than the existing options

of the same kind. Our study comparing offline versus online

analysis using DIVER and DIVERONLINE reveals that, when built

on the same basis (algorithmic rationale and program information

utilized) without specialized runtime environments, the online

approach can be significantly (50% on average) more efficient

while giving the same precision in contrast to offline approach for

computing the impact sets of all queries in a one-off execution.

Also, in cases where trace storage becomes challenging, the online

approach also could be more preferable. Yet, these benefits of

online analysis come at the cost of higher runtime overheads. By

offering both options, we provide a more adoptable solution to

developers that accommodates diverse use scenarios.

We identified several rewarding directions to explore next in

discussing the limitations of our approach (Section11). As an

additional future work, for complex or long-running applications

where DIVER might be too expensive, we plan to make greater

use of abstraction at method level and on the traces [91] to

balance effectiveness and scalability beyond the option of online

analysis (e.g., modeling static dependencies at method level di-

rectly [53] and then use the model together with method-execution

events [92] to capture run-time method-level dependencies).

ACKNOWLEDGMENTS

The preliminary formulation of this work was substantially ben-

efited from valuable discussion with Dr. Raul Santelices and was

sponsored by ONR Grant N000141410037 to the University of

Notre Dame. The author would also like to thank the anonymous

reviewers for their thoughtful comments that have helped greatly

with the improvement of this article through revisions, as well as

the faculty startup fund given by Washington State University that

supported the continuation of the research.

REFERENCES

[1] S. A. Bohner and R. S. Arnold, An introduction to software change

impact analysis. In Software Change Impact Analysis, Bohner &
Arnold, Eds. IEEE Computer Society Press, pp. 1–26, Jun. 1996.

[2] L. C. Briand, J. Wuest, and H. Lounis, “Using Coupling Measurement for
Impact Analysis in Object-Oriented Systems,” in Proceedings of IEEE

International Conference on Software Maintenance, Aug. 1999, pp. 475–
482.

[3] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in Proceedings of the 2012

International Conference on Software Engineering, 2012, pp. 430–440.

[4] L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, and J. Damasio, “On the
precision and accuracy of impact analysis techniques,” in Proceedings

of the Seventh IEEE/ACIS International Conference on Computer and

Information Science, 2008, pp. 513–518.

[5] A. Orso, T. Apiwattanapong, J. B. Law, G. Rothermel, and M. J. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,” in
Proc. of 26th IEEE and ACM SIGSOFT Int’l Conf. on Softw. Eng.,
Edinburgh, Scotland, may 2004, pp. 491–500.

[6] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using infor-
mation retrieval based coupling measures for impact analysis,” Empirical

Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[7] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a tool
for change impact analysis of java programs,” in Proc. of ACM Conf. on

Obj. Oriented Prog. Syst., Lang., and Appl., Oct. 2004, pp. 432–448.

[8] M. Sherriff and L. Williams, “Empirical Software Change Impact Anal-
ysis using Singular Value Decomposition,” in Proceedings of IEEE In-

ternational Conference on Software Testing, Verification and Validation,
Apr. 2008, pp. 268–277.

[9] X. Sun, B. Li, S. Zhang, C. Tao, X. Chen, and W. Wen, “Using lattice
of class and method dependence for change impact analysis of object
oriented programs,” in Proceedings of the 2011 ACM Symposium on

Applied Computing. ACM, 2011, pp. 1439–1444.

[10] S. Lehnert, “A review of software change impact analysis,” Ilmenau

University of Technology, Tech. Rep, 2011.

[11] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. on Prog. Lang. and Systems, 12(1):26-
60, Jan. 1990.

[12] J. Jasz, A. Beszedes, T. Gyimothy, and V. Rajlich, “Static execute
after/before as a replacement of traditional software dependencies,” in
IEEE International Conference on Software Maintenance, 2008, pp. 137–
146.

[13] L. Li and A. J. Offutt, “Algorithmic analysis of the impact of changes to
object-oriented software,” in Software Maintenance 1996, Proceedings.,

International Conference on. IEEE, 1996, pp. 171–184.

[14] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field data
for impact analysis and regression testing,” in Proc. of 9th European

Softw. Eng. Conf. and 10th ACM SIGSOFT Symp. on the Foundations of

Softw. Eng., Helsinki, Finland, september 2003, pp. 128–137.

[15] J. Law and G. Rothermel, “Whole program path-based dynamic impact
analysis,” in Proc. of Int’l Conf. on Softw. Engg., May 2003, pp. 308–318.

[16] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mech-
anisms into impact analysis for increased precision,” in Proceedings of

the 22nd IEEE International Conference on Software Maintenance, 2006,
pp. 55–65.

[17] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and

Reliability, vol. 23, no. 8, pp. 613–646, 2013.

