
VulScribeR: Exploring RAG-based Vulnerability Augmentation with
LLMs
SEYED SHAYAN DANESHVAR, University of Manitoba, Canada
YU NONG,Washington State University, USA
XU YANG, University of Manitoba, Canada
SHAOWEI WANG, University of Manitoba, Canada
HAIPENG CAI, University at Buffalo, USA

Detecting vulnerabilities is vital for software security, yet deep learning-based vulnerability detectors (DLVD) face a data
shortage, which limits their effectiveness. Data augmentation can potentially alleviate the data shortage, but augmenting
vulnerable code is challenging and requires a generative solution that maintains vulnerability. Previous works have only
focused on generating samples that contain single statements or specific types of vulnerabilities. Recently, large language
models (LLMs) have been used to solve various code generation and comprehension tasks with inspiring results, especially
when fused with retrieval augmented generation (RAG). Therefore, we propose VulScribeR, a novel LLM-based solution that
leverages carefully curated prompt templates to augment vulnerable datasets. More specifically, we explore three strategies
to augment both single and multi-statement vulnerabilities, with LLMs, namely Mutation, Injection, and Extension. Our
extensive evaluation across four vulnerability datasets and DLVD models, using three LLMs, show that our approach beats
two SOTA methods Vulgen and VGX, and Random Oversampling (ROS) by 27.48%, 27.93%, and 15.41% in f1-score with 5K
generated vulnerable samples on average, and 53.84%, 54.10%, 69.90%, and 40.93% with 15K generated vulnerable samples. Our
approach demonstrates its feasibility for large-scale data augmentation by generating 1K samples at as cheap as US$ 1.88.

CCS Concepts: • Software and its engineering → Software testing and debugging; Maintaining software; Software
reliability; Software safety; Parsers; Software maintenance tools; Source code generation; • Security and privacy→
Vulnerability scanners; Software security engineering.

Additional Key Words and Phrases: Vulnerability Augmentation, Deep Learning, Vulnerability Generation, Program Genera-
tion, Vulnerability Injection

1 INTRODUCTION
Vulnerability detection is a crucial task in software engineering. Recent Deep Learning-based Vulnerability
Detection (DLVD) models [8, 21, 33, 34, 38, 59, 70] have drawn more attention from research and industry
communities due to their promising performance. However, these models suffer greatly from 1) a lack of
sizable datasets and 2) discrepancies between the distribution of training and testing datasets. Data Sampling
techniques [22, 63] can alleviate the former problem to an extent by upsampling vulnerable samples to balance
the dataset and optionally adding more clean samples, which are abundant. However, Data Augmentation
presents a more promising solution as it can help with both problems by generating large diverse datasets.

Authors’ addresses: Seyed Shayan Daneshvar, University of Manitoba, Winnipeg, Canada, daneshvs@myumanitoba.ca; Yu Nong, Washington
State University, Pullman, USA, yu.nong@wsu.edu; Xu Yang, University of Manitoba, Winnipeg, Canada, yangx4@myumanitoba.ca; Shaowei
Wang, University of Manitoba, Winnipeg, Canada, shaowei.wang@umanitoba.ca; Haipeng Cai, University at Buffalo, Buffalo, USA, haipengc@
buffalo.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7392/2025/8-ART
https://doi.org/10.1145/3760775

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0000-0002-3463-7873
https://orcid.org/0000-0002-8598-5181
https://orcid.org/0000-0001-9963-6225
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0002-5224-9970
https://orcid.org/0000-0002-3463-7873
https://orcid.org/0000-0002-8598-5181
https://orcid.org/0000-0001-9963-6225
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0002-5224-9970
https://doi.org/10.1145/3760775
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3760775&domain=pdf&date_stamp=2025-08-18

2 • Daneshvar et al.

For instance, Zhang [69] and Liu et al. [37] focus on generating specific type(s) of bug/vulnerability. Similarly,
Nong et al. proposed VulGen [44] and VGX [42] to mine single-statement vulnerability patterns and inject
them into clean samples to generate vulnerable samples. Alternatively, Daneshvar et al. [12] evaluated mixup-
inspired [68] augmentation techniques for token-based DLVD and proposed conditioned variants for augmenting
vulnerabilities at the representation level. Despite their contributions, these methods have limitations. They
either generate only specific types of vulnerabilities [42, 44, 69] or require sizable datasets to learn models for
generating vulnerable code or pinpointing the location to inject the vulnerability [42–44], or they are limited to
a certain class of DLVD models while yielding minimal performance gains [12], making them impractical for
adoption in a real-world scenario.

It is worth noting that recent works have also explored vulnerability detection using LLMs [14, 16, 36, 38],
which pose as competitors to DLVD models. However, adopting LLM-based vulnerability detection methods
poses various challenges and limitations [2, 64] that make DLVD models still highly relevant: 1) Data Privacy
Concerns: in the industry, there are privacy concerns regarding the use of LLMs for vulnerability detection and
essentially exposing private commercial code to LLMs; 2) Limited Robustness to Domain-specifc Vulnerabilities:
LLMs require robust datasets to be used alongside various techniques, thus they usually struggle with project
and domain-specifc vulnerabilities not present in the training data; 3) High Computational Costs: LLMs are
resource-intensive to run while VulScribeR uses LLMs to augment vulnerable samples once and the trained
DLVD models can be deployed while requiring significantly less compute and memory, making them easier to be
deployed on-premise or in a constrained environment. Consequently, it is important to augment vulnerable data
to improve the performance of DLVD models.

Recently, Large Language Models (LLMs) have demonstrated promising results in code-related tasks, such as
code understanding [31, 62], generation [25], and vulnerability understanding [18, 30]. Intuitively, vulnerable data
augmentation is a task that requires the ability of code comprehension, typically in vulnerability understanding,
and code generation. LLMs’ strong ability for code comprehension and code generation fits this task well.

Therefore, to tackle both of those problems and overcome the limitations of previous works, we propose
VulScribeR, a novel LLM-based solution that leverages carefully curated prompt templates to augment vulnerable
datasets. More specifically, we design three strategies to generate vulnerable new code samples, namelyMutation,
Injection, and Extension.Mutation refers to changing vulnerable code using code transformation that preserves
the code’s semantics and syntactical correctness by prompting LLMs. Injection prompts LLMs to inject vulnerable
segments of the vulnerable samples into a clean sample to create a new vulnerable sample. Extention aims to
extend the vulnerable sample by adding parts of the logic of the clean sample to the vulnerable sample to improve
the diversity of the context where the vulnerability could occur.

To generate realistic code, we employ Retrieval-Augmented Generation (RAG) in Injection and Extension.
More specifically, in Injection, we retrieve vulnerable samples that are similar to the clean sample into which the
vulnerable segment will be injected. Additionally, to enhance the diversity of the generated vulnerable samples,
we employ a clustering process to ensure that the data in all clusters have the choice to be retrieved during RAG.
We employ RAG and clustering in Extension similarly.

Eventually, we employ a fuzzy parser as a filtering mechanism to discard invalid responses such as empty code
samples and those with severe syntactical errors, to reduce noise in the generated samples.

To assess VulScribeR, we generated vulnerable samples for each strategy using two different LLMs, and
evaluated the effectiveness of each data augmentation approach on three SOTA DLVD models (including both
token-based and graph-based models) and three commonly used vulnerable datasets. We conducted various
experiments in the form of the following Research Questions (RQs):

• RQ1: How effective is VulScribeR compared to SOTA approaches?
Results: Both Injection and Extension outperform the baselines and the Mutation by a large margin,

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 3

while Injection provides a slightly higher performance compared to the Extension. For instance,
Injection outperforms NoAug, Vulgen, VGX, and ROS by 30.80%, 27.48%, 27.93%, and 15.41% on average
F1-score.
• RQ2: How does RAG contribute to VulScribeR?
Results: RAG component makes a significant contribution to Injection and Extension strategies,
accounting for 4.99% and 10.77% of their respective improvements.
• RQ3: How does the quantity of the generated samples impact the effectiveness of vulnerability detection

models?
Results: Augmenting more vulnerable data by using Injection helps improve the effectiveness of DLVD
models, while VulGen, VGX, and random over-sampling fail to improve the performance of DLVD models
by augmenting more than 5K vulnerable samples. Our LLM-based approach is more feasible for large-scale
vulnerable data augmentation.
• RQ4: Can VulScribeR be effective on large, heavily-imbalanced datasets with complex real-world vulnerabili-

ties?
Results: on PrimeVul, both Injection and Extension outperform the baselines and Mutation by a
considerable margin, while Extension provides a slightly higher performance compared to Injection.
For instance, Extension outperforms NoAug, Vulgen, VGX, and ROS by 22.80%, 30.83%, 25.24%, and 3.87%
on average F1-score.

In summary, our contributions are as follows:
• To the best of our knowledge, we are the first to explore vulnerability augmentation using LLMs. We

carefully designed three novel prompt templates with different strategies and proposed a comprehensive
pipeline for vulnerability augmentation that can be used for large-scale vulnerability augmentation (that
is as cheap as US$1.88 per 1K samples).
• We performed an extensive evaluation using two different LLMs, three DLVD models, and three datasets,

demonstrating the superiority of VulScribeR compared to SOTA baselines, including the best latest
techniques.
• We made our source code, experimental results, and the augmented datasets publicly available for future

research [1].

2 BACKGROUND & RELATED WORK

2.1 Vulnerability Augmentation
Vulnerable code samples are scarce in practice, and various approaches have been developed [22, 37, 42–44] to
enhance the capability of vulnerability detection models by generating such data and expanding the datasets.
For instance, Nong et al. [43] explored the feasibility of vulnerability injection through a neural code editing
model [65], which is a DL-based model trained to transform clean code into vulnerable code via introducing a set
of predicted changes to the AST of the program. This approach requires high-quality datasets and hence suffers
from a chicken-egg dilemma and has limited use. Ganz et al. [22] present CodeGraphSMOTE, a method to generate
new vulnerable samples by porting SMOTE [9] to the graph domain. They convert code to graphs and use graph
autoencoders to encode the graphs into their latent space. Then, it applies SMOTE (i.e. an interpolation-based
sampling method) on the latent space to generate new vulnerable items.

Nong et al. later proposed VulGen [44], which mines vulnerabilities to collect single-statement vulnerable
patterns. Then uses a modified transformer model to locate where injection should take place. VGX [42] is
an improved version of VulGen where a significantly bigger vulnerability dataset was used to cover a wider
range of single-statement vulnerabilities in the mining phase and the localization model was replaced with a
semantics-aware contextualization transformer to predict the injection contexts better. However, both VulGen

ACM Trans. Softw. Eng. Methodol.

4 • Daneshvar et al.

(I , E)

Vulnerable
Samples

Verifier

LLM

Retry Mechanism

Generator

New
Vulnerable
SamplesPrompt

Inputs Results

Clean
Samples

(M)

Retriever

(I , E)

Indexing

Clustering SearchingSampling

(Clean, Vul.) Formulator

Fig. 1. The components of VulScribeR. All of the proposed strategies share the same generation and verifier components. The
Formulator component of the mutation strategy only requires the vulnerable samples and receives input directly. (M, I, E)
tags distinguish the difference between the input data flows for Mutation, Injection, and Extension strategies, respectively.

and VGX only target single statement vulnerabilities and require a comprehensive pattern mining process. Single
statement vulnerabilities only account for less than 40% of all vulnerabilities in the Bigvul [17] dataset.

2.2 Source Code Augmentation with RAG and LLMs
Leveraging LLMs for source code augmentation is getting popular and it has been used for data augmentation
for Semantic Code Search [60] and Code Generation [10], both of which heavily rely on RAG. Wang et al. [60]
leverages RAG to retrieve similar @D4A~ − 2>34 pairs, then for each pair they instruct ChatGPT [46] to change the
query and code in separate prompts using predefined rules included in the prompts.Then, they filter the augmented
pairs using an encoder model that calculates their similarity score, removing the low-scoring pairs. Chen et
al. [10] utilized Code Search to augment data for Code Generation. Specifically, they retrieve 2>=C4GC − 5 D=2C8>=

pairs, where the context can be either a function header or a comment, to populate prompt templates that
instruct the LLM to generate code based on the given context and retrieved function. Their architecture uses
three components, namely Retriever, Formulator, and Generator. Similar to previous studies, we also employ RAG
to retrieve relevant context to enhance the code generation, while different from them, we focus on augmenting
vulnerabilities and we employ a clustering process to ensure the diversity of generated data.

