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The Android ecosystem has experienced rapid growth, resulting in a diverse range of platforms and devices. This expansion has
also brought about compatibility issues that negatively impact user experiences and hinder app development productivity. Existing
relevant studies are focused on and limited to the “static" sense of those issues (in terms of potentialities and proneness), while only
addressing compatibility issues that possibly occur during app executions. In this paper, we present an extensive and longitudinal
study on app compatibility issues that are disparate from yet complementary to prior studies, characterizing the incompatibilities
based on actual, exercised observations and evidence at both installation and run time. With a dataset of 74,545 benign apps and 56,919
malicious apps over a span of 12 years (2010 through 2021) and ten Android versions, we extensively examine the prevalence and
symptoms/effects and causes of, as well as the contributing factors to, installation-time and run-time compatibility issues.

Our study reveals 12 major novel findings regarding Android app incompatibilities. Firstly (Findings 1,2), installation-time incom-
patibilities persisted significantly over the 12 years, even more so in malware than benign apps. Secondly (Findings 7,8), run-time
compatibility issues were also seen persistently over time but only on specific Android platforms (such as API 26,27,etc.) and much
less by malware than benign apps. Thirdly (Findings 5,6,11,12), there is a significant (moderate/stronger) correlation between an app’s
specified minSdkVersion and its incompatibilities (over all symptoms and/or with respect to one of its dominating symptom), with
stronger correlations seen in malware than in benign apps, for both installation- and run-time incompatibilities. Similar observations
hold (although with much stronger correlation in absolute terms) when considering, instead of the minSdkVersion itself, the gap be-
tween the app’s minSdkVersion and the SDK API level of the platform the app is installed to or runs on. Lastly (Findings 3,4,9,10),
installation-time incompatibilities are primarily caused by the utilization of architecture-incompatible native libraries within apps,
while run-time incompatibilities are mainly attributed to API changes during the evolution of the Android SDK; the symptoms of
run-time failures seen by malware are much more diverse than by benign apps. In addition to these insights, we provide practical
recommendations for both app developers and end users on how to effectively address compatibility issues in Android apps, as well as
how to devise effective defenses against malware from the compatibility perspectives.

CCS Concepts: • Software and its engineering → Maintaining software.
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1 INTRODUCTION

Given the lasting dominance of Android [59] in the mobile operating system market and due to the shift of personal
computing to mobile platforms, most software applications used today are Android apps. Mobile apps, like software in
other domains, face various challenges, including compatibility, reliability, and security [11, 16, 64], among other quality
issues. Yet while reliability and security have received significant attention in research and industry [8, 12, 13, 21, 24],
compatibility issues have not been as extensively attended despite the continuation of research studies on this topic
in the past few years [20, 53, 61]. Compatibility issues in mobile apps can significantly impact the user experience,
leading to reduced usability and overall app quality. These incompatibilities1 have a detrimental effect on the health of
the mobile software ecosystem. Moreover, compatibility issues hinder the efficient production and adoption of apps,
impeding the productivity of app developers. It is intuitive that the larger the user base of the ecosystem, the more
severe the negative impact of these compatibility issues [9, 72].

As Android continues to gain momentum, the prevalence of compatibility issues in the Android ecosystem has also
increased [42, 58, 65, 73, 74]. The open-source nature of Android has led to a diverse range of Android devices [52] and
customized Android platforms, including variations in the Android operating system kernel [23]. Furthermore, the
Android system itself undergoes constant evolution, resulting in continuous changes to the software development kit
(SDK) and application programming interface (API) [54, 68]. While these developments facilitate the growth of Android
in the mobile computing market, they also introduce various incompatibilities in Android apps. These incompatibilities
can manifest as apps developed for specific device models or versions of the Android system failing to function properly
or being unable to install on different device models or other Android system versions. As people increasingly rely on
Android apps for their daily lives, it becomes crucial for both app developers and end users to understand and address
application incompatibilities in Android. This understanding serves as a fundamental step towards mitigating and even
preventing relevant issues.

Existing studies exist which aim to help understand and/or detect Android app quality problems that are relevant to
compatibility issues, including fragmentation [39, 41, 68], app configuration [73], or API evolution [49, 54] as a cause of
those issues and app crashes or UI differences [45] as a form of possible externalization of incompatibilities [22, 56].
Moreover, several techniques have been developed to detect/diagnose abnormal app behaviors that potentially result
from incompatibilities [23, 45, 68]. However, these works do not directly address app compatibility issues themselves.
Also, fragmentation, app configuration, and API evolution are not the only causes of app incompatibilities, nor are app
crashes and UI abnormalities the only form of externally observed app behaviors resulting from compatibility issues.

Recent efforts [40, 43, 51, 72] have placed more emphasis on potential compatibility issues resulting from API changes,
noted as API/evolution-induced incompatibilities. In fact, almost all of the existing techniques that aim to deal with (e.g.,
detect and repair) app incompatibilities are focused on those due to APIs being improperly used [47, 53, 69]. Studies
evaluating those techniques [50, 60, 61] and examining how developers handle compatibility issues in the code of

1We use “compatibility issues" and “incompatibilities" as exchangeable terms in this paper.
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their apps [40] are almost exclusively aimed at and limited to API/evolution-induced incompatibilities. However, these
studies and techniques are generally conservative/predictive, meaning that issues being addressed are potential, not
evidenced or manifested, issues. A main reason is that they are static in nature. In particular, most of the techniques are
based on static code analysis techniques, which are intrinsically subject to false positives. For instance, a compatibility
issue is detected when an incompatible API is used [50, 51], yet the use of such an API may or may not actually cause a
compatibility issue, depending on the bigger context of the API invocation (e.g., it is on a path that is rarely exercised or
guarded by a non-statically-resolvable condition that when met would ensure compatible behaviors).