[18] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in Proc. of Int’l

Conf. on Softw. Engg., May 2005, pp. 432–441.

[19] B. Breech, A. Danalis, S. Shindo, and L. Pollock, “Online impact analysis
via dynamic compilation technology,” in Proceedings of the 20th IEEE

International Conference on Software Maintenance, 2004, pp. 453–457.

[20] B. Breech, M. Tegtmeyer, and L. Pollock, “A comparison of online and
dynamic impact analysis algorithms,” in Proceedings of Ninth European

Conference on Software Maintenance and Reengineering, 2005, pp. 143–
152.

[21] J. Law and G. Rothermel, “Incremental dynamic impact analysis for
evolving software systems,” in Proceedings of the 14th International

Symposium on Software Reliability Engineering, 2003, pp. 430–441.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 28

[22] H. Cai, R. Santelices, and T. Xu, “Estimating the accuracy of dynamic
change-impact analysis using sensitivity analysis,” in Proceedings of

International Conference on Software Security and Reliability, 2014, pp.
48–57.

[23] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett.,
vol. 29, no. 3, pp. 155–163, 1988.

[24] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in
Proceedings of the ACM SIGPLAN 1990 conference on Programming

Language Design and Implementation, 1990, pp. 246–256. [Online].
Available: http://doi.acm.org/10.1145/93542.93576

[25] X. Zhang, R. Gupta, and Y. Zhang, “Efficient forward computation of
dynamic slices using reduced ordered binary decision diagrams,” in Pro-

ceedings of the 26th International Conference on Software Engineering,
ser. ICSE ’04, Washington, DC, USA, 2004, pp. 502–511.

[26] L. Huang and Y.-T. Song, “Precise dynamic impact analysis with de-
pendency analysis for object-oriented programs,” in Proceedings of the

5th ACIS International Conference on Software Engineering Research,

Management & Applications, 2007, pp. 374–384.
[27] ——, “A dynamic impact analysis approach for object-oriented program-

s,” Advanced Software Engineering and Its Applications, vol. 0, pp. 217–
220, 2008.

[28] M. C. O. Maia, R. A. Bittencourt, J. C. A. de Figueiredo, and D. D. S.
Guerrero, “The hybrid technique for object-oriented software change
impact analysis,” in 14th European Conference on Software Maintenance

and Reengineering. IEEE, 2010, pp. 252–255.
[29] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Sieve: A

tool for automatically detecting variations across program versions,”
in Proceedings of the 21st IEEE/ACM International Conference

on Automated Software Engineering, 2006, pp. 241–252. [Online].
Available: http://dx.doi.org/10.1109/ASE.2006.61

[30] R. Santelices, M. J. Harrold, and A. Orso, “Precisely detecting runtime
change interactions for evolving software,” in Proc. of Third IEEE Int’l

Conf. on Softw. Testing, Verification and Validation, Apr. 2010, pp. 429–
438.

[31] V. Rajlich, “A model for change propagation based on graph rewriting,”
in Proceedings of IEEE International Conference on Software Mainte-

nance, Sep. 1997, pp. 84–91.
[32] ——, Software Engineering: The Current Practice. Chapman and

Hall/CRC, Nov. 2011.
[33] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.

Harrold, “Test-suite augmentation for evolving software,” in Proc. of Int’l

Conf. on Autom. Softw. Eng., Sep. 2008, pp. 218–227.
[34] H. Cai and R. Santelices, “A Comprehensive Study of the Predictive

Accuracy of Dynamic Change-Impact Analysis,” Journal of Systems and

Software (JSS), vol. 103, pp. 248–265, 2015.
[35] ——, “Diver: Precise dynamic impact analysis using dependence-based

trace pruning,” in Proceedings of International Conference on Automated

Software Engineering, 2014, pp. 343–348.
[36] V. Rajlich, “Changing the paradigm of software engineering,” Communi-

cations of the ACM, vol. 49, no. 8, pp. 67–70, 2006.
[37] ——, “Software evolution and maintenance,” in Proceedings of the

Conference on the Future of Software Engineering, 2014, pp. 133–144.
[38] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a

study of developer work habits,” in Proceedings of the 28th international

conference on Software engineering. ACM, 2006, pp. 492–501.
[39] C. R. de Souza and D. F. Redmiles, “An empirical study of software

developers’ management of dependencies and changes,” in Proceedings

of the 30th international conference on Software engineering. ACM,
2008, pp. 241–250.