3 METHODOLOGY
In this section, we elaborate on the details of our methodology, VulScribeR. We propose a RAG-based solution
that leverages carefully curated prompt templates with a lenient filtering mechanism to generate vulnerable code
snippets by utilizing LLMs, which allows us to generate diverse and realistic vulnerable code snippets.

We specifically design three prompting strategies to generate vulnerable code samples for data augmentation.
Consequently, We carefully designed 3 prompt templates for each augmentation strategy, namely Mutation,

Injection, and Extension templates, on which we will elaborate in Section 3.1.
Figure 1 presents the workflow for the three proposed strategies, and all of the three proposed augmentation

strategies can be abstracted into at most four components if applicable as follows:

• Retriever Given input code samples (i.e., vulnerable and clean samples), Retriever is responsible for
seeking suitable vulnerable and non-vulnerable pairs from the database and attaching them in the prompt
to provide context for vulnerable sample generation if applicable. Injection and Extension strategies
employ the Retriever component, while Mutation does not require a Retriever.
• Formulator For different strategies, we employ their corresponding prompt template. The Formulator

instantiates the corresponding prompt template by filling input code samples or the retrieved pairs from
Retriever if applicable. For the Mutation prompt template, the input comes directly from the vulnerable

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 5

samples dataset, while it comes in the form of pairs of clean and vulnerable samples from the Retriever
for other templates.
• Generator In the Generator, we use the instantiated templates to prompt the LLM to generate vulnerable

code samples. If the response does not contain a code snippet or we face an API error, a retry mechanism
is activated to feed the prompt to the LLM up to three times to receive a response that contains a code
snippet; otherwise, we move on to the next prompt.
• Verifier The goal of the Verifier1 is to have control over the quality of the generated code, as there’s

no guarantee that the LLM produces compilable code. We use Joern’s [51], a fuzzy C language parser,
which is based on Antlr’s [49] C Parser, to filter out generated codes that contain severe syntax errors.
The rationale behind using a fuzzy parser instead of a strict parser is that in data augmentation for
various machine learning tasks, the generated data does not need to conform to the original data’s strict
standards [12, 13, 15, 27, 32, 45, 67, 68]. Note that our goal in this study is to augment existing vulnerable
datasets to help models capture the vulnerability patterns and generalize better, rather than generating
high-quality vulnerable samples. As such, completely correct code is not necessary for trainingmodels [61],
and augmented code can improve the performance of the models even when they slightly break the source
code syntax [15, 32]; in fact, data with subtle noise helps with the generalization of models [5, 20, 29]. We
use a parser instead of a compiler as we wish to keep the post-processing lightweight, as compilation
needs significant efforts, such as identifying the dependencies and resolving type errors, which are
unavailable in the original datasets, as they only contain functions. Nevertheless, we acknowledge that
more sophisticated methods can be used for the verification phase, but starting from a simple module (i.e,
a parser) was necessary for evaluating whether using LLMs for vulnerability detection is even feasible. As
a result, the fuzzy C Parser filters out 2%-13% of the generated data.

Note that all of our three strategies share the same Generator and Verifier components, while different
strategies have slightly different designs for Retriever and Formulator components. We discuss the details of
the Retriever and Formulator components for each strategy in Section 3.1.

3.1 Augmentation Strategies
In this section, we break down the details of Mutation, Injection, and Extension strategies. Specifically, we
introduce the prompt template and Retriever for each strategy.

3.1.1 Mutation. The majority of previous works on program augmentation [6, 7, 15, 40, 48, 66], rely on code
transforms that do not change the flow, semantics, and syntactical correctness of the program using program
analysis. Variable name changing, replacing for with while loops and vice versa, and adding dead code are examples
of this. However, program analysis is very time-consuming, and selecting the locations for transformation is
challenging. Previous studies usually select the types and locations of transformation randomly without any
program comprehension [6, 7, 15, 40, 48, 66]. In Mutation strategy, we aim to augment vulnerable code samples
by utilizing the program comprehension capability of LLM to mutate existing vulnerable code samples and let
the LLM choose both the type of transformation and the potential statements to transform. In this way, we get
around the program analysis and rely on LLM’s creativity to generate more suitable and diverse items. We design
the prompt template as shown in Figure 2.

We instruct the LLM to use one of the 18 program transformation rules by following a recent study [66]
and mutating vulnerable code samples while using at least one of the rules. When designing the template, we
prioritize the following points. First, we aim to generate diverse code. For this, we mention all of the rules in a

1Verifier is a carefully chosen generic term; in this work, it is only a fuzzy parser that filters code with severe syntax errors.

ACM Trans. Softw. Eng. Methodol.

6 • Daneshvar et al.

Prompt Template: Mutation

Here’s a code snippet including a function. Except for the important lines mentioned below, mutate the rest of the code snippet so it
is different from the original while keeping the original semantics. To do so you can use one or more of the following rules:

Rules: 1- Replace the local variables’ identifiers with new non-repeated identifiers
2- Replace the for statement with a semantic-equivalent while statement, and vice versa
3- {…remaining_rules_are_hidden_to_save_space}

Code Snippet: {input_vulnerable_sample}

The following lines are important and should be included in the final result, but they can still be changed using only
the first 5 rules, the rest may be changed using any of the rules or can even be removed if they have no relation to these lines:
(Lines are separated via /�/) {input_vulnerable_lines}

Put the generated code inside “‘C “‘.
(Do not include comments)

Fig. 2. The mutation prompt template.

single prompt instead of having a prompt per rule to give the LLM the freedom to choose the more suitable rules
and apply them to the vulnerable code snippet. Second, we seek to keep the existing vulnerability unchanged in
the code. As some of the rules might change the execution trace of the code (e.g. transforming a “switch-case” to
an “if-else” statement) and potentially change the status of the vulnerability, we instruct the LLM to use such rules
only on the lines that are not important. Important lines are essentially the vulnerable lines of the code snippet.
We refer to vulnerable lines as important lines in the prompt to prevent unwanted changes in the resulting code.
However, these lines can still be transformed with the rules (i.e., the first five rules in the template) that do not
change the execution trace without changing the vulnerable state of the code snippet.

As presented in Figure 1, the overall workflow for Mutation is straightforward. To augment # vulnerable
samples, # vulnerable samples are randomly sampled from the input dataset, and then are directly fed into
the Formulator to instantiate the template, as a result, # prompts are instantiated by filling the templates. The
prompts are then fed to the Generator to generate # vulnerable samples. It’s worth noting that on average 3% of
the generated samples will be filtered out in the Verifier component and so if one desires to end up with at least
samples, a higher target should be selected in the generator phase, or else they should redo the generation
after the verification to create more items to reach the target.

3.1.2 Injection. Similar to recent works [42–44], we also focus on injecting vulnerable code segments into a
clean sample as our main strategy, but we aim to cover all types of vulnerabilities and not just single statement
vulnerabilities. More specifically, we instruct the LLM to inject the logic of the vulnerable sample into a clean
sample by prioritizing the injection of vulnerable segments. Using an LLM for injecting the vulnerable segments
into a clean item gives the freedom to LLM to identify the best location. We present our Injection template
prompt as shown in Figure 3.

The templates contain two or three placeholders to fill, namely input_vulnerable_sample, input_clean_sample,
and input_vulnerable_lines. input_clean_sample is the input clean samples where we aim to inject vulnerability
and is not present in theMutation strategy. input_vulnerable_sample is a vulnerable code example to be retrieved
that is similar to the clean input sample. We retrieve similar vulnerable code because we believe that the logic from

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 7

Prompt Template: Injection

Here are two code snippets specified below, modify code snippet 2 in a way that it includes the logic of code snippet 1:

Code Snippet 1: {input_vulnerable_sample}
Code Snippet 2: {input_clean_sample}

Note that the following lines from the first code snippet have a high priority to be in the final modified code:
Lines separated by /�/: {input_vulnerable_lines}

Put the generated code inside “‘C “‘.
(Do not include comments)

Fig. 3. The injection prompt template.

a similar vulnerable code could be integrated into the clean code more easily and naturally. input_vulnerable_lines
provides meta-information indicating the vulnerable lines in the retrieved vulnerable example. We instruct the
LLM to prioritize including these vulnerable lines since our goal is to generate vulnerable code.

To fill the template, we need to construct a dataset of pairs of clean samples and their corresponding retrieved
similar vulnerable code samples (i.e., clean-vul pairs). Note that we choose to provide a clean code sample as the
input and search for similar vulnerable samples, rather than providing a vulnerable code sample and searching for
similar non-vulnerable samples. This strategy is faster and more efficient due to the smaller number of vulnerable
samples, which reduces the dataset size for the retrieval process.

Algorithm 1 outlines our method for constructing a dataset of clean-vul pairs through a retrieval process. Given
a dataset containing both vulnerable samples (+) and clean samples (�), our goal is to retrieve # clean-vul pairs.
A straightforward approach would be to retrieve the most similar vulnerable samples for each clean sample, sort
them in descending order of similarity, and select the top # pairs. However, focusing solely on similarity reduces
the diversity of the retrieved samples, which is counterproductive for data augmentation. Previous studies have
shown that higher diversity in the training dataset improves the generalizability of deep learning models [24, 57].
Therefore, to enhance diversity, we incorporate a clustering phase to group the vulnerable samples into� clusters,
ensuring that samples from all clusters are considered for selection.

First, we cluster the vulnerable samples into � groups (line 2). To do this, we use CodeBERT [19] to embed
each code sample into a vector, specifically utilizing the [CLS] token’s embedding for each sample. We then apply
KMeans for clustering, using cosine similarity to measure the similarity of each pair of samples.

Following clustering, we create an index on each cluster using Lucene to facilitate efficient search (lines 7-10).
For each clean sample, we search for the most similar vulnerable sample within each cluster using the cluster
index, and store the resulting clean-vul pairs for further processing (lines 12-17). To find similar vulnerable
samples for each clean sample, we use the BM-25 algorithm [55], as previous studies have shown that there is no
significant difference between sparse methods like BM-25 and dense methods like CodeBERT when leveraging
RAG [10, 23, 28, 41]. We use Lucene’s implementation of BM-25 for this study.

Once the similarity score is calculated for each pair of clean-vul, we sort the results within each cluster based
on the similarity score (lines 19-21). Then, we iteratively select the top pair from each cluster, ensuring a diverse
yet relevant selection (lines 25-32). We also sort the groups based on size and start from the largest group ensuring
a higher coverage for higher values of � (line 23) by following previous study [39]. We set � = 5 in our study.

ACM Trans. Softw. Eng. Methodol.

8 • Daneshvar et al.

Algorithm 1: (Clean, Vulnerable) Pair Retrieval
Input:+ : Vulnerable samples
Input:� : Clean samples
Input: # : Number of pairs to sample
Input:� : Number of groups into which the vulnerable samples will be clustered
Output: � : Dataset with # Clean-Vulnerable pairs

1 vul_embeddings← compute_codebert_embedding(+)
2 clustered_vuls← KMeans(�,+ , vul_embeddings)
3 indices← []
4 clustered_pairs← [[], [], ..., []] // An array of � arrays
5 � ← []
6 // Index vulnerable samples of each cluster separately
7 for cluster_id = 0 to� − 1 do
8 B40A2ℎ_4=68=4_8=34G ← index(clustered_vuls[cluster_id])
9 indices[cluster_id] .append(B40A2ℎ_4=68=4_8=34G)

10 end for
11 // each clean item is matched with the most similar vulnerable item of each cluster
12 foreach clean ∈ � do
13 for cluster_id = 0 to� − 1 do
14 vul← search(indices[cluster_id], clean)
15 clustered_pairs[cluster_id] .append((clean, vul))
16 end for
17 end foreach
18 // Sort each cluster's pairs based on their similarity score
19 for cluster_id = 0 to� − 1 do
20 B>AC_1~_B2>A4 (clustered_pairs[2;DBC4A_83], ”34B2”)
21 end for
22 // sort the arrays based on their size in descending order
23 clustered_pairs← sort_arrays_by_size(clustered_pairs, ”desc”)
24 8 ← 0 // Iterate between the clustered_pairs and select the best pair each time
25 while size(�) <# do
26 pairs← clustered_pairs[8 mod G]
27 index← 8//G
28 if index < size(pairs) then
29 �.append(pairs[index])
30 end if
31 8 ← 8 + 1
32 end while
33 return �

After the clean-vul pairs are retrieved, those pairs will be fed into Formulator to instantiate the Injection
template and go through the rest of the components in the workflow to generate # vulnerable new samples
similar to Mutation.