Furthermore, app incompatibilities have so far only been studied from app maintenance perspectives—that is,
understanding or devising solutions on how to ultimately make the app more compatible. Yet malicious apps
potentially face compatibility issues too, which have different implications and opposite expectations regarding how to
deal with (e.g., making them more compatible is not desirable from a security perspective). Analyzing malware
incompatibility also provides unique comparative insights into compatibility challenges across benign and malicious
apps, allowing us to distinguish between universal compatibility issues—such as those caused by API evolution or
hardware fragmentation—and those specific to malware, often arising from poor construction practices or intentional
obfuscation. Moreover, investigating malware incompatibility offers direct security implications: understanding where
and why malware fails to install or execute can reveal structural weaknesses in its construction, which could inform
the development of better detection and mitigation strategies. However, there have been no studies at all explicitly
addressing the compatibility issues particularly in Android malware and how they are similar to or different from those
issues seen by benign apps. In short, studies on the security relevance of app incompatibilities are currently lacking.
Including malware in this study ensures a holistic view of the Android ecosystem, reflecting its reality as a mix of
benign and malicious applications. Also, current studies are generally focused on compatibility issues that would
(potentially) occur at app execution time, with few addressing incompatibilities at app installation time. Finally, extant
relevant studies typically examined a limited number of app samples and did not consider the temporal aspect of the
samples or the specific compatibility issues encountered—which is essential for understanding how the landscape of
app incompatibilities changes over time.

As it stands, no study to date has comprehensively (1) addressed the actually observed (i.e., manifested) app
incompatibilities in Android, (2) taking into account both a large-scale perspective and an evolutionary viewpoint.
Furthermore, there is a lack of research (3) examining the various symptoms of these issues at different stages of app
usage, such as installation and execution, along with their underlying causes. Finally, there has been no study (4)
explicitly examining compatibility issues in benign apps versus malware (i.e., commonalities and differences). A
comprehensive study addressing these gaps would right complement to existing peer studies by providing valuable
insights into the understanding of compatibility issues in Android apps based on evidence and observations rather than
proneness and potentialities, including their evolution over time and security relevance. Such insights could help inform
strategies for mitigating and preventing these issues, while informing the design of effective defenses against malware
from compatibility perspectives.

To address these research gaps, in this paper, we conducted a comprehensive and longitudinal study at a large scale
to investigate observed incompatibilities in Android apps. We collected a dataset of 131,464 apps (including 74,545
benign apps and 56,919 malware) from various sources, spanning 12 different years of development (2010 through
2021). From this dataset, we profiled a subset of 41,204 apps (including 22,529 benign apps and 18,675 malware) with
random inputs for a duration of five minutes each. Our study focused on two types of incompatibilities: installation-time

and run-time incompatibilities. We examined these incompatibilities by analyzing the corresponding APKs and their
Manuscript submitted to ACM
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execution traces on ten major Android versions with significant market share (from API level 19 through 29) [27]. An
app was considered installation-time incompatible if it could be successfully installed on at least one Android platform
but not on another, as indicated by the return code or message of the installation process. Similarly, an app was regarded
as run-time incompatible if it could run successfully, without producing any system error messages, exceptions, or
crashes, on at least one Android platform but not on another. Differentiating these two classes of app incompatibilities
allowed us to gain an in-depth understanding of the extent and phases of compatibility issues in Android apps.

Through our datasets and the two complementary studies focusing on installation-time and run-time compatibility
issues, respectively, our study aims to assess the prevalence and distribution of these compatibility issues. We examine
various symptoms and causes related to app incompatibilities, including the efforts made by app developers to achieve
compatibility and the effects of incompatibilities—we immediately examine symptoms (i.e., effects) and then connect
them to respective root causes based on official documentations that describe the root cause of each symptom [25, 33, 38].
Furthermore, we investigate the impact of key properties of apps, such as their age, properties of the Android platform,
and release time, on app incompatibilities. By analyzing the differences in compatibility issues between benign and
malicious apps, we also explore possible relationships between app compatibility and app security. Additionally, our
study takes a longitudinal view to uncover the evolutionary patterns of app incompatibilities over time. We aim to
understand the differences in compatibility issues between benign and malicious apps and reveal how these compatibility
characteristics evolve in both groups.

In particular, we explore the following set of research questions. The first three concern the installation-time
incompatibilities of Android apps:

• RQ1: How prevalent are installation-time app compatibility issues in Android? Prior research has indicated the potential
presence of compatibility issues in Android apps, primarily attributed to specific factors like SDK evolution [40, 47,
54, 68]. However, in order to comprehensively understand compatibility issues arising from any possible cause, our
study takes a different approach. We actually installed each app sample to directly observe and characterize the
compatibility issues that arise during actual installation of apps on various Android platforms.