[40] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering, 2012, pp. 51:1–51:11.
[41] P. Rovegard, L. Angelis, and C. Wohlin, “An empirical study on views

of importance of change impact analysis issues,” Software Engineering,

IEEE Transactions on, vol. 34, no. 4, pp. 516–530, 2008.
[42] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”

in Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1. ACM, 2010, pp. 185–194.
[43] M. Acharya and B. Robinson, “Practical Change Impact Analysis Based

on Static Program Slicing for Industrial Software Systems,” in Proceed-

ings of IEEE/ACM International Conference on Software Engineering,

Software Engineering in Practice Track, May 2011, pp. 746–765.
[44] X. Ren, O. C. Chesley, and B. G. Ryder, “Identifying failure causes

in java programs: An application of change impact analysis,” Software

Engineering, IEEE Transactions on, vol. 32, no. 9, pp. 718–732, 2006.
[45] M. Ajrnal Chaumun, H. Kabaili, R. K. Keller, and F. Lustman, “A

change impact model for changeability assessment in object-oriented

software systems,” in Software Maintenance and Reengineering, 1999.

Proceedings of the Third European Conference on. IEEE, 1999, pp.
130–138.

[46] H. Cai and R. Santelices, “A Framework for Cost-effective Dependence-
based Dynamic Impact Analysis,” in 22nd IEEE International Con-

ference on Software Analysis, Evolution, and Reengineering (SANER),
2015, pp. 231–240.

[47] A. Podgurski and L. Clarke, “A formal model of program dependences
and its implications for software testing, debugging, and maintenance,”
IEEE Transactions on Softw. Eng., vol. 16, no. 9, pp. 965–979, 1990.

[48] J. Ferrante, K. Ottenstein, and J. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. on Prog. Lang. and

Systems, 9(3):319-349, Jul. 1987.
[49] S. Sinha, M. J. Harrold, and G. Rothermel, “Interprocedural control

dependence,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 2, pp.
209–254, Apr. 2001. [Online]. Available: http://doi.acm.org/10.1145/
367008.367022

[50] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques and Tools (2nd Ed.), Sep. 2006.
[51] D. Binkley, N. Gold, and M. Harman, “An empirical study of static

program slice size,” ACM TOSEM, vol. 16, no. 2, 2007.
[52] S. Sinha and M. J. Harrold, “Analysis and testing of programs with ex-

ception handling constructs,” Software Engineering, IEEE Transactions

on, vol. 26, no. 9, pp. 849–871, 2000.
[53] H. Cai and R. Santelices, “Abstracting program dependencies using the

method dependence graph,” in Software Quality, Reliability and Security

(QRS), 2015 IEEE International Conference on. IEEE, 2015, pp. 49–58.
[54] L. Schrettner, J. Jász, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Impact

analysis in the presence of dependence clusters using static execute after
in webkit,” Journal of Software: Evolution and Process, 2013.

[55] T. Goradia, “Dynamic impact analysis: a cost-effective technique to
enforce error-propagation,” in ISSTA 93, Jul. 1993, pp. 171–181.

[56] H. Cai, R. Santelices, and S. Jiang, “Prioritizing change-impact analysis
via semantic program-dependence quantification,” IEEE Transactions on

Reliability, vol. 65, no. 3, pp. 1114–1132, 2016.
[57] D. Jackson and M. Rinard, “Software analysis: A roadmap,” in Proceed-

ings of the Conference on the Future of Software Engineering. ACM,
2000, pp. 133–145.

[58] R. Santelices, Y. Zhang, H. Cai, and S. Jiang, “DUA-Forensics: A Fine-
Grained Dependence Analysis and Instrumentation Framework Based on
Soot,” in Proceeding of ACM SIGPLAN International Workshop on the

State Of the Art in Java Program Analysis, Jun. 2013, pp. 13–18.
[59] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a Java Bytecode

Optimization Framework,” in Cetus Users and Compiler Infrastructure

Workshop, Oct. 2011.
[60] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B. Dwyer, “A

new foundation for control dependence and slicing for modern program
structures,” ACM Trans. Program. Lang. Syst., vol. 29, no. 5, Aug. 2007.
[Online]. Available: http://doi.acm.org/10.1145/1275497.1275502

[61] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhotak, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Moller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Commun. ACM, vol. 58, pp.
44–46, 2015.

[62] “Soundiness statement generator,” http://soundiness.org/#Generator,
2017, [Online; accessed 01-23-2017].

[63] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria,”
in Proc. of Int’l Conf. on Softw. Eng. (ICSE 94), 1994, pp. 191–200.

[64] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Emp. Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[65] “Java Architecture for Bytecode Analysis,” http://www.cc.gatech.edu/
aristotle/Tools/jaba.html, 2005.

[66] “Apache Commons BCEL,” http://projects.apache.org/projects/
commons bcel.html, 2012.