3.1.3 Extension. While injecting vulnerable code segments into clean code is the defacto yet effective way of
augmenting vulnerabilities, extending an already vulnerable code snippet by adding additional logic can also
generate a new vulnerable sample, which enriches the context where vulnerable code happens. Adding certain
parts from a clean sample to an already vulnerable sample has a higher chance of keeping the context of the

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 9

original vulnerable code intact compared to injecting vulnerable segments into a clean item. By extending an
already vulnerable sample, only a small section will be irrelevant to the vulnerable part of the code which is the
important part for the models, while injecting vulnerable segments into a clean sample results in a code snippet
where the vulnerable section has little connection to the original context and gives itself away. Therefore, we aim
to explore it as an alternative to vulnerability injection. We refer to this strategy as Extension. We present the
prompt template for Extension in Figure 4.

Prompt Template: Extension

Here are two code snippets 1 and 2, each including a function. Add some parts of the logic of 1 to 2 in a way that the result would
include important lines of 2 with some parts from 1. You can add variables to 2 to produce a more correct code.

Code Snippet 1: {input_clean_sample}
Code Snippet 2: {input_vulnerable_sample}

The following lines from 2 are important and should be included in the final result, the rest may be changed or even
removed if they have no relation to these lines: (Lines are separated via /˷/) {input_vulnerable_lines}

Put the generated code inside “‘C “‘ and note that the final result should be a function that takes all the input args of 2
and more if required.
(Do not include comments)

Fig. 4. The extension prompt template.

Similar to the Injection strategy, we instruct the LLM to add sections of the logic of the clean sample to the
vulnerable sample, while enforcing a no-change policy on the vulnerable lines. The only difference is that rather
than injecting vulnerable samples into clean samples, the Extension strategy does the reverse. Therefore, we can
exactly reuse the workflow of the Injection strategy by modifying the Retriever, where we aim to retrieve similar
clean samples for given vulnerable samples and keep all other components the same. Note that we also tried
instructing the LLM to extend vulnerable samples freely without providing clean samples, which offers the LLMs
more freedom in extending the vulnerable samples. However, it does not work well, and tends to hallucinate in
most cases. Specifically, The LLM usually leaves the vulnerable sample unchanged or behaves like a mutator (e.g.,
mutating variable names or adding dead code). The LLMs perform poorly at generating code when they are not
given clear instructions, hence we designed our strategies in a way that we simply ask the LLM to follow clear
instructions (i.e. mix two code pieces) without mentioning the word vulnerability and without asking the LLM
anything vague or too general. This prevents the LLM from focusing on the vulnerability aspect of the codes and
encourages following the given instructions, rather than hallucinating.

4 EXPERIMENTAL SETTING
In this section, we present our research questions (RQs), the datasets, DLVD models, LLMs, evaluation metrics,
our analysis approach for each of the RQs, and implementation details.

4.1 ResearchQuestions
We evaluate VulScribeR from different aspects to answer the following research questions.

• RQ1: How effective is VulScribeR compared to SOTA approaches?

ACM Trans. Softw. Eng. Methodol.

10 • Daneshvar et al.

• RQ2: How does RAG contribute to VulScribeR?
• RQ3: How does the quantity of the generated samples impact the effectiveness of vulnerability detection

models?
• RQ4: Can VulScribeR be effective on large, heavily-imbalanced datasets with complex real-world vulnerabili-

ties?
In RQ1, we evaluate the effectiveness of VulScribeR for improving the performance of DLVD models by

augmenting vulnerable data, by comparing it to current SOTA approaches. In RQ2, we aim to investigate the
effectiveness of our design for the Retriever component. In RQ3, we explore how the number of generated samples
by our approach and SOTA methods affects the performance of DLVD models. In RQ4, we investigate the
usefulness of VulScribeR on a new large, high-quality, heavily-imbalanced dataset with real-world vulnerabilities.

Table 1. The Studied Datasets

Vul. Samples Clean Samples Total Ratio
Devign 10768 12024 22792 1:1.1
Reveal 2240 20494 22734 1:9.1
BigVulTrain 8783 142125 150908 1:16.2
BigVulValidation 1038 17826 18864 1:17.2
BigVulTest 1079 17785 18864 1:16.5
PrimeVulTrain 4802 169345 174147 1:35.3
PrimeVulValidation 593 23347 23940 1:39.4
PrimeVulTest 549 24232 18864 1:44.1

4.2 Datasets
In this study, we use three different widely used vulnerability detection datasets [8, 21, 42, 44, 63, 70], namely
Devign [70], Reveal [8], and BigVul [17], to evaluate our approach. Additionally, we evaluate our method with
PrimeVul [14], which is a new large dataset with less label noise, in RQ4. Table 1 shows the details of these
datasets. All of these datasets include C/C++ functions gathered from real-world projects. For Devign, Reveal,
BigVul, and the extra clean data [35] used for retaining the ratio, we used the cleaned version from VGX [42],
which had duplicates removed between the datasets. For PrimeVul, we used the SHA2 hash to remove samples
available in Devign and the extra cleans [35] from all three sets of the PrimeVul dataset.

4.2.1 Devign. Following previous studies [42, 44], we use Devign as our primary training dataset as it offers a
better balance between the two categories, namely the vulnerable and clean samples (i.e., non-vulnerable samples)
by following a previous study, VulGen [44]. We also use the clean samples of this dataset as the clean inputs for
the Retriever component.

4.2.2 Bigvul. We use all three sets (i.e., training, validation, and testing set) of BigVul [17] for different purposes.
We use BigVul’s training set as the source for collecting vulnerable samples to feed it to the Retriever as the
vulnerable samples. However, not all of these items can be used as they lack the vulnerable lines metadata that are
required for the Injection and Extension prompt templates. Hence, we only use the 6,610 vulnerable samples
from BigVuls’s training set that include the metadata of vulnerable lines. We use the testing set of BigVul as one
of the testing sets in our study.

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 11

4.2.3 Reveal. Similar to VulGen [44], we use Reveal as another testing set in our study. Reveal is a slightly larger
dataset than BigVul’s testing set and has twice the number of vulnerable samples.

4.2.4 PrimeVul. Unlike VGX [42] and VulGen [44], which use Devign and BigVul datasets, which are considerably
noisy [11, 14, 54] (i.e., some vulnerable samples in these datasets are clean), we also use PrimeVul [14] in RQ4
with the settings of RQ1 with some changes (see more details in Section 5.4). PrimeVul is the largest dataset used
in our study, and one of the most imbalanced datasets available. We use all three sets of Primevul in RQ4, with
the train set replacing Devign as the main training set as well as BigVul’s train set for the retrieved vulnerable
samples, and the validation and testing sets replacing those of BigVul.

4.3 Deep learning-based vulnerability detection (DLVD) Models
There are two families of DLVD models, token-based and graph-based. To represent both families, we select a
SOTA token-based model and two SOTA graph-based models, namely LineVul [21], Devign [70], and Reveal [8]
models. For Devign and Reveal models, we use the same setting as VulGen [44] and train both of these models 5
times with random seed values, test them and report the results with the highest F1-score achieved. For Linevul,
we follow the settings of VGX [42], train for 10 epochs, and select the checkpoint that achieved the highest F1
score on Bigvul’s validation set. We specifically train and test the models with different datasets, following the
settings of VulGen [44] and VGX [42], to ensure there is no information leakage and the results can be trusted to
apply to real-world unseen data.

4.4 Evaluation metrics
DLVD is inherently a classification task as a category is assigned to the code snippet. Hence, to evaluate the
effectiveness of the studied methods, we use the common classification metrics [50], in line with previous related
studies [34, 42, 44, 50, 52, 53, 59, 63], namely Precision, Recall, and F1-Score.

4.5 Base LLMs
In our study, we use two different LLMs to generate vulnerable code, namely ChatGPT3.5 [46], a commercial
general-purpose LLM, and CodeQwen1.5 [58], an open-source LLM specialized for code tasks.

For ChatGPT, We use the “gpt-3.5-turbo”, variant of OpenAI’s ChatGPT [46] which has shown great potential
in previous studies [10, 23, 56, 60]. We set the temperature hyper-parameter to 0.5 since we wish to reduce the
randomness of the response to a degree that ChatGPT would follow our instructions, but would not limit its
freedom of creativity. We left all the other hyper-parameters to their default values. For CodeQwen, we use the
7B variant of CodeQwen1.5 [58], “CodeQwen1.5-7B-Chat”, which is a variant of the general purpose Qwen [4].
CodeQwen1.5, similar to ChatGPT, is a decoder-only transformer-based model with the difference that it was
pre-trained on code data, and supports a larger context length. We did not change any of the hyper-parameters
for this model and used the defaults, except for the number of new tokens that we set to ChatGPT’s default (i.e.
4096 tokens).

Additionally, we use GPT4o-mini [47] for our RQ4, which is as capable as ChatGPT3.5, but more affordable.
Similar to ChatGPT3.5, we set the temperature parameter to 0.5, but we did not change any other hyperparameters.

4.6 Baselines
To compare our studies with previous work and demonstrate the effectiveness of VulScribeR we consider the
following baselines:
• NoAug: This is the most basic of our baselines, where we use the original dataset for training without

introducing any changes.

ACM Trans. Softw. Eng. Methodol.

12 • Daneshvar et al.

• ROS: As Yang et al. [63] show that Random Oversampling (ROS) can have a considerable effect on
improving the performance of DLVD, thus we also ROS as another baseline.
• VulGenVulgen [44] is a SOTA vulnerability generationmethod that mines single-statement vulnerabilities

and uses a transformer model for locating where a vulnerable pattern should be used for injection. We use
this baseline as it can generate a significant amount of data that can be used to improve the performance
of DLVD models.
• VGX: VGX [42] is the improved version of VulGen that uses a larger dataset for mining single-statement

patterns and employs a more sophisticated localization model. Hence, we use VGX as it is potentially a
more powerful method and can generate more diverse high-quality data than VulGen.

4.7 Approach for RQs
4.7.1 Approach of RQ1. To demonstrate the effectiveness of VulScribeR and examine which of the proposed
strategies is superior to others, we first generate 5K vulnerable samples by employing different approaches
(i.e., VulScribeR and baselines). More specifically, to sample 5K items with any of our strategies, we first aim to
generate up to 6K samples with the Generator which are then filtered by the Verifier to yield more than 5K
generated samples, from which we sample randomly to get 5K items. For VGX and VulGen, we use the generated
results in VGX [42] and sample 5K from their results randomly. For ROS, we randomly up-sample 5K samples
from the vulnerable samples in the Devign dataset.

We then train the three DLVD models using the augmented Devign dataset. To augment the Devign dataset,
we add the 5K generated vulnerable samples to it and add the proportional number of clean samples from the
vulnerability benchmark proposed in [35] to maintain the original ratio of the dataset, by following previous
studies [42, 44]. We use BigVul’s testing set and Reveal dataset to evaluate the performance of all of these models.
We assess the performance of a vulnerable data augmentation approach by assessing the performance of a specific
DLVD with the augmented dataset of the specified strategy. Hence, each strategy will be tested in 12 instances
(i.e. 3 DLVD Models * 2 Testing Datasets * 2 LLMs).

4.7.2 Approach of RQ2. In this RQ, we investigate the usefulness of our proposed RAG for the Injection and
Extension strategies. Specifically, we eliminate the Retriever component, and instead, we match the clean and
vulnerable samples randomly to examine the effect of RAG (i.e. Injection w/o Retriever and Extension w/o
Retriever). Moreover, we also conduct an ablation study on the clustering phase of the Retriever component to
examine the effect of diversity on the quality of the generated samples. To do so, we remove the clustering phase
from the Retriever component and search for similar samples for each clean input item within all the vulnerable
items instead of within each cluster. Then we take the top 5 retrieved items to end up with a similar number of
2;40= − ED; pairs. In the sampling phase, we sort all the pairs based on their relevance score and start from the top.
We denote the Injection strategy without clustering phase as Injection w/o Clustering and the Extension
strategy without clustering as Extension w/o Clustering.

Similar to RQ1, we generate 5k vulnerable samples using the studied approaches and compare their effectiveness
by assessing the DLVD models that are trained on the augmented datasets.

4.7.3 Approach of RQ3. In this RQ, we investigate how the number of augmented samples impacts the perfor-
mance of DLVD models, and how much performance can be gained by providing more data.