• RQ2: How are the compatibility issues in Android apps distributed over major symptoms? App incompatibilities manifest
through noticeable symptoms, such as error logs during installation failures and crash traces during execution failures,
which can be attributed to compatibility issues [22, 56]. By examining the factors that contribute to incompatibilities
based on specific symptoms, we can gain insights into the underlying causes of these symptoms (again based on the
official documentations about the links between the effects and causes). Particularly for answering this question, we
conducted an analysis of the primary symptoms associated with installation-time incompatibilities, and investigated
the distribution of installation failures across these symptoms.

• RQ3:What are the main factors that contributed to the installation-time incompatibilities in Android apps? The existing
knowledge about Android app incompatibilities primarily attributes them to problems with the Android platform,
such as fragmentation and SDK evolution [40, 68]. In order to enhance this understanding, we conducted additional
research to investigate potential app properties that may contribute to compatibility issues. Specifically, we performed
statistical analyses to identify possible correlations between installation failures and various app properties, such as
the age of apps and their specification of the minimum SDK version.

And three similar questions concern the run-time incompatibilities of Android apps:

• RQ4: How prevalent are run-time app compatibility issues in Android? Similarly to RQ1, we aim to assess the prevalence
of app incompatibilities. Yet differently from RQ1, we address run-time incompatibilities here, understanding what

Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260
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actually happens when incompatible behaviors are exercised. We ran each installation-time compatible app in our
RQ1 datasets for five minutes and observed manifestation of any of those behaviors.

• RQ5: How are the run-time compatibility issues in Android apps distributed over major symptoms? Similarly to RQ2,
we further assess the effects and causes of app incompatibilities, yet differently we look at run-time incompatibilities
here. We identify the run-time symptoms of incompatible behaviors based on the error messages, system logs, and
exceptions/crashes that occur during app executions.

• RQ6:What are the main factors that contributed to the run-time incompatibilities in Android apps? Similarly to RQ3,
we further examine the same relevant app properties as potential contributing factors, but now focusing on those to
run-time incompatibilities. To that end, we performed similar statistical analyses to identify correlations between
those factors and run-time failures induced by app incompatibilities.

Importantly, to address the security relevance of app incompatibilities, we aim to answer one additional, cross-
cutting question: How are benign apps and malware similar and different in terms of the prevalence, symptoms (and hence

causes), and contributing factors with respect to incompatibilities that occurred in them? We answer this cross-cutting
question by investigating the common characteristics and differences between the two app groups2 when answering
the respective questions among the foregoing six (i.e., RQ1, RQ2, and RQ3 for installation-time incompatibilities, and
RQ4, RQ5, and RQ6 for run-time incompatibilities).

Guided by these questions, our study revealed, among others:

(1) A significant portion (on average 15% in benign apps and 25% in malware) of our benchmark apps from
different years experienced incompatibilities that prevented their installation on one or more of the ten Android
platforms we studied. These issues were largely independent of app ages but significantly correlated with the
minSdkVersion specified in the apps and the difference between this version and the API level of the platform
where the app was being installed.

(2) Approximately 91% of the installation-time incompatibilities were caused by the use of native library
functionalities in the apps that were not supported by the underlying hardware architecture. In some cases, the
issues were primarily attributed to customizations made by device vendors to the Android system. Malware
had much more diverse symptoms, with another primary cause (up to 20% in certain years) consisting in
problematic APK construction.

(3) Run-time compatibility issues were even more prevalent (12-year average of 20.77%) in the benign apps, but
notably less (14.48%) in malware, than installation-time issues. These issues were primarily caused by the
API level of the Android platform. In particular, platforms of API levels prior to API 28 saw such issues more
frequently than the newer API levels studied.

(4) Run-time compatibility issues were predominantly manifested as verify errors (56% on average) and null pointer
dereferences (14% on average), which were primarily attributed to SDK/API changes during the evolution of
the Android SDK. Not surprisingly, apps with a minimum SDK version that is more distant from the API level
of a platform were more likely to exhibit run-time incompatibilities on that platform. Error-prone construction
practice of malware was another main cause of their run-time failures.

(5) Both installation-time compatibility and run-time compatibility issues are primarily influenced by SDK version
differences (between specified and that of the target platform) rather than chronological development timing.
Installation failures show scattered patterns with complex interactions between SDK versions and API levels,

2Hereafter, we refer to benign apps and malware as the two app groups in our studies.
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while run-time failures exhibit strong relationships with the gap between platform API versions and specified
minimum SDK requirements. Malware demonstrates more systematic compatibility patterns compared to benign
apps, with consistent behaviors across different types of failures. These patterns indicate fundamental differences
between hardware and framework compatibility issues in the Android ecosystem, with hardware-related failures
showing more concentrated patterns while framework issues are more widely dispersed.

Based on these observations and findings, we extensively discussed their implications and provided actionable insights
and recommendations for developers and end users of Android apps regarding how to deal with incompatibilities and
develop better defenses against malware. To ensure these findings and insights remain relevant with the latest Android
platform versions, we also conducted an additional study examining compatibility patterns on Android 14 (API 34) and
Android 15 (API 35). The results, while showing unique patterns, confirm that they are still in accordance with our key
observations and conclusions about both installation- and run-time incompatibilities of applications in Android. This
paper extends its preliminary version [18] in many ways, from which the key differences and new contributions are
elaborated in Section 9.

All of the source code and datasets used in our study can be found at https://figshare.com/s/4b2a7aedd25f50894fbe.

2 BACKGROUND

In this section, we provide concise explanations of the basic concepts and terminology related to the Android system
and Android apps. These descriptions are essential for readers to comprehend the subsequent sections of this paper.