[67] “Apache PDFBox,” http://pdfbox.apache.org/, 2010.
[68] “Apache OpenNLP,” http://opennlp.apache.org//, 2013.
[69] “The ArgoUML Project,” http://argouml.tigris.org/, 2003.
[70] R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, Probability and

Statistics for Engineers and Scientists. Prentice Hall, Jan. 2011.
[71] F. Mosteller and R. A. Fisher, “Questions and answers,” The American

Statistician, vol. 2, no. 5, pp. 30–31, 1948.
[72] N. Cliff, Ordinal methods for behavioral data analysis. Psychology

Press, 1996.
[73] R. Coe, “It’s the effect size, stupid: What effect size is and why it is

important,” in the Annual Conference of the British Educational Research

Association. Education-line, 2002.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 29

[74] H. Cai and R. Santelices, “TracerJD: Generic Trace-based Dynamic
Dependence Analysis with Fine-grained Logging,” in 22nd IEEE Inter-

national Conference on Software Analysis, Evolution, and Reengineering

(SANER), 2015, 489–493.
[75] Á. Beszédes, C. Faragó, Z. M. Szabo, J. Csirik, and T. Gyimóthy,

“Union slices for program maintenance,” in Software Maintenance, 2002.

Proceedings. International Conference on. IEEE, 2002, pp. 12–21.
[76] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke, “De-

pendence clusters in source code,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 32, no. 1, pp. 1–33, 2009.
[77] J. I. Maletic and M. L. Collard, “Supporting source code difference anal-

ysis,” in 20th IEEE International Conference on Software Maintenance.
IEEE, 2004, pp. 210–219.

[78] H. Cai, R. Santelices, and D. Thain, “DiaPro: Unifying dynamic impact
analyses for improved and variable cost-effectiveness,” ACM Transac-

tions on Software Engineering and Methodology (TOSEM), vol. 25, no. 2,
pp. 1–50, 2016.

[79] L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change
impact analysis: a control call graph based technique,” in Proceedings

of Asia-Pacific Software Engineering Conference, 2005, pp. 1–9.
[80] M. Acharya and B. Robinson, “Practical change impact analysis based

on static program slicing for industrial software systems,” in Proceedings

of the 33rd ACM SIGSOFT International Conference on Software Engi-

neering (ICSE), Software Engineering in Practice Track, May 2011, pp.
746–765.

[81] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change impact analysis
based on a taxonomy of change types,” in 2010 IEEE 34th Annual

Computer Software and Applications Conference (COMPSAC). IEEE,
2010, pp. 373–382.

[82] P. Tonella, “Using a concept lattice of decomposition slices for program
understanding and impact analysis,” Software Engineering, IEEE Trans-

actions on, vol. 29, no. 6, pp. 495–509, 2003.

[83] X. Sun, B. Li, C. Tao, and S. Zhang, “HSM-based change impact anal-
ysis of object-oriented Java programs,” Chinese Journal of Electronics,
vol. 20, no. 2, pp. 247–251, April 2011.

[84] M. Petrenko and V. Rajlich, “Variable granularity for improving precision
of impact analysis,” in Program Comprehension, 2009. ICPC’09. IEEE

17th International Conference on. IEEE, 2009, pp. 10–19.
[85] C. Gupta, Y. Singh, and D. S. Chauhan, “An efficient dynamic impact

analysis using definition and usage information,” International Journal

of Digital Content Technology and its Applications, vol. 3, no. 4, pp.
112–115, 2009.

[86] M. Emami, “A practical interprocedural alias analysis for an optimizing/-
parallelizing c compiler,” Ph.D. dissertation, McGill University, 1993.

[87] M. Kamkar, “An overview and comparative classification of program
slicing techniques,” J. Syst. Softw., vol. 31, no. 3, pp. 197–214, Dec. 1995.
[Online]. Available: http://dx.doi.org/10.1016/0164-1212(94)00099-9

[88] H. Cai, S. Jiang, R. Santelices, Y. jie Zhang, and Y. Zhang, “SENSA: Sen-
sitivity analysis for quantitative change-impact prediction,” in Proceed-

ings of Working Conference on Source Code Analysis and Manipulation,
2014, pp. 165–174.

[89] Z. Yu and V. Rajlich, “Hidden dependencies in program comprehension
and change propagation,” in Program Comprehension, 2001. IWPC 2001.

Proceedings. 9th International Workshop on, 2001, pp. 293–299.
[90] J. P. Loyall and S. A. Mathisen, “Using dependence analysis to support

the software maintenance process,” in Software Maintenance, 1993.

CSM-93, Proceedings., Conference on. IEEE, 1993, pp. 282–291.
[91] K. J. Hoffman, P. Eugster, and S. Jagannathan, “Semantics-aware Trace

Analysis,” in Proc. of ACM SIGPLAN Conference on Programming

Language Design and Implementation, Jun. 2009, pp. 453–464.
[92] H. Cai and R. A. Santelices, “Method-level program dependence ab-

straction and its application to impact analysis,” Journal of Systems and

Software, vol. 122, pp. 311–326, 2016.