To see the impact and find out whether VulScribeR can be used for large-scale vulnerability augmentation, we
use the Injection strategy, our best strategy as depicted in Section 5, and generate up to 16.5K samples so that
after the filtering we end up with a set of at least 15K vulnerable samples which is about 40% higher than the
number of vulnerable samples in the original dataset. Then we repeat the experiments for the Injection using

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 13

both LLMs. We sample 10K and 15K vulnerable items while adding the proportional number of clean items to
maintain the ratio. We do the same for VGX [42], VulGen [44], and ROS.

4.7.4 Approach of RQ4. Lastly, we propose a slightly different setting than RQ1 for our approach to work with
heavily imbalanced large datasets, and evaluate the effectiveness of our strategies.
For this RQ, we utilized GPT4-omini and used PrimeVul’s trainset as the primary training set as well as the source
for collecting vulnerable samples that are fed to the Retriever, and used Devign’s cleans as the source of cleans.
Since the PrimeVul dataset does not contain line-level information of vulnerabilities, we collected the vulnerable
lines by computing the diff between paired clean and vulnerable samples and extracting the vulnerable lines.

It is worth mentioning that PrimeVul is a challenging dataset with a highly imbalanced ratio between vul-
nerable and clean samples (1:35) for training DLVD models [14]. To make training possible, we balanced the
dataset by randomly removing clean samples to achieve a ratio of 1:15 (larger ratios made training less effective
on some models). Then we followed the settings of RQ1 for each strategy, and collected 5K new samples. To
conduct a fair comparison between the methods, we used ROS to randomly oversample the original vulnerable
data to get to a balanced dataset (i.e., 1:1 ratio) for training DLVD. Note that we do not change the ratio of the
validation and testing sets.

4.8 Implementation details
We used amachine with four 24GBNvidia RTX 3090s for our experiments.We conducted a total of 781 experiments
for all our RQs, which cost close to 2000 GPU hours solely for training and testing DLVD models (excluding the
time spent generating the samples).

5 RESULTS

5.1 RQ1: How effective is VulScribeR compared to SOTA approaches?

Table 2. Comparison of VulScribeR’s strategies with baselines using ChatGPT and CodeQwen when augmenting 5K samples
across the studied DLVDmodels (i.e., Devign, Reveal, and Linevul). The cells with larger values (better performance) compared
to NoAug are highlighted darker.

ChatGPT 3.5 Turbo CodeQwen1.5-7B-Chat

Strategy Devign Reveal Linevul Devign Reveal Linevul
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

R
ev

ea
l

NoAug 10.59 47.23 17.30 12.90 65.14 21.54 5.57 16.98 8.39 10.59 47.23 17.30 12.90 65.14 21.54 5.57 16.98 8.39
VulGen 10.45 57.90 17.70 12.46 64.60 20.90 5.31 98.09 10.08 10.45 57.90 17.70 12.46 64.60 20.90 5.31 98.09 10.08
VGX 11.02 59.35 18.58 11.69 65.62 19.84 9.51 87.24 11.47 11.02 59.35 18.58 11.69 65.62 19.84 9.51 87.24 11.47
ROS 13.28 39.93 19.93 14.35 54.52 22.72 9.88 22.71 13.77 13.28 39.93 19.93 14.35 54.52 22.72 9.88 22.71 13.77

Mutation 10.98 53.44 18.22 12.23 68.46 20.75 7.80 22.62 11.60 10.96 61.64 18.60 15.01 57.96 23.85 9.48 30.43 14.45
Injection 13.44 53.26 21.46 15.43 61.46 24.66 11.57 26.43 16.10 13.67 54.28 21.83 14.23 64.48 23.32 9.99 25.79 14.40
Extension 14.97 37.21 21.35 14.76 50.00 22.80 18.01 12.81 14.97 15.20 38.18 21.75 14.82 52.71 23.13 20.65 12.62 15.67

B
ig
vu

l

NoAug 6.27 43.24 10.95 7.28 77.27 13.31 7.90 29.19 12.43 6.27 43.24 10.95 7.28 77.27 13.31 7.90 29.19 12.43
VulGen 6.49 62.32 11.75 6.36 70.59 11.66 8.51 22.150 12.29 6.49 62.32 11.75 6.36 70.59 11.66 8.51 22.15 12.29
VGX 6.06 59.30 10.99 6.89 73.29 12.60 5.35 98.82 10.15 6.06 59.30 10.99 6.89 73.29 12.60 5.35 98.82 10.15
ROS 7.54 25.60 11.65 7.96 33.39 12.86 10.91 13.16 11.93 7.54 25.60 11.65 7.96 33.39 12.86 10.91 13.16 11.93

Mutation 7.80 63.91 13.90 7.63 67.73 13.72 6.78 74.14 12.42 7.56 57.23 13.36 9.37 53.26 15.94 6.65 78.31 12.25
Injection 8.79 29.41 13.53 11.64 38.00 17.82 11.43 18.81 14.22 10.33 31.80 15.59 9.91 38.16 15.74 7.85 30.49 12.49
Extension 10.60 17.33 13.16 11.13 34.02 16.77 19.03 11.96 14.68 9.89 31.48 15.05 10.22 33.86 15.70 15.74 11.86 13.53

Extension and Injection outperforms Mutation. Injection slightly outperforms Extension. Table 2
presents the results of VulScribeR and baselines across different experimental instances. As observed, Extension
and Injection beat Mutation in most (9 out of 12) instances. Extension and Injection perform close to each
other, while Injection appears to have the advantage by a tiny margin in most (9 out of 12) settings. In terms of
F1-score, Injection achieves an F1-score of 17.60%, outperforming Extension (F1-score 17.38%) and Mutation

ACM Trans. Softw. Eng. Methodol.

14 • Daneshvar et al.

(F1-score 15.75%) by 0.96% and 12.44% on average, respectively. One possible reason is that Injection and
Extension enrich the context where vulnerabilities could occur while Mutation does not alter the semantics of
vulnerable code. Mutation does not enrich the context of the semantics of the original vulnerable code.

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
Entropy

VulGen
VGX

Mutation ChatGPT
Injection ChatGPT

Extension ChatGPT
Mutation CodeQwen
Injection CodeQwen

Extension CodeQwen

Fig. 5. Entropy of the augmented vulnerable datasets by different approaches. Higher indicates more diversity.

All our proposed LLM-based augmentation strategies outperform the baselines. Typically, Injection
and Extension always outperform baselines in all instances. Injection outperforms NoAug, Vulgen,
VGX, and ROS by 30.80%, 27.48%, 27.93%, and 15.41% on average F1-score, respectively. As shown in
Table 2, Injection and Extension strategies outperform baselines (i.e., NoAug, VulGen, VGX, ROS) in all of the
experimental instances in terms of F1-score. More specifically, Extension beats the baselines: NoAug, Vulgen,
VGX, and ROS by 29.68%, 26.27%, 26.90%, and 14.35% on average F1-score, while the Injection strategy beats the
baselines: NoAug, Vulgen, VGX, and ROS by 30.80%, 27.48%, 27.93%, and 15.41% on average F1-score respectively.

As observed, Mutation beats most baselines by a large margin. However, Mutation does not have a dom-
inating advantage over ROS, and ROS beats Mutation in some (4 out of 12) instances. It is worth noting that
ROS beats the baseline, Vulgen, and VGX by 13.96%, 10.72%, and 11.21% in terms of F1-score on average.
As discussed in Section 2, SOTA approaches like VGX and VulGen only focus on single-statement that limits the
diversity of generated vulnerabilities. However, our approaches do not have this limitation and are able to generate
more diverse vulnerable samples. To examine this, we measure the diversity of the augmented vulnerable samples
by our approaches and VGX and VulGen. By following previous studies, we first apply principle component
analysis (PCA) on CodeBERT’s embeddings of the generated vulnerable samples and reduce the dimension to
three. Next, we calculate the histogram using 10 bins, from which we calculate the entropy of the vectors. Higher
entropy values indicate greater diversity among the vulnerable samples, while lower values suggest a more
concentrated distribution with similar samples. As depicted in Figure 5 the entropy for Mutation, Injection,
and Extension are 4.79, 4.5, and 4.62 for ChatGPT, and 4.66, 4.45, 4.42 for CodeQwen, while for Vulgen and VGX,
it is 4.42 and 4.31 respectively. The results demonstrate that our approaches have a better potential for generating
more diverse samples as we beat them while using only one of the datasets they used for vulnerability mining.
VulScribeR producesmore diverse vulnerable samples compared to SOTA approaches VGX and VulGen.

Lastly, it is worth noting that the results on both of the LLMs perform very close to each other. CodeQwen1.5-7B-
Chat slightly outperforms ChatGPT3.5 Turbo by a tiny margin (i.e. 1.49%) averaged across all three strategies,

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 15

yet one cannot conclude that CodeQwen is a better LLM for vulnerability generation as we did not explore the
hyper-parameters for the optimum setting for each of the LLMs. However, we can conclude that our strategies
work with similar LLM to ChatGPT and CodeQwen (e.g. GPT4 [3] and DeepSeek-Coder [26]) and do not require
an LLM that is trained specifically on code.

Both Injection and Extension outperforms the baselines and theMutation by a large margin, while Injection
provides a slightly higher performance compared to the Extension. For instance, Injection outperforms
NoAug, Vulgen, VGX, and ROS by 30.80%, 27.48%, 27.93%, and 15.41% on average F1-score.

Table 3. Results of Ablation Studies on the Retriever and Clustering for Injection across the studied DLVD models (i.e.,
Devign, Reveal, and Linevul).

ChatGPT 3.5 Turbo CodeQwen1.5-7B-Chat

Strategy Devign Reveal Linevul Devign Reveal Linevul
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

R
ev

ea
l w/o Retriever 13.91 44.33 21.18 14.17 64.29 23.22 8.11 32.15 12.95 11.94 57.12 19.75 12.52 72.74 21.37 13.00 32.06 18.50

w/o Clustering 14.75 36.37 20.99 15.59 59.89 24.74 9.92 24.61 14.14 13.86 43.37 21.01 14.92 52.17 23.20 12.23 24.61 16.34
Injection 13.44 53.26 21.46 15.43 61.46 24.66 11.57 26.43 16.10 13.67 54.28 21.83 14.23 64.48 23.32 9.99 25.79 14.40

B
ig
vu

l w/o Retriever 8.47 36.09 13.72 8.96 65.50 15.76 6.67 66.54 12.12 8.87 53.74 15.23 8.88 64.39 15.60 7.09 61.72 12.72
w/o Clustering 8.53 33.23 13.57 11.19 32.75 16.68 9.56 16.68 12.16 9.77 32.75 15.05 9.49 48.65 15.88 14.61 21.78 17.49

Injection 8.79 29.41 13.53 11.64 38.00 17.82 11.43 18.81 14.22 10.33 31.80 15.59 9.91 38.16 15.74 7.85 30.49 12.49

Table 4. Results of Ablation Studies on the Retriever and Clustering for Extension across the studied DLVD models (i.e.,
Devign, Reveal, and Linevul).

ChatGPT 3.5 Turbo CodeQwen1.5-7B-Chat

Strategy Devign Reveal Linevul Devign Reveal Linevul
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

R
ev

ea
l w/o Retriever 13.96 35.59 20.05 14.00 49.94 21.87 8.63 12.20 12.20 11.55 67.73 19.74 13.21 65.26 21.98 11.52 32.15 16.96

w/o Clustering 15.14 36.01 21.32 14.34 63.63 23.41 7.82 48.38 13.46 15.68 36.85 22.00 14.93 50.84 23.09 9.77 21.34 13.40
Extention 14.97 37.21 21.35 14.76 50.00 22.80 18.01 12.81 14.97 15.20 38.18 21.75 14.82 52.71 23.13 20.65 12.62 15.67

B
ig
vu

l w/o Retriever 7.88 15.42 10.43 8.62 25.12 12.83 7.13 72.75 12.99 7.66 67.57 13.77 8.91 62.48 15.60 6.89 67.66 12.50
w/o Clustering 10.78 33.70 16.33 11.13 22.58 14.91 8.20 17.98 11.26 12.52 30.21 17.70 9.83 39.75 15.76 9.38 26.41 13.85

Extention 10.60 17.33 13.16 11.13 34.02 16.77 19.03 11.96 14.68 9.89 31.48 15.05 10.22 33.86 15.70 15.74 11.86 13.53

5.2 RQ2: How does RAG contribute to VulScribeR?
For Injection, the clustering phase of the Retriever adds 0.49% to the F1-score averaged across all
settings compared to w/o clustering, and w/o clustering improves the average f1-score by 6.34% com-
pared to w/o Retriever. As shown in Table 3, both similarity and diversity affect the effectiveness of the models
positively with similarity having a more significant impact. When comparing Injection with Injection w/o
Retriever, we observe that the complete Retriever component improves the effectiveness of the Injection by
4.99% on the average F1-score and in 8 out of 12 instances. Specifically, when we compare Injection with w/o
the clustering phase, we see that the clustering phase enhances the effectiveness of RAG by 0.49% on the average
F1-score and in 8 out of 12 instances, and by comparing w/o clustering with w/o Retriever, we see that RAG
enhances the effectiveness of RAG by 6.34% on the average F1-score and in 8 out of 12 instances.