2.1 Android Platform and SDK

The Android framework serves as an intermediary layer between the Android operating system (OS), which is based
on a customized Linux kernel, and user applications. This framework is responsible for implementing the application
programming interface (API) methods that enable user apps to access system services and utilize common functionalities
associated with mobile devices. The API is typically bundled as part of the Android software development kit (SDK),
which includes various tools to support app development.

In the framework-based development paradigm, Android apps are composed of different components. These
components are the building blocks of an app and can be categorized into four types: Activity, which forms the basis of
the user interface, Service, which performs background tasks, Broadcast Receiver (or simply Receiver), which responds to
system-wide broadcasts, and Content Provider, which offers database capabilities.

2.2 Incompatibilities in the Android Ecosystem

In the Android ecosystem, it is common to encounter devices with different hardware configurations running the same
version of the Android operating system. These hardware differences include, among others, variations in processor
models, screen sizes, and the presence or absence of certain sensors. Additionally, different device manufacturers often
customize the Android system to align with their specific mobile device products. This phenomenon of hardware and
software diversity is known as fragmentation in the Android ecosystem [39]. The presence of fragmentation poses
challenges for app developers, as it becomes difficult to ensure that an app functions properly on all devices and Android
versions. This leads to compatibility issues that are specifically attributed to fragmentation [68].

To meet the diverse needs of its market, Android offers a wide range of OS and SDK versions, both of which undergo
constant evolution. The SDK, particularly the API, tends to evolve at a faster pace [27]. Over the past 15 years, Android
Manuscript submitted to ACM
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has released more than 30 API versions, each associated with a specific API level. This API evolution introduces a
significant factor contributing to incompatibilities in Android apps [54]. For instance, due to the API evolution, an app
developed with one API level might not be installable or runnable with Android of different API levels.

In the context of Android, there are two types of compatibility: device compatibility and app compatibility [25].
Device compatibility refers to whether a mobile device is capable of running apps designed for the Android runtime.
Only Android-compatible devices include the Google Play Store, which serves as the primary platform for users to
install apps. Therefore, device compatibility is typically not a concern for app developers. On the other hand, app
compatibility is of utmost importance to app developers, as it encompasses incompatibilities that may arise due to
device configurations, the Android system (particularly the framework and API), or a combination of both. Therefore,
in this study, our focus is primarily on app compatibility.

2.3 Compatibility Attempts in Android Apps

When developing an app, the developer has the option to specify the API level that the app targets and the minimum
API level required for the app to function [74]. These API level specifications are typically recorded in the app’s
manifest file (AndroidManifest.xml)—part of the app package (i.e., APK)—as minSdkVersion (the minimum API level)
and targetSdkVersion (the targeted API level).

According to the official Android Developer Guide (OADG) [28], it is recommended to always declare the minSdkVer-

sion in the manifest file, or else it will default to 1 [35]. Since API level 4, apps can also declare the targetSdkVersion
attribute, although it is optional. If unspecified, it will default to the same value of minSdkVersion. Additionally, starting
from API level 4, apps can (albeit they are not recommended to) declare another API level number called maxSdkVersion,
which specifies the maximum SDK version that the app is compatible with.

As per the OADG, an Android system does not allow the installation of an app if the system’s API level is lower than
the app’s minSdkVersion or higher than its maxSdkVersion.3 However, Android promises backward compatibility [33],
meaning that an Android platform with an API level higher than the app’s minSdkVersion allows the app to be installed
and function as expected. If the platform’s API level is higher than the app’s targetSdkVersion, the system also enables
compatibility behaviors to ensure the app functions correctly [35].

Nevertheless, between API level 4 and API level 6, the check for maxSdkVersion is enforced. If an app specifies a
maxSdkVersion that is lower than the platform’s API level, the installation will fail.

2.4 Repackaging in Android

Repackaging in Android refers to the process of modifying an existing Android application package (APK) file by
replacing its original contents with malicious or unauthorized components. It involves extracting the APK file, modifying
its code, resources, or other assets, and then reassembling the package with the malicious changes [48].

Repackaging can have significant implications for compatibility in Android apps. When an app is repackaged, its
original code and resources are altered, which can introduce compatibility issues with the Android operating system,
other apps, or specific device configurations. These compatibility issues arise due to the following typical reasons,
among others:

• Inconsistent signatures: Repackaging an app typically involves modifying its digital signature, which verifies
the authenticity and integrity of the app. If the app’s signature is altered during repackaging, it will no longer

3The check against maxSdkVersion has been abolished by Android since its version 2.0.1 [35] (which corresponds to API level 6 [32]).
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match the original signature. This can result in compatibility problems when the modified app interacts with
other components that rely on the app’s original signature for verification.

• Modified functionality: Repackaging can involve modifying the app’s code or resources to alter its behavior
or introduce malicious functionality. These modifications can lead to compatibility issues if the app relies on
specific APIs, frameworks, or libraries that are no longer present or have been altered in the repackaged version.

• Incompatible modifications: Repackaging may introduce changes that are incompatible with the Android system
or specific device configurations. For example, modifying the app’s manifest file or permissions can cause
conflicts with the system’s security model or prevent the app from accessing necessary resources or services.

• Version mismatch: Repackaging can result in discrepancies between the app’s declared version information
and its actual code and resources. This can lead to compatibility problems when the app interacts with other
components that rely on accurate version information for compatibility checks or feature compatibility.

Overall, repackaging can disrupt the intended functionality and behavior of an app, making it incompatible with the
original Android system, other apps, or specific device configurations.

3 METHODOLOGY

This section provides an overview of our study process and outlines the dataset and tools utilized. We then introduce the
main metrics and measures employed to quantify installation-time and run-time app incompatibilities, hence addressing
our research questions.

3.1 Process Overview

Figure 1 illustrates the overall process of our study. We utilized both benign and malicious APKs as benchmarks to
examine the differences in characteristics regarding app incompatibilities between these two groups. Our datasets
encompassed samples developed over a span of 12 years (2010–20214) to facilitate an evolutionary perspective in
analyzing app incompatibilities. We considered a total of 10 different Android versions (API level 19 through 29 5 ),
excluding API 20 which is specifically designed for wearable devices. The first 8 versions collectively account for 96.5%
of the entire Android market share as of late 2018 [27].6 Other versions were excluded due to their outdated status
(released in 2012 or earlier) and negligible market share (1.5% or lower).7

We examine both installation-time and run-time incompatibilities of apps in our study. To characterize installation-
time incompatibilities, we attempt to install the original APK of each app on an Android device for each studied
Android version. We collect the installation logs and analyze them to determine whether the installation was successful
or resulted in a failure. The logs also provide information to understand the effects of installation failures. We consider
uninstallation success as part of installation success, so after successfully installing each app, we uninstall it as part of
the installation test.

4We started our extension study in 2019 after we presented our preliminary (conference version) paper that year; collecting the additional two years of
apps and their execution traces, especially those for the 12 years of malware samples, took us over four years.
5By summer 2019 when we started the extension study, the newest Android version that had been released was API 28. But there were very little market
share of that version due to its short life then. Later, for the revision of this paper that started in late 2023, we further added API levels 28 and 29 to our
studies—our studies are extremely costly, mainly for the run-time experiments; adding the two SDK versions plus two more years of sample apps, the
additional experiments took 339 machine days. Such prohibitive costs prevented us from including even newer API levels and newer years of apps.
6This data was obtained in May 2019, the last time Google updated its Android Distribution Dashboard that includes the percentage of Android devices
running each version of Android—after that, Google stopped doing so [37], making the official distribution no longer known ever since.
7Again, the market share data was up to May 2019, the last time such data was available according to Google’s public release of the Android version
distribution dashboard.
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Fig. 1. Overview of the process flow of our app incompatibility study. The installation-time and run-time incompatibility characteri-
zation pipeline, represented by the grey box in the middle, is shared by the study on benign apps and that on malware.

To characterize run-time incompatibilities, we need to analyze app executions. We employ lightweight
instrumentation and profiling techniques to differentiate two categories of run-time incompatibilities: (1) incompatible

launch, where an app fails to launch successfully, and (2) incompatible running, where a launch-compatible app exhibits
incompatibilities after running for some time. To achieve this, we instrument each app to trace all method calls using
the Soot framework [46] for Dalvik bytecode manipulation using tools dedicated to dynamic Android app
characterizations [15, 16]. We then run the instrumented app for five minutes on an Android device for each of the 10
Android versions, collecting the app trace and system log during its execution. By examining the trace, we can
distinguish between the two run-time incompatibility situations: if the trace contains valid records of calls, we exclude
the app from the incompatible launch category. We identify the effects of run-time incompatibilities by further
analyzing the system log.

The outputs of our study pipeline are the characterization results for both types of incompatibilities. This pipeline
was applied to benign apps in exactly the same way as it was applied to malware. For each app group, we examine
three kinds of incompatibility results: the prevalence of incompatibilities, the symptoms (effects) of compatibility issues
when they occurred, and the contributing factors to the incompatibility-induced (installation or run-time) failures, in
accordance with the three research questions we aim to answer for each app group. Importantly, through the existing
knowledge about the root cause underlying each of the incompatibility effects (symptoms) according to the official
Android documentation [38], we are enabled to understand the root cause of each incompatibility instance observed in
our study via the symptom the compatibility issue demonstrates.

In the next three subsections, we provide further details on the key elements of our study design: subject apps
(Section 3.2), experimental procedure (Section 3.3), and measurements (Section 3.4).

3.2 Subject Apps

Table 1. Subject apps used in our study

Data Use App Group Number of Samples from Each Year (2010-2021) Total2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Installation-time Benign Apps 16,835 9,977 10,991 9,688 5,300 5,406 2,431 2,266 3,184 2,467 3,000 3,000 74,545
Malware 2,140 12,451 3,841 11,079 5,229 5,823 2,940 2,075 3,100 2,241 3,000 3,000 56,919

Total (Installation-time Incompatibility Study) 131,464

Run-time Benign Apps 1,531 2,020 2,054 1,750 1,335 3,127 1,548 1,680 1,325 1,322 2,500 2,337 22,529
Malware 1,316 1,303 1,303 1,305 1,351 1,307 1,301 1,308 1,303 1,318 2,878 2,682 18,675

Total (Run-time Incompatibility Study) 41,204
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Table 1 provides a summary of the subject Android apps used in our study, specifically 74,545 benign apps and 56,919
malicious apps. These apps were developed in different years from 2010 through 2021. In particular, the 2,266 apps
from 2017 were directly downloaded from Google Play [34], while the remaining benign apps were obtained from
AndroZoo [6], which is a diverse collection of apps from various sources. The malware subjects from 2013 through 2016
were downloaded from VirusShare [67], and the malware of all other years was downloaded from AndroZoo, where we
set a threshold of 10 positive detections of VirusTotal [3] in each app’s metadata recorded by Androzoo.