For Extension strategy, the clustering phase of The Retriever provides 2.54% of improvement to
the F1-score averaged across all settings compared to w/o clustering, and w/o clustering improves the
average f1-score by 5.61% compared to w/o Retriever. As shown in Table 4, both similarity and diversity
affect the effectiveness of the models positively with similarity having a more significant impact. Overall, our
complete Retriever module improves the effectiveness of the Extension strategy by 10.77% on the average

ACM Trans. Softw. Eng. Methodol.

16 • Daneshvar et al.

F1-score and beats the other settings in 6 out of 12 settings. Specifically, by comparing Extension with w/o
clustering we see that the clustering phase enhances the effectiveness of RAG by by 2.54% on the average F1-score
and in 7 out of 12 instances, and by comparing w/o clustering with w/o Retriever, we see that RAG enhances the
effectiveness of RAG by by 5.61% on the average F1-score and in 10 out of 12 instances.

Retriever component makes significant contribution for Injection and Extension. Extension gains more
than twice the increase from the Retriever component, implying that it is more sensitive to both the similarity
and diversity of the retrieved pairs.

5.3 RQ3: How does the quantity of the generated samples impact the effectiveness of vulnerability
detection models?

Table 5. Impact of Generated Samples on Improving DLVD models’ Performance at 5K, 10K, and 15K

ChatGPT 3.5 Turbo CodeQwen1.5-7B-Chat

Strategy Devign Reveal Linevul Devign Reveal Linevul
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

R
ev

ea
l

NoAug 10.59 47.23 17.30 12.90 65.14 21.54 5.57 16.98 8.39 10.59 47.23 17.30 12.90 65.14 21.54 5.57 16.98 8.39
VulGen 5K 10.45 57.90 17.70 12.46 64.60 20.90 5.31 98.09 10.08 10.45 57.90 17.70 12.46 64.60 20.90 5.31 98.09 10.08
VulGen 10K 10.21 46.20 16.72 11.31 66.77 19.34 5.37 100.00 10.20 10.21 46.20 16.72 11.31 66.77 19.34 5.37 100.00 10.20
Vulgen 15K 10.30 55.25 17.37 11.23 75.51 19.55 5.35 99.09 10.15 10.30 55.25 17.37 11.23 75.51 19.55 5.35 99.09 10.15
VGX 5K 11.02 59.35 18.58 11.69 65.62 19.84 9.51 87.24 11.47 11.02 59.35 18.58 11.69 65.62 19.84 9.51 87.24 11.47
VGX 10K 10.31 57.90 17.50 11.53 56.45 19.15 5.24 95.91 9.93 10.31 57.90 17.50 11.53 56.45 19.15 5.24 95.91 9.93
VGX 15K 9.01 34.68 14.30 11.95 63.75 20.13 5.38 99.91 10.21 9.01 34.68 14.30 11.95 63.75 20.13 5.38 99.91 10.21
ROS 5K 13.28 39.93 19.93 14.35 54.52 22.72 9.88 22.71 13.77 13.28 39.93 19.93 14.35 54.52 22.72 9.88 22.71 13.77
ROS 10K 12.92 51.81 20.68 14.00 46.20 21.49 9.39 30.06 14.31 12.92 51.81 20.68 14.00 46.20 21.49 9.39 30.06 14.31
ROS 15K 13.25 47.29 20.71 13.77 43.85 20.96 8.18 19.71 11.56 13.25 47.29 20.71 13.77 43.85 20.96 8.18 19.71 11.56

Injection 5K 13.44 53.26 21.46 15.43 61.46 24.66 11.57 26.43 16.10 13.67 54.28 21.83 14.23 64.48 23.32 9.99 25.79 14.40
Injection 10K 17.39 42.70 24.71 16.37 63.21 26.00 11.19 31.97 16.57 15.87 48.31 23.90 14.96 63.03 24.18 15.05 19.53 17.00
Injection 15K 16.94 52.65 25.63 17.00 57.36 26.22 13.02 36.61 19.21 15.60 52.53 24.06 16.27 57.18 25.33 16.01 23.89 19.17

B
ig
vu

l

NoAug 6.27 43.24 10.95 7.28 77.27 13.31 7.90 29.19 12.43 6.27 43.24 10.95 7.28 77.27 13.31 7.90 29.19 12.43
VulGen 5K 6.49 62.32 11.75 6.36 70.59 11.66 8.51 22.150 12.29 6.49 62.32 11.75 6.36 70.59 11.66 8.51 22.150 12.29
VulGen 10K 6.59 52.62 11.72 6.21 76.79 11.50 12.04 12.70 12.36 6.59 52.62 11.72 6.21 76.79 11.50 12.04 12.70 12.36
Vulgen 15K 6.35 62.96 11.54 6.48 69.95 11.86 8.32 14.74 10.64 6.35 62.96 11.54 6.48 69.95 11.86 8.32 14.74 10.64
VGX 5K 6.06 59.30 10.99 6.89 73.29 12.60 5.35 98.82 10.15 6.06 59.30 10.99 6.89 73.29 12.60 5.35 98.82 10.15
VGX 10K 5.84 61.21 10.65 6.36 63.28 11.56 7.14 10.10 8.37 5.84 61.21 10.65 6.36 63.28 11.56 7.14 10.10 8.37
VGX 15K 6.11 50.40 10.90 6.42 66.14 11.70 9.36 6.49 7.66 6.11 50.40 10.90 6.42 66.14 11.70 9.36 6.49 7.66
ROS 5K 7.54 25.60 11.65 7.96 33.39 12.86 10.91 13.16 11.93 7.54 25.60 11.65 7.96 33.39 12.86 10.91 13.16 11.93
ROS 10K 7.64 32.43 12.37 9.32 33.55 14.59 8.13 18.44 11.28 7.64 32.43 12.37 9.32 33.55 14.59 8.13 18.44 11.28
ROS 15K 9.31 21.14 12.93 8.22 26.87 12.59 8.77 13.07 10.49 9.31 21.14 12.93 8.22 26.87 12.59 8.77 13.07 10.49

Injection 5K 8.79 29.41 13.53 11.64 38.00 17.82 11.43 18.81 14.22 10.33 31.80 15.59 9.91 38.16 15.74 7.85 30.49 12.49
Injection 10K 13.94 17.60 17.60 12.09 43.56 18.92 8.84 33.09 13.96 11.49 30.37 16.67 11.54 41.81 18.08 9.86 19.83 13.17
Injection 15K 12.70 34.66 18.59 11.92 41.81 18.55 11.78 30.15 16.94 12.12 33.86 17.85 11.54 41.81 18.09 9.74 29.19 14.60

Augmenting more vulnerable data by using Injection helps improve the effectiveness of DLVD
models. Table 5 and Figure 6 present the performance (in terms of F-1 score) of DLVD models when being trained
on a dataset that is augmented with different vulnerable samples generated by Injection and other baselines (e.g.,
VulGen, VGX, ROS, and NoAug). As we can see, The performance of DLVD models increases as more augmented
vulnerable samples are added to the training data in almost all experimental instances (11 out of 12), which
indicates that adding more data augmented by Injection provides more useful information for the model to
capture vulnerabilities.

In general, VulGen, VGX, and ROS fail to improve the performance of DLVD models by augmenting
more vulnerable samples. When looking at the baselines in Figures 6, we notice that Vulgen, VGX, and
ROS struggle with improving the performance of DLVD models by augmenting more data. For instance, if we
compare the performance of DLVD models when augmenting 5K and 15K vulnerable samples, VGX, VulGen,
and ROS decrease the performance in 5 out of 6, 4 out of 6, and 4 out of 6 instances, respectively (Note that
the baselines are not dependent on the LLMs, but they are shown for easier comparison). This finding aligns
with the results reported in Yang et al. [63], indicating that excessive random over-sampling does not improve

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 17

5K 10K 15K
Augmentation Amount(K)

14.0

16.0

18.0

20.0

22.0

24.0

26.0

F1
 S

co
re

ChatGPT 3.5 Turbo
Reveal dataset - Devign model

5K 10K 15K
Augmentation Amount(K)

19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0

F1
 S

co
re

ChatGPT 3.5 Turbo
Reveal dataset - Reveal model

5K 10K 15K
Augmentation Amount(K)

8.0

10.0

12.0

14.0

16.0

18.0

F1
 S

co
re

ChatGPT 3.5 Turbo
Reveal dataset - Linevul Model

5K 10K 15K
Augmentation Amount(K)

14.0

16.0

18.0

20.0

22.0

24.0

F1
 S

co
re

CodeQwen1.5-7B-Chat
Reveal dataset - Devign model

5K 10K 15K
Augmentation Amount(K)

19.0
20.0
21.0
22.0
23.0
24.0
25.0

F1
 S

co
re

CodeQwen1.5-7B-Chat
Reveal dataset - Reveal model

5K 10K 15K
Augmentation Amount(K)

8.0

10.0

12.0

14.0

16.0

18.0

F1
 S

co
re

CodeQwen1.5-7B-Chat
Reveal dataset - Linevul Model

5K 10K 15K
Augmentation Amount(K)

11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0

F1
 S

co
re

ChatGPT 3.5 Turbo
Bigvul dataset - Devign model

5K 10K 15K
Augmentation Amount(K)

12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0

F1
 S

co
re

ChatGPT 3.5 Turbo
Bigvul dataset - Reveal model

5K 10K 15K
Augmentation Amount(K)

8.0

10.0

12.0

14.0

16.0

F1
 S

co
re

ChatGPT 3.5 Turbo
Bigvul dataset - Linevul Model

5K 10K 15K
Augmentation Amount(K)

11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0

F1
 S

co
re

CodeQwen1.5-7B-Chat
Bigvul dataset - Devign model

5K 10K 15K
Augmentation Amount(K)

12.0
13.0
14.0
15.0
16.0
17.0
18.0

F1
 S

co
re

CodeQwen1.5-7B-Chat
Bigvul dataset - Reveal model

5K 10K 15K
Augmentation Amount(K)

8.0
9.0

10.0
11.0
12.0
13.0
14.0

F1
 S

co
re

CodeQwen1.5-7B-Chat
Bigvul dataset - Linevul Model

NoAug
VulGen
VGX
ROS
Injection

Fig. 6. The impact of the number of augmented samples on the effectiveness of DLVD models across the studied datasets
and LLMs across the studied DLVD models (i.e., Devign, Reveal, and Linevul).

the effectiveness of DLVD models and can diminish their performance. One possible explanation is that since
random over-sampling does not introduce any new information, and excessive over-sampling probably leads to
overfitting of the oversampled data in the models. For VGX and VulGen, this is probably due to the nature of
their method, which solely focuses on single-statement vulnerabilities. This heavily limits the usefulness of such
methods and makes them unfeasible to be used for large-scale data augmentation.

In summary, Injection outperforms all baselines (i.e., VulGen, VGX, and ROS) in all scales, typically when
used for large-scale data augmentation. The studied baselines fail to improve the effectiveness of DLVD models
by augmenting more than 5K samples. Our LLM-based approach is more feasible for large-scale vulnerable data
augmentation.

Augmenting more vulnerable data by using Injection helps improve the effectiveness of DLVD models,
while VulGen, VGX, and ROS fail to improve the performance of DLVD models by augmenting more than
5K vulnerable samples. In contrast, our LLM-based approach is more feasible for large-scall vulnerable data
augmentation. Explicitly, Injection at 15K beats NoAug, Vulgen at 15K, VGX at 15K, and ROS at 15K by 53.84%,
54.10%, 69.90%, and 40.93%.

5.4 RQ4: Can VulScribeR be effective on large, heavily-imbalanced datasets with complex real-world
vulnerabilities?

Extension and Injection outperform Mutation. Extension slightly outperforms Injection. Mutation
continues to struggle against ROS. Table 6 presents the results of VulScribeR and baselines across different
DLVDs. As observed, Extension and Injection beat Mutation in all cases. Extension and Injection perform
close to each other, while Extension appears to be more effective. In terms of F1-score, Extension achieves an
F1-score of 16.89%, outperforming Injection (F1-score 16.41%) and Mutation (F1-score 15.24%) by 2.88% and
10.78% on average, respectively. One possible reason is that the Extension strategy creates samples that are
closer to the decision boundaries compared to Injection, with the reason lying in the source of the vulnerable
samples and cleans. In RQ1 5.1, for the Injection, most of the context, being the clean sections, comes from the
same dataset, while in this RQ, this is true for Extension.

Extension appears to be useful and always outperforms baselines in all instances, with Injection

ACM Trans. Softw. Eng. Methodol.

18 • Daneshvar et al.

Table 6. Comparison of VulScribeR’s strategies on the PrimeVul dataset with baselines using GPT4o-mini when augmenting
5K Samples across the studied DLVDmodels (i.e., Devign, Reveal, and Linevul). The cells with larger values (better performance)
compared to NoAug are highlighted darker.

Strategy Devign Reveal Linevul
P R F1 P R F1 P R F1

NoAug 25.93 5.12 8.55 7.35 44.63 12.62 18.31 31.15 23.06
VulGen 4.94 59.76 9.11 5.29 59.27 9.72 19.39 28.23 22.99
VGX 5.61 53.66 10.15 5.44 50.73 9.82 19.77 27.69 23.06
ROS 7.45 52.44 13.04 7.58 43.66 13.07 18.48 30.05 22.89

Mutation 7.17 52.93 12.63 7.81 43.66 13.25 15.71 26.96 19.85
Injection 7.57 55.37 13.31 7.81 49.76 13.51 17.29 31.88 22.42
Extension 7.61 53.41 13.33 8.51 41.22 14.11 18.51 31.15 23.22

performing close to Extension and outperforming all baselines with two of the three DLVDs. Ex-
tension outperforms NoAug, Vulgen, VGX, and ROS by 14.54%, 21.14%, 17.73%, and 3.39% on average
F1-score, respectively. As shown in Table 6, Extension strategy outperforms baselines (i.e., NoAug, VulGen,
VGX, ROS) in all of the experimental instances in terms of F1-score. The Injection fails to increase the perfor-
mance for LineVul compared to the baselines. More specifically, Extension beats the baselines: NoAug, Vulgen,
VGX, and ROS by 14.54%, 21.14%, 17.73%, and 3.39% on average F1-score, while the Injection strategy beats the
baselines: NoAug, Vulgen, VGX, and ROS by 11.33%, 17.74%, 14.43%, and 0.49% on average F1-score, respectively.

As observed, Mutation only beats all the baselines with Reveal. Similar to RQ1 5.1, Mutation does not have a
dominating advantage over ROS, and ROS beats Mutation in the two other settings. ROS beats the baseline,
Vulgen, VGX, and Mutation by 10.78%, 17.17%, 13.97%, and 7.15% in terms of F1-score on average.

Extension outperforms the baselines and theMutation by a large margin, while Injection provides a slightly
lower performance compared to the Extension, but beats all the baselines with two DLVDs. Extension
outperforms NoAug, Vulgen, VGX, and ROS by 14.54%, 21.14%, 17.73%, and 3.39% on average F1-score.

6 DISCUSSION

Table 7. Impact of mixing our strategies’ generated samples on Improving DLVD models’ performance with a total of
5K augmented samples. Each involved strategy provides an equal number of samples. The cells with larger values (better
performance) compared to NoAug are highlighted darker.

ChatGPT 3.5 Turbo CodeQwen1.5-7B-Chat

Strategy Devign Reveal Linevul Devign Reveal Linevul
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

R
ev

ea
l

Mutation 10.98 53.44 18.22 12.23 68.46 20.75 7.80 22.62 11.60 10.96 61.64 18.60 15.01 57.96 23.85 9.48 30.43 14.45
Injection 13.44 53.26 21.46 15.43 61.46 24.66 11.57 26.43 16.10 13.67 54.28 21.83 14.23 64.48 23.32 9.99 25.79 14.40
Extension 14.97 37.21 21.35 14.76 50.00 22.80 18.01 12.81 14.97 15.20 38.18 21.75 14.82 52.71 23.13 20.65 12.62 15.67

M + I 11.89 66.41 20.17 13.74 70.39 22.99 11.46 47.14 18.43 11.78 58.02 19.58 13.14 72.74 22.25 9.35 51.41 15.82
M + E 11.23 58.02 18.82 14.14 59.89 22.87 9.45 43.23 15.50 11.92 55.19 19.60 13.20 65.98 22.00 7.85 42.51 13.26
I + E 13.39 47.71 20.91 15.26 59.71 24.31 22.07 9.01 12.80 14.15 46.98 21.75 14.92 62.24 24.06 10.34 18.80 13.35

M + I + E 11.12 46.98 17.98 9.67 53.26 16.36 10.55 47.14 17.25 11.07 57.60 18.57 13.34 75.09 22.65 40.33 9.47 15.34

B
ig
vu

l

Mutation 7.80 63.91 13.90 7.63 67.73 13.72 6.78 74.14 12.42 7.56 57.23 13.36 9.37 53.26 15.94 6.65 78.31 12.25
Injection 8.79 29.41 13.53 11.64 38.00 17.82 11.43 18.81 14.22 10.33 31.80 15.59 9.91 38.16 15.74 7.85 30.49 12.49
Extension 10.60 17.33 13.16 11.13 34.02 16.77 19.03 11.96 14.68 9.89 31.48 15.05 10.22 33.86 15.70 15.74 11.86 13.53

M + I 7.28 66.93 13.14 8.79 66.45 15.53 7.41 72.75 13.45 7.30 58.82 12.99 8.31 64.71 14.72 7.03 83.60 12.97
M + E 7.24 61.21 12.94 8.68 57.55 15.09 6.94 81.65 12.78 7.45 61.84 13.30 8.27 58.51 14.49 6.64 82.76 12.30
I + E 9.41 35.29 16.46 10.83 39.90 17.04 8.53 41.80 14.16 11.11 31.96 16.49 10.42 38.47 16.40 7.46 34.01 12.24

M + I + E 7.14 42.77 15.20 9.25 53.42 15.77 7.38 79.61 13.50 7.45 54.85 13.12 9.23 52.78 15.71 6.83 78.59 12.57

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 19

Table 8. Impact of using random oversampling for clean samples instead of adding additional clean samples on our strategies
and the baselines. Starred rows indicate using oversampled cleans. Bold F1-scores show the best performance between the
two settings for each augmentation strategy.

ChatGPT 3.5 Turbo CodeQwen1.5-7B-Chat

Strategy Devign Reveal Linevul Devign Reveal Linevul
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

R
ev

ea
l

ROS 13.28 39.93 19.93 14.35 54.52 22.72 9.88 22.71 13.77 13.28 39.93 19.93 14.35 54.52 22.72 9.88 22.71 13.77
VulGen 10.45 57.90 17.70 12.46 64.60 20.90 5.31 98.09 10.08 10.45 57.90 17.70 12.46 64.60 20.90 5.31 98.09 10.08
VulGen* 8.56 64.29 15.10 5.64 78.38 10.52 5.37 100.00 10.20 8.56 64.29 15.10 5.64 78.38 10.52 5.37 100.00 10.20
VGX 11.02 59.35 18.58 11.69 65.62 19.84 9.51 87.24 11.47 11.02 59.35 18.58 11.69 65.62 19.84 9.51 87.24 11.47
VGX* 8.86 65.98 15.62 5.74 74.40 10.66 5.38 99.91 10.21 8.86 65.98 15.62 5.74 74.40 10.66 5.38 99.91 10.21

Mutation 10.98 53.44 18.22 12.23 68.46 20.75 7.80 22.62 11.60 10.96 61.64 18.60 15.01 57.96 23.85 9.48 30.43 14.45
Mutation* 9.05 59.95 15.72 9.90 73.34 17.45 4.66 44.77 8.44 9.07 66.77 15.98 6.25 86.17 11.65 5.66 70.12 10.47
Injection 13.44 53.26 21.46 15.43 61.46 24.66 11.57 26.43 16.10 13.67 54.28 21.83 14.23 64.48 23.32 9.99 25.79 14.40
Injection* 11.16 63.21 18.97 13.07 69.24 21.99 11.69 27.25 16.36 10.33 48.01 17.00 7.90 65.66 14.10 11.35 22.34 15.05
Extension 14.97 37.21 21.35 14.76 50.00 22.80 18.01 12.81 14.97 15.20 38.18 21.75 14.82 52.71 23.13 20.65 12.62 15.67
Extension* 10.51 56.82 17.73 12.52 54.46 20.36 12.33 30.43 17.55 10.24 46.62 16.80 7.23 53.74 12.74 6.83 60.58 12.28

B
ig
vu

l

ROS 7.54 25.60 11.65 7.96 33.39 12.86 10.91 13.16 11.93 7.54 25.60 11.65 7.96 33.39 12.86 10.91 13.16 11.93
VulGen 6.49 62.32 11.75 6.36 70.59 11.66 8.51 22.150 12.29 6.49 62.32 11.75 6.36 70.59 11.66 8.51 22.15 12.29
VulGen* 5.72 72.02 10.60 5.77 85.21 10.81 6.76 50.51 11.92 5.72 72.02 10.60 5.77 85.21 10.81 6.76 50.51 11.92
VGX 6.06 59.30 10.99 6.89 73.29 12.60 5.35 98.82 10.15 6.06 59.30 10.99 6.89 73.29 12.60 5.35 98.82 10.15
VGX* 5.82 69.16 10.74 5.75 77.27 10.71 6.98 49.03 12.22 5.82 69.16 10.74 5.75 77.27 10.71 6.98 49.03 12.22

Mutation 7.80 63.91 13.90 7.63 67.73 13.72 6.78 74.14 12.42 7.56 57.23 13.36 9.37 53.26 15.94 6.65 78.31 12.25
Mutation* 6.33 70.75 11.63 6.39 78.22 11.82 5.96 83.50 11.12 6.20 82.51 11.53 6.15 85.69 11.48 6.08 92.22 11.40
Injection 8.79 29.41 13.53 11.64 38.00 17.82 11.43 18.81 14.22 10.33 31.80 15.59 9.91 38.16 15.74 7.85 30.49 12.49
Injection* 7.24 54.21 12.77 8.86 59.46 15.42 12.82 23.45 16.57 7.46 40.38 12.59 7.90 71.54 14.23 8.61 24.37 12.72
Extension 10.60 17.33 13.16 11.13 34.02 16.77 19.03 11.96 14.68 9.89 31.48 15.05 10.22 33.86 15.70 15.74 11.86 13.53
Extension* 7.76 47.85 13.35 7.58 51.67 13.22 11.75 24.28 15.84 8.48 41.18 14.06 6.86 52.15 12.12 6.67 71.73 12.21

6.1 Ensemble of Strategies
Since our strategies appeared to be useful, we decided to investigate whether a mix of strategies would perform
better than using a single strategy. For such a comparison, we used the results of RQ1, and added three settings
for using two strategies, with each contributing 2.5K samples, amounting to the same 5K extra samples, and an
all-strategy setting where one third of the samples came from each of the strategies. Table 7 shows the result of
this experiment. As observed, the combination does not always outperform the single strategy. In half (6 out of
12) of the settings, a mixed strategy works worse than a single strategy. Specifically, a mix of all three (M+I+E)
and a combination of Mutation and Extension always fail to beat all of the single strategies. The only promising
combination is the mix of Injection and Extension (I+E), which achieves the best performance in 4 out of 12
settings.

The best ensemble setting appears to be a combination of Injection and Extension settings, yet this setting
appears to be less useful than only using Injection. Yet, since Extension appears to beat Injection in some
settings (e.g. RQ4), we recommend using Injection and Extension strategies and a mix of these to get to achieve
a higher performance.

6.2 Impact Analysis of the Extra Clean Samples
Following VGX and Vulgen, a proportional number of extra clean samples are added to the dataset to keep
the ratio of vulnerable and clean samples in RQs 1-3. To examine the effect of the extra clean samples, we did
an additional study alongside the results of RQ1, where instead of adding extra clean samples, we randomly
oversampled the original clean samples to keep the ratio. Aside from our strategies, we also included VGX and
Vulgen to see if we get a different result. As observed in Table 8, VGX and Vulgen get better performance in
10 out of 12 settings, while this is in all cases of Mutation, and 9 out of 12 settings for Injection and Extension.
Specifically, Vulgen, VGX, Mutation, Injection, and Extension gain 22.75%, 20.07%, 28.4%, 12.76%, and 18.48% on
average F1-score, respectively. Hence, Mutation appears to be the most dependent on the addition of extra clean

ACM Trans. Softw. Eng. Methodol.