Despite the diversity of AndroZoo in terms of its data sources, we still tried further to diversify our study subjects by
considering Google Play and VirusShare as additional sources. Including Google Play apps ensures that our dataset
captures apps actively distributed on the most widely used official platform, thereby enhancing representativeness
and avoiding biases that may arise from relying solely on AndroZoo. Additionally, VirusShare is a dedicated malware
repository that complements AndroZoo’s malware collection by providing distinct samples that might not be available
elsewhere. Using these additional sources, we ensured greater diversity and comprehensiveness in our dataset, capturing
broader behaviors and compatibility challenges for both benign and malicious apps. One likely attempt would be to
have balanced numbers of samples across these years. However, this is not always feasible in practice—nor necessary
since actual numbers of apps across years are not necessarily balanced.

During our data collection, we excluded corrupted APKs that could not be unzipped or were missing resource
files. While these corrupted apps are not installable, they are not relevant to app incompatibilities. The minSdkVersion

attribute of each app is needed for our study. Thus, for those apps that do not explicitly specify this attribute,8 we
defaulted it as 1 just as Android does [35]. For each app group, we ensured that all the 12 yearly datasets are mutually
disjoint—there are no apps shared by any two of these 12 datasets. Ultimately, we utilized a total of 131,464 (74,545
benign + 56,919 malicious) apps for the installation-time compatibility study.

For the run-time compatibility study, we had to limit the number of samples due to the execution overhead (i.e.,
running each app for five minutes on each of the 10 Android versions). We initially selected the apps from the
installation-time study for each year. However, since many of these apps failed to install on one or more of the Android
versions, we continued selecting additional apps from the respective sources until we had at least 1,000 installable apps
for each year. In total, we used 41,204 (22,529 benign + 18,675 malicious) apps for the run-time compatibility study.

3.3 Experimental Setup and Procedure

To ensure the scalability of our study and control study overheads, we utilized 10 Android virtual devices (AVDs) for our
study. All AVDs were Nexus One devices with 2GB RAM and 1GB SD storage. However, they had different API levels,
specifically 19, 21, 22, 23, 24, 25, 26, 27, 28, and 29. We chose these API versions based on their significant proportions in
the market share distribution of different Android platform versions with respect to the timing and targeted range of
app ages for our study, as justified earlier. We ran these AVDs using the Android emulator [29] provided with each
corresponding Android version.

To generate run-time inputs for exercising apps hence profiling the app behavior—as needed for studying run-time
incompatibilities, we employed the Monkey tool [31], which is included in the Android SDK. The Monkey tool generates
random inputs for apps, which suffice for revealing incompatibilities, if any, in our study—previous works have used this
tool for extensively characterizing the run-time behaviors of benign and malicious apps [10] and effectively detecting
malware [13]; the tool itself also has an industrial level of strength and stability compared to many, more advanced

80.29-1.25% of the apps in our yearly datasets did not specify minSdkVersion.
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research prototypes that are not as stable and widely adoptable. We serialized the app call traces and system logs using
the Logcat tool [30], also part of the Android SDK. To instrument the apps and trace method calls, we utilized our
Android characterization toolkit [15] and dynamic analysis utilities [14]. These tools allowed us to collect the necessary
data for our run-time incompatibility study. To retrieve app manifest data, including theminSdkVersion, targetSdkVersion,
and maxSdkVersion, we used the apktool [71]. For app installation and uninstallation, we utilized the adb tool [26],
which is the Android debug bridge. These tools and utilities facilitated the data collection process for our study.

Using the study facilities mentioned above, we can now provide precise definitions for the terms we previously
mentioned intuitively. For an app installation or uninstallation to a device 𝐴 to be considered successful, the execution
of the install (uninstall) command of adb on the app to device 𝐴 must return a code explicitly indicating success.
An app is considered installation-time compatible with device 𝐴 if it can be installed to and then uninstalled from
device 𝐴 successfully. However, if the app fails to install or uninstall on device 𝐴, it can only potentially be considered
installation-time incompatible with device 𝐴. The reason is that the failure to install an app to a device may not
necessarily be due to (installation-time) compatibility issues. To determine if the failure is truly caused by compatibility
issues with one device, we also tried installing it to another device (i.e., with a different Android version in our study)
until it can be successfully installed on that device or all of the other 9 devices are exhausted. In the end, we consider
that the failure is actually due to compatibility issues with device𝐴 (i.e., the app is indeed installation-time incompatible
with𝐴) if the app can be successfully installed to at least one different device among the 9. By doing so, we exclude apps
that fail to install on a specific device due to reasons other than compatibility issues—i.e., no installation-time-compatible
device can be found among the 10 Android versions we considered.