20 • Daneshvar et al.

samples, and Injection appears to be the least dependent method.

Compared to ROS (of RQ1), where only extra clean samples are added and vulnerable samples are oversampled,
Vulgen, VGX, and Mutation drop 21.46%, 20.42%, and 17.21%, on average F1-score, respectively. Injection and
Extension gain an improvement of 5.12% and 0.27% in terms of the average F1-score. This shows that the effect
of vulnerability augmentation is more important for achieving a higher performance than adding extra clean
samples for Injection and Extension, while the extra clean samples play a bigger role for Vulgen, VGX, and
Mutation strategies.

6.3 Cost Analysis
Based on our experiments, generating every 1,000 vulnerable samples with one prompt at a time and no concur-
rency, takes 3.4 hours and costs about $1.88with GPT3.5-Turbo and about 9 GPU hourswith CodeQwen1.5-7B-Chat
on two RTX3090s. This shows the feasibility of VulScribeR as it takes less than $19 with ChatGPT to augment a
dataset like Devign to twice its size and improves the performance of a DLVD model up to 128.95%.

6.4 Quality Analysis of Augmented Vulnerable Samples
We focus on data augmentation and not generation in this study, and introducing noise is inevitable. This is
common in the application of other data augmentation techniques in the fields of natural language processing and
computer vision [13, 27, 45, 67, 68]. It is crucial to realize that data augmentation is used as a means to improve
the generalizability of the models. A reasonable amount of noise can help with the regularization of the model.
Otherwise, performance degradation will be seen. In addition, based on the results of recent studies [15, 32]
show that code data augmentation techniques that slightly break the syntax can help the training of the models.
However, we recognize the importance of evaluating the quality of augmented vulnerable samples to provide
practical insights for practitioners when using our approach.
To this end, we conducted a manual assessment of the generated code. Specifically, we randomly selected 50
samples per augmentation strategy (i.e., Mutation, Injection, and Extension), produced using ChatGPT-3.5 in
RQ1 (150 samples in total). We manually inspected each sample to determine whether the LLM followed our
instructions and successfully generated a vulnerable example that preserved the intended vulnerability pattern.
Our analysis revealed that 72%, 82%, and 90% of the samples generated via Mutation, Injection, and Extension,
respectively, were correctly implemented and truly vulnerable. These results indicate an acceptable level of quality.
The higher success rates for Injection and Extension may help explain their superior performance compared to
Mutation. This also suggests that LLMs may find it easier to perform injection and extension tasks than mutation.
We also study the failure cases, and we observe certain patterns. For instance, the common case for the Mutation
was changing the code in a way different from the methods mentioned, such that the output is significantly
different from the instruction. For Injection, wrong injections or half-complete injections were more common.
For Extension, this had to do with the removal of the input code instead of extending it.

6.5 Threats to Validity
Internal Validity A common threat to the validity of our study is our hyperparameter settings for DLVD models
and LLMs. For DLVD, hyperparameter tuning is extremely expensive given the scale of our study; as such,
we followed the setting of previous studies [42, 44]. In addition, when comparing different data augmentation
approaches, we used the same settings for DLVD models, which ensures our comparisons are fair. For LLMs, we
mostly used the defaults, and only set the number of new tokens to ChatGPT’s maximum, and lowered ChatGPT’s
temperature to 0.5. Better results might be achievable by fine-tuning these hyperparameters.

ACM Trans. Softw. Eng. Methodol.

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 21

Label noise in the datasets can pose another threat to the validity of our experiments. Particularly, Devign
and BigVul, even though they are commonly used in previous studies, are known to be noisy datasets [11, 14, 54],
meaning that a considerable number of vulnerable samples are incorrectly labeled, which can affect the results of
our experiments. To ensure these results can be trusted, we expanded our study by dedicating an additional RQ
to using PrimeVul, which is a more recent dataset with considerably less label noise, and showed that our results
still hold.

Another threat is that LLMs might not always follow the prompts as instructed and could produce halluci-
nations. To alleviate this threat, we add a verifier component to filter out low-quality code, and we use a retry
mechanism that prompts the LLM up to three times in case of errors (including an empty code response). In
addition, we study the quality of augmented vulnerable samples, and found that the quality is at an acceptable level.
We encourage future research to integrate more advanced approaches to reduce hallucinations. More importantly,
our goal in this study is to augment existing vulnerable datasets to help models capture the vulnerability patterns
and generalize better, rather than generating high-quality vulnerable samples. Slightly breaking the syntax and
not having completely correct code remains beneficial for training of the models [15, 32, 61], and data with subtle
noise helps with the generalization of models [5, 20, 29]. We acknowledge that more sophisticated methods can
be used for the verification phase, but starting from a simple module (i.e., a parser) was necessary for evaluating
whether using LLMs for vulnerability detection is even feasible.

External Validity relates to the generalizability of our findings. Even though we used two different LLMs
(ChatGPT 3.5 Turbo and CodeQwen1.5-7B-Chat), evaluated on three commonly used datasets, and covered three
SOTA DLVD models from two different families, our findings may not generalize well to real-world scenarios
where different models, LLMs, and datasets are used. To encourage future research to investigate more LLMs
(including encoder-decoder-based models), datasets, and DLVD models.

7 CONCLUSION
In this paper, we propose VulScribeR, a novel yet effective framework for augmenting vulnerable samples that
uses a customized RAG mechanism to formulate carefully designed prompt templates which are then used for
prompting the LLMs. We also use a fuzzy parser as a verification method, to make sure that the generated code
doesn’t have severe syntax problems. Our evaluation results show that our method significantly outperforms
SOTA methods, and is suitable for large-scale vulnerability augmentation with low cost.

8 DATA AVAILABILITY
Wemade our replication package publicly available [1] to encourage future research on enhancing the performance
of LLM-generated vulnerable code and more advanced filtering mechanisms.

REFERENCES
[1] 2024. https://github.com/shayandaneshvar/VulScribeR.
[2] Sara Abdali, Richard Anarfi, CJ Barberan, Jia He, and Erfan Shayegani. 2025. Securing Large Language Models: Threats, Vulnerabilities

and Responsible Practices. arXiv:2403.12503 [cs.CR] https://arxiv.org/abs/2403.12503
[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,

Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).
[4] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji,

Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng
Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,
Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang

ACM Trans. Softw. Eng. Methodol.

https://github.com/shayandaneshvar/VulScribeR
https://arxiv.org/abs/2403.12503
https://arxiv.org/abs/2403.12503

22 • Daneshvar et al.

Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen Technical Report. arXiv preprint
arXiv:2309.16609 (2023).

[5] Chris M. Bishop. 1995. Training with Noise is Equivalent to Tikhonov Regularization. Neural Computation 7, 1 (01 1995), 108–116.
https://doi.org/10.1162/neco.1995.7.1.108 arXiv:https://direct.mit.edu/neco/article-pdf/7/1/108/812990/neco.1995.7.1.108.pdf

[6] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-Supervised Contrastive Learning for Code Retrieval and Summarization via
Semantic-Preserving Transformations. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Association for Computing Machinery, New York, NY, USA, 511–521.
https://doi.org/10.1145/3404835.3462840

[7] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T. Devanbu, and Baishakhi Ray. 2022. NatGen: generative pre-
training by “naturalizing” source code. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, 18–30. https://doi.org/10.1145/3540250.3549162

[8] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2020. Deep Learning Based Vulnerability Detection: Are We
There Yet? IEEE Transactions on Software Engineering 48 (2020), 3280–3296. https://api.semanticscholar.org/CorpusID:221703797

[9] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling
technique. J. Artif. Int. Res. 16, 1 (jun 2002), 321–357.

[10] Junkai Chen, Xing Hu, Zhenhao Li, Cuiyun Gao, Xin Xia, and David Lo. 2024. Code Search is All You Need? Improving Code Suggestions
with Code Search. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 73, 13 pages. https://doi.org/10.1145/3597503.3639085

[11] Roland Croft, M. Ali Babar, and M. Mehdi Kholoosi. 2023. Data Quality for Software Vulnerability Datasets. In Proceedings of
the 45th International Conference on Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 121–133. https:
//doi.org/10.1109/ICSE48619.2023.00022

[12] Seyed Shayan Daneshvar, Da Tan, Shaowei Wang, and Carson Leung. 2025. A Study on Mixup-Inspired Augmentation Methods for
Software Vulnerability Detection. arXiv:2504.15632 [cs.SE] https://arxiv.org/abs/2504.15632

[13] Terrance DeVries and Graham W. Taylor. 2017. Improved Regularization of Convolutional Neural Networks with Cutout.
arXiv:1708.04552 [cs.CV] https://arxiv.org/abs/1708.04552

[14] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair, David Wagner, Baishakhi Ray, and
Yizheng Chen. 2024. Vulnerability Detection with Code Language Models: How Far Are We? arXiv preprint arXiv:2403.18624 (2024).

[15] Zeming Dong, Qiang Hu, Yuejun Guo, Zhenya Zhang, Maxime Cordy, Mike Papadakis, Yves Le Traon, and Jianjun Zhao. 2025. Boosting
source code learning with text-oriented data augmentation: an empirical study. Empirical Software Engineering 30, 3 (2025), 68.

[16] Xueying Du, Geng Zheng, KaixinWang, Jiayi Feng,Wentai Deng, Mingwei Liu, Bihuan Chen, Xin Peng, TaoMa, and Yiling Lou. 2024. Vul-
RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG. arXiv:2406.11147 [cs.SE] https://arxiv.org/abs/2406.11147

[17] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code Vulnerability Dataset with Code Changes and CVE
Summaries. In Proceedings of the 17th International Conference on Mining Software Repositories (Seoul, Republic of Korea) (MSR ’20).
Association for Computing Machinery, New York, NY, USA, 508–512. https://doi.org/10.1145/3379597.3387501

[18] Richard Fang, Rohan Bindu, Akul Gupta, and Daniel Kang. 2024. Llm agents can autonomously exploit one-day vulnerabilities. arXiv
preprint arXiv:2404.08144 (2024).

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and
Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155 [cs.CL]

[20] Benoit Frenay and Michel Verleysen. 2014. Classification in the Presence of Label Noise: A Survey. IEEE Transactions on Neural Networks
and Learning Systems 25, 5 (2014), 845–869. https://doi.org/10.1109/TNNLS.2013.2292894

[21] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-based Line-Level Vulnerability Prediction. In 2022 IEEE/ACM
19th International Conference on Mining Software Repositories (MSR). 608–620. https://doi.org/10.1145/3524842.3528452

[22] Tom Ganz, Erik Imgrund, Martin Härterich, and Konrad Rieck. 2023. CodeGraphSMOTE-data augmentation for vulnerability discovery.
In IFIP Annual Conference on Data and Applications Security and Privacy. Springer, 282–301.

[23] S. Gao, X. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu. 2023. What Makes Good In-Context Demonstrations for Code Intelligence
Tasks with LLMs?. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE Computer Society,
Los Alamitos, CA, USA, 761–773. https://doi.org/10.1109/ASE56229.2023.00109

[24] Zhiqiang Gong, Ping Zhong, and Weidong Hu. 2019. Diversity in Machine Learning. IEEE Access 7 (2019), 64323–64350. https:
//doi.org/10.1109/ACCESS.2019.2917620

[25] Qiuhan Gu. 2023. Llm-based code generation method for golang compiler testing. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 2201–2203.

[26] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei
Xiong, andWenfeng Liang. 2024. DeepSeek-Coder: When the Large Language Model Meets Programming –The Rise of Code Intelligence.
arXiv:2401.14196 [cs.SE] https://arxiv.org/abs/2401.14196

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1162/neco.1995.7.1.108
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/7/1/108/812990/neco.1995.7.1.108.pdf
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3540250.3549162
https://api.semanticscholar.org/CorpusID:221703797
https://doi.org/10.1145/3597503.3639085
https://doi.org/10.1109/ICSE48619.2023.00022
https://doi.org/10.1109/ICSE48619.2023.00022
https://arxiv.org/abs/2504.15632
https://arxiv.org/abs/2504.15632
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/2406.11147
https://arxiv.org/abs/2406.11147
https://doi.org/10.1145/3379597.3387501
https://arxiv.org/abs/2002.08155
https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1109/ASE56229.2023.00109
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.1109/ACCESS.2019.2917620
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs • 23

[27] Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. Augmenting Data with Mixup for Sentence Classification: An Empirical Study.
ArXiv abs/1905.08941 (2019). https://api.semanticscholar.org/CorpusID:162168620

[28] Pengfei He, Shaowei Wang, Shaiful Chowdhury, and Tse-Hsun Chen. 2025. Evaluating the Effectiveness and Efficiency of Demonstration
Retrievers in RAG for Coding Tasks. In 2025 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).
500–510. https://doi.org/10.1109/SANER64311.2025.00053

[29] Ray J. Hickey. 1996. Noise modelling and evaluating learning from examples. Artificial Intelligence 82, 1 (1996), 157–179. https:
//doi.org/10.1016/0004-3702(94)00094-8

[30] Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Gonzalo De La Torre Parra, Elias Bou-Harb, and Peyman Najafirad. 2024. LLM-
Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward. arXiv preprint arXiv:2401.03374 (2024).

[31] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne Kim, Andrew Tran, and Arto Hellas. 2023. Comparing
code explanations created by students and large language models. In Proceedings of the 2023 Conference on Innovation and Technology in
Computer Science Education V. 1. 124–130.

[32] Haochen Li, ChunyanMiao, Cyril Leung, Yanxian Huang, YuanHuang, Hongyu Zhang, and YanlinWang. 2022. Exploring Representation-
level Augmentation for Code Search. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi, United Arab Emirates,
4924–4936. https://doi.org/10.18653/v1/2022.emnlp-main.327

[33] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection with fine-grained interpretations. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA, 292–303. https://doi.org/10.1145/3468264.3468597

[34] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep
Learning-Based System for Vulnerability Detection. In 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018. The Internet Society. https://www.ndss-symposium.org/wp-content/uploads/2018/02/
ndss2018_03A-2_Li_paper.pdf

[35] Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang. 2019. Deep Learning-Based Vulnerable Function Detection: A Benchmark. In
Information and Communications Security: 21st International Conference, ICICS 2019, Beijing, China, December 15–17, 2019, Revised Selected
Papers (Beijing, China). Springer-Verlag, Berlin, Heidelberg, 219–232. https://doi.org/10.1007/978-3-030-41579-2_13

[36] Jie Lin and David Mohaisen. 2025. From large to mammoth: A comparative evaluation of large language models in vulnerability
detection. In Proceedings of the 2025 Network and Distributed System Security Symposium (NDSS).

[37] Shangqing Liu, Wei Ma, Jian Wang, Xiaofei Xie, Ruitao Feng, and Yang Liu. 2024. Enhancing Code Vulnerability Detection via
Vulnerability-Preserving Data Augmentation. In Proceedings of the 25th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems. 166–177.

[38] Guilong Lu, Xiaolin Ju, Xiang Chen, Wenlong Pei, and Zhilong Cai. 2024. GRACE: Empowering LLM-based software vulnerability
detection with graph structure and in-context learning. Journal of Systems and Software 212 (2024), 112031. https://doi.org/10.1016/j.jss.
2024.112031

[39] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Chen, and Shaowei Wang. 2024. Llmparser: An exploratory study on using large
language models for log parsing. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[40] Rui Mao, Li Zhang, and Xiaofang Zhang. 2024. Mutation-based data augmentation for software defect prediction. Journal of Software:
Evolution and Process 36, 6 (2024), e2634. https://doi.org/10.1002/smr.2634 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2634

[41] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning. In Proceedings
of the 45th International Conference on Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 2450–2462. https:
//doi.org/10.1109/ICSE48619.2023.00205

[42] Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai. 2024. VGX: Large-Scale Sample
Generation for Boosting Learning-Based Software Vulnerability Analyses. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article 149, 13 pages.
https://doi.org/10.1145/3597503.3639116

[43] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Generating realistic vulnerabilities via neural code editing: an
empirical study. In ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA.

[44] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2023. VULGEN: Realistic Vulnerability Generation Via Pattern
Mining and Deep Learning. In Proceedings of the 45th International Conference on Software Engineering (Melbourne, Victoria, Australia)
(ICSE ’23). IEEE Press, 2527–2539. https://doi.org/10.1109/ICSE48619.2023.00211

[45] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and Lennart Svensson. 2021. Classmix: Segmentation-based data augmentation for
semi-supervised learning. In Proceedings of the IEEE/CVF winter conference on applications of computer vision. 1369–1378.

[46] OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed: 2023-12-28.
[47] OpenAI. 2024. GPT-4o mini. https://platform.openai.com/docs/models/gpt-4o-mini. Accessed: 2025-05-10.

ACM Trans. Softw. Eng. Methodol.

https://api.semanticscholar.org/CorpusID:162168620
https://doi.org/10.1109/SANER64311.2025.00053
https://doi.org/10.1016/0004-3702(94)00094-8
https://doi.org/10.1016/0004-3702(94)00094-8
https://doi.org/10.18653/v1/2022.emnlp-main.327
https://doi.org/10.1145/3468264.3468597
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1016/j.jss.2024.112031
https://doi.org/10.1016/j.jss.2024.112031
https://doi.org/10.1002/smr.2634
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2634
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1145/3597503.3639116
https://doi.org/10.1109/ICSE48619.2023.00211
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-4o-mini

24 • Daneshvar et al.

[48] Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho. 2022. MultIPAs: applying program transformations to introductory programming
assignments for data augmentation. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY,
USA, 1657–1661. https://doi.org/10.1145/3540250.3558931

[49] T. J. Parr and R. W. Quong. 1995. ANTLR: A predicated-LL(k) parser generator. Software: Practice and Experience 25, 7 (1995), 789–810.
https://doi.org/10.1002/spe.4380250705 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705

[50] David Powers. 2011. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. Journal of
Machine Learning Technologies 2, 1 (2011), 37–63.

[51] QwietAI. [n. d.]. Joern: Code analysis tool. https://github.com/joernio/joern.
[52] Gopi Krishnan Rajbahadur, Shaowei Wang, Yasutaka Kamei, and Ahmed E. Hassan. 2021. Impact of Discretization Noise of the

Dependent Variable on Machine Learning Classifiers in Software Engineering. IEEE Transactions on Software Engineering 47, 7 (2021),
1414–1430. https://doi.org/10.1109/TSE.2019.2924371

[53] Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo A. Oliva, Yasutaka Kamei, and Ahmed E. Hassan. 2022. The Impact of Feature
Importance Methods on the Interpretation of Defect Classifiers. IEEE Transactions on Software Engineering 48, 7 (2022), 2245–2261.
https://doi.org/10.1109/TSE.2021.3056941

[54] Niklas Risse and Marcel Böhme. 2024. Uncovering the limits of machine learning for automatic vulnerability detection. In Proceedings of
the 33rd USENIX Conference on Security Symposium (Philadelphia, PA, USA) (SEC ’24). USENIX Association, USA, Article 238, 18 pages.

[55] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4
(apr 2009), 333–389. https://doi.org/10.1561/1500000019

[56] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An Analysis of the Automatic Bug Fixing Performance of
ChatGPT. In 2023 IEEE/ACM International Workshop on Automated Program Repair (APR). 23–30. https://doi.org/10.1109/APR59189.2023.
00012

[57] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. 2016. C-brain: a deep learning accelerator that tames the
diversity of CNNs through adaptive data-level parallelization. In Proceedings of the 53rd Annual Design Automation Conference (Austin,
Texas) (DAC ’16). Association for Computing Machinery, New York, NY, USA, Article 123, 6 pages. https://doi.org/10.1145/2897937.
2897995

[58] Qwen Team. 2024. Code with CodeQwen1.5. https://qwenlm.github.io/blog/codeqwen1.5/
[59] Wenbo Wang, Tien N. Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, and Aashish Yadavally. 2023. DeepVD: Toward Class-Separation

Features for Neural Network Vulnerability Detection. In Proceedings of the 45th International Conference on Software Engineering
(Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 2249–2261. https://doi.org/10.1109/ICSE48619.2023.00189

[60] Yanlin Wang, Lianghong Guo, Ensheng Shi, Wenqing Chen, Jiachi Chen, Wanjun Zhong, Menghan Wang, Hui Li, Hongyu Zhang, Ziyu
Lyu, and Zibin Zheng. 2023. You Augment Me: Exploring ChatGPT-based Data Augmentation for Semantic Code Search. In 2023 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 14–25. https://doi.org/10.1109/ICSME58846.2023.00014

[61] Yan Wang, Xiaoning Li, Tien N Nguyen, Shaohua Wang, Chao Ni, and Ling Ding. 2024. Natural Is the Best: Model-Agnostic Code
Simplification for Pre-trained Large Language Models. Proceedings of the ACM on Software Engineering 1, FSE (2024), 586–608.

[62] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt. 2024. Chatgpt prompt patterns for improving code
quality, refactoring, requirements elicitation, and software design. In Generative AI for Effective Software Development. Springer, 71–108.

[63] Xu Yang, Shaowei Wang, Yi Li, and Shaohua Wang. 2023. Does data sampling improve deep learning-based vulnerability detection?
Yeas! and Nays!. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering (ICSE). IEEE, 2287–2298.

[64] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024. A survey on large language model (LLM) security and
privacy: The Good, The Bad, and The Ugly. High-Confidence Computing 4, 2 (2024), 100211. https://doi.org/10.1016/j.hcc.2024.100211

[65] Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. 2021. Learning Structural Edits via Incremental Tree Transfor-
mations. In International Conference on Learning Representations. https://openreview.net/forum?id=v9hAX77--cZ

[66] Shiwen Yu, Ting Wang, and Ji Wang. 2022. Data Augmentation by Program Transformation. Journal of Systems and Software 190 (2022),
111304. https://doi.org/10.1016/j.jss.2022.111304

[67] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. 2019. Cutmix: Regularization strategy
to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international conference on computer vision. 6023–6032.

[68] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. 2018. mixup: Beyond Empirical Risk Minimization. In
International Conference on Learning Representations. https://openreview.net/forum?id=r1Ddp1-Rb

[69] Shasha Zhang. 2021. A Framework of Vulnerable Code Dataset Generation by Open-Source Injection. In 2021 IEEE International
Conference on Artificial Intelligence and Computer Applications (ICAICA). 1099–1103. https://doi.org/10.1109/ICAICA52286.2021.9497888

[70] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural Networks. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.
cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3540250.3558931
https://doi.org/10.1002/spe.4380250705
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705
https://github.com/joernio/joern
https://doi.org/10.1109/TSE.2019.2924371
https://doi.org/10.1109/TSE.2021.3056941
https://doi.org/10.1561/1500000019
https://doi.org/10.1109/APR59189.2023.00012
https://doi.org/10.1109/APR59189.2023.00012
https://doi.org/10.1145/2897937.2897995
https://doi.org/10.1145/2897937.2897995
https://qwenlm.github.io/blog/codeqwen1.5/
https://doi.org/10.1109/ICSE48619.2023.00189
https://doi.org/10.1109/ICSME58846.2023.00014
https://doi.org/10.1016/j.hcc.2024.100211
https://openreview.net/forum?id=v9hAX77--cZ
https://doi.org/10.1016/j.jss.2022.111304
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.1109/ICAICA52286.2021.9497888
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf

	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Vulnerability Augmentation
	2.2 Source Code Augmentation with RAG and LLMs

	3 Methodology
	3.1 Augmentation Strategies

	4 Experimental Setting
	4.1 Research Questions
	4.2 Datasets
	4.3 Deep learning-based vulnerability detection (DLVD) Models
	4.4 Evaluation metrics
	4.5 Base LLMs
	4.6 Baselines
	4.7 Approach for RQs
	4.8 Implementation details

	5 Results
	5.1 RQ1: How effective is VulScribeR compared to SOTA approaches?
	5.2 RQ2: How does RAG contribute to VulScribeR?
	5.3 RQ3: How does the quantity of the generated samples impact the effectiveness of vulnerability detection models?
	5.4 RQ4: Can VulScribeR be effective on large, heavily-imbalanced datasets with complex real-world vulnerabilities?

	6 Discussion
	6.1 Ensemble of Strategies
	6.2 Impact Analysis of the Extra Clean Samples
	6.3 Cost Analysis
	6.4 Quality Analysis of Augmented Vulnerable Samples
	6.5 Threats to Validity

	7 Conclusion
	8 Data Availability
	References