Additionally, Android does not allow apps with a minSdkVersion higher than the underlying platform’s API level to
be installed [35]. Therefore, we do not consider installation failures of such apps on those platforms as being induced
by (installation-time) compatibility issues. Regarding apps with a maxSdkVersion lower than the underlying platform’s
API level, they are not allowed to install on Android versions of API level 4, 5, and 6. However, since our study focuses
on Android versions of API level 19 or higher, the check policies against maxSdkVersion do not affect our results. 9

In a similar manner, failure in executing an app on a device 𝐴, as indicated by execution error messages, exceptions,
and crashes in the system log, may be attributed to reasons other than (run-time) compatibility issues, such as bugs in
the app or invalid user operations. To exclude failures that are not induced by compatibility issues with a particular
device, we ran the app on various devices with different Android versions (all for five minutes with Monkey inputs).
If the app can successfully run on at least one different device without exhibiting any execution failure symptoms,
but it fails during execution on device 𝐴 (also for five minutes and with the same sequence of Monkey inputs used in
the successful run), we consider the app as run-time incompatible with device 𝐴. Consequently, the error messages,
exceptions, and crashes observed during the failing execution on device 𝐴 are considered as run-time incompatibility
symptoms. Of course, if an app can successfully run on a device 𝐴 without exhibiting any execution failure symptoms,
the app is simply considered run-time compatible with 𝐴.

Given the above process of determining app to be installation-time and run-time compatible or not, one of the
challenges in our study was to identify and exclude irrelevant failures that were not induced by compatibility issues
during app installation and execution. This process was time-consuming, especially when finding successful executions,
due to the significant overhead of dynamic analysis, such as running each app for five minutes and analyzing traces and
system logs for failure symptoms. However, since we installed and executed each sample on eight different Android

9In our initial datasets of year 2010 to 2019, a small percentage (0.52–3.6% with a mean of 2.1%) of apps had maxSdkVersion specified, and an even smaller
number of (less than 5) apps of any year had minSdkVersion higher than 19.
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versions, we were able to exclude irrelevant failures for each version by referring to the results obtained from the other
seven versions. We would have needed to try additional devices only if the installation or execution of an app failed on
all eight versions, which fortunately did not occur for any of the samples in our study.

3.4 Measurements

To address our research questions, we calculated several measures for both classes of app incompatibilities. For
installation-time incompatibilities, we computed the installation-time incompatible rate (IIR) for each set of apps (apps
from a specific year) with respect to an API level. This rate represents the percentage of apps that cannot be successfully
installed on the AVD with that API level. We also computed the distribution of IIR over major installation-time
incompatibility effects (i.e., symptoms) so as to understand the causes of the respective compatibility issues according
to how we bridge the effects and causes as described earlier. Additionally, we examined the evolutionary pattern of
installation-time incompatibilities by studying the changes in both the IIR and the distribution of IIR measures over
time (years).

Similarly, for run-time incompatibilities, we calculated the run-time incompatible rate (RIR), but separately for the
two subclasses: incompatible launch and incompatible running. We further analyzed the distribution of RIR based on
major run-time incompatibility effects (symptoms).

In addition, we performed a series of statistical analyses to identify correlations between app incompatibilities and
various properties of the Android platform and its apps. Specifically, we focused on compatibility-related platform
properties such as release year andAPI level, which have been studied in priorworks [40, 47]. Additionally, we investigated
several app properties that could potentially impact app incompatibilities, including minSdkVersion, app (creation) year,
app lapse, and API lapse10. We obtained the SDK release years according to the Android version history [32].

We proposed and studied the two derivative properties (app lapse and API lapse) because intuitively they can be used
to examine the length of Android’s forward and backward compatibility with apps [47]. To measure the correlations
of interest, we calculated the Spearman’s correlation coefficients [57] for relevant variables. We chose this method
because it is a non-parametric correlation statistic that does not assume the normality of the underlying data points.
In interpreting the correlation strengths, we referred to [5] and considered the absolute value of the coefficient. A
coefficient range of [0.0, 0.09] indicates a very weak or negligible correlation, [0.1, 0.29] suggests a weak correlation,
[0.3, 0.49] represents a moderate correlation, [0.5, 0.69] indicates a strong correlation, and [0.7, 1.0] signifies a very
strong correlation.

Next, we present the findings from our empirical studies on installation-time and run-time incompatibilities in
Android apps. Our studies aim to examine the prevalence, contributing factors, effect (symptom) and cause distribution,
and security relevance of these incompatibilities from an evolutionary perspective. To enhance clarity, we have
conducted two separate studies: Study I focuses on installation-time incompatibilities (Section 4), while Study II focuses
on run-time incompatibilities (Section 5). In both studies, we address three research questions and discuss the major
findings pertaining to these questions. Within each of these six research questions, we address our cross-cutting concern
regarding the security relevance of app compatibility/incompatibility by examining both the common characteristics
and differences between the two app groups in terms of each of the three aspects (i.e., prevalence, effect/symptom
distribution, and contributing factors). On top of these research questions, we also extend our investigation to examine

10Here, app lapse refers to the difference between the SDK release year and the app year, while API lapse represents the difference between the platform’s
SDK API level and the app’s minSdkVersion. That is, app lapse = (SDK release year – app year) and API lapse = (platform’s SDK API level – app
minSdkVersion)
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how incompatibility patterns observed in our main study translate to the newest Android versions. We randomly
sample apps from all years in our dataset (2010-2021) and analyze both installation-time and run-time incompatibility
issues. Thus, in total, we will have 13 answers to be presented as 13 major findings, as summarized in respective finding
boxes hereafter.

4 STUDY I: INSTALLATION-TIME INCOMPATIBILITIES

As previously stated, an app is considered to be installation-time compatible when it can be both installed and
uninstalled successfully. Commonly, if an app can be successfully installed on a device, it is expected that it should also
be successfully uninstalled from the same device. Our study findings validated this expectation, as all the subject apps
that were successfully installed to any device were also successfully uninstalled from that device.

4.1 RQ1: Prevalence of Installation-Time App Incompatibilities

Figure 2 illustrates the overall IIR of the studied benign versus malicious apps across the twelve-year period, as well as
the collective IIR of all the benign and malicious apps considered in this study as an aggregated dataset (referred to
as "all of 12 years"), despite the varying symptoms of installation failures. Note that the overall average is computed
as a weighted mean with the weights being the numbers of benign/malicious apps of individual years used for the
installation-time incompatibility study (see Table 1), in order to account for the uneven numbers of samples we have
from different years.

Common characteristics. Regardless of being benign or malicious, a high-level common observation for apps of both
groups reveals that, within each yearly dataset, the failure rate remained relatively consistent across almost all of the
ten different Android versions for all the studied years, suggesting a generally negligible impact of the platform’s API
level on app installation compatibility. In fact, the combined results of all the apps confirmed this overall observation.

However, results for the latest two years (2020 and 2021) show a distinctive pattern: for benign apps, while the
IIR on API 19 increased significantly (reaching 23.03% in 2021), the failure rates on newer API levels (27-29) dropped
notably (around 6-7%). This represents a dramatic shift from 2019 (where API 28-29 showed approximately 40% IIR),
suggesting a major change in development practices. This pattern differs from the previous years (2018-2019) where
high IIRs were seen across multiple older API levels (19-23). The reason lies in developers’ compatibility attempts: most
newer apps specified a minSdkVersion targeting newer API levels, leading to installation failures on older platforms
but ensuring better compatibility with newer ones. Notably, this strategic targeting has resulted in a clear three-tiered
pattern in 2020-2021: very high IIR for API 19 (>20%), moderate for APIs 21-26 (7-10%), and low for APIs 27-29 (<7%).
This implies that developers have become increasingly conscious of app compatibility requirements, particularly with
newer Android platforms (API 24 and above).

Similarly, for malware, the pattern is also notably different in years 2020–2021, showing consistently high IIRs across
most API levels (ranging from 33% to 39%), with API 19 showing particularly high rates (reaching 32.01% in 2021). This
uniformity in high IIRs suggests systematic compatibility issues rather than targeted version support. An interesting
observation is the steady increase in IIRs from 2019 to 2021 (38.94% to 32.20% overall), indicating growing installation
challenges for malicious apps despite improved Android compatibility mechanisms—an interesting, natural defense line
against malware.

Another consistent pattern across both benign and malicious apps is the notably lower IIR on API 27 compared to
other API levels. This unique characteristic persists even in the newer API levels (28 and 29), which generally show
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Fig. 2. Installation-time incompatibilities in terms of IIR in benign apps (𝑦 axis, top) and malicious apps (𝑦 axis, bottom) over the
twelve studied years of 2010 through 2021 and the combined results for all of the 12 years (𝑥 axis).

similar IIR patterns to APIs 24-26. This "API 27 effect" is particularly pronounced in malware (11.57% compared to 28%
for surrounding API levels), suggesting specific technical characteristics of this API version that affect installation
compatibility differently. Looking at the overall trends across all years, benign apps show an average IIR of 14.12%
while malware exhibits a significantly higher average of 25.29%, demonstrating that malicious apps continue to face
greater installation-time compatibility challenges across Android versions.

The combined results across all twelve years (2010-2021) show that while there is some variation in IIR across different
API levels, these differences are less pronounced than in individual years, suggesting that the Android ecosystem has
generally evolved to provide more consistent compatibility behavior across versions, particularly for newer APIs (24-29).
This evolution shows a clear pattern of convergence in benign apps’ IIRs for newer APIs (standard deviation decreasing
from 13.2% in 2019 to 2.1% in 2021 for APIs 27-29), while malware maintains more volatile patterns.

Notably, there was no clear or consistent association between dataset sizes and IIR, suggesting that the significant
variations in dataset sizes did not substantially impact these general observations. This independence from dataset size
holds true across both app types and all API levels studied.

Finding 1: Over the twelve years studied, installation-time app incompatibilities persisted independently of

Android versions overall, yet Android API levels 19 and 27 had greater improvements in resolving app installation

compatibility than other SDK versions.

Benign apps versus malware. As discussed above, these two app groups have much in common in installation-time
compatibility, including the evolutionary trends and the effects of Android platform versions (API levels). The differences
are mainly twofold.

First, in terms of absolute numbers, malware continues to show higher installation failure rates than benign apps.
Specifically, over the individual app years, the IIR of benign apps ranged from low rates in early years (0.01-0.45% on
API 19 during 2010-2017) to higher rates in recent years (reaching 45.58% on API 23 in 2019). The aggregate IIR across
all years for benign apps was 14.53%. In contrast, malware exhibited consistently higher incompatibilities, with IIR
Manuscript submitted to ACM
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reaching up to 45-46% across multiple API levels in 2019, and particularly high rates in 2020-2021 (peaking at 38.72% on
API 24 in 2020). The aggregate IIR across all years for malware was 24.25%. Per our inspection, we found that the main
reason for this persistent gap between malware and benign apps is that a large portion of the malware is repackaged.
Repackaging is well-known as a common practice and productive way of producing malware [48], which tends to result
in invalid APKs11 and other complex compatibility issues. In fact, as we presented and discussed later in Section 4.2,
our malware datasets have seen a higher presence of invalid APKs, especially in the malware from 2010 and 2017, as a
more frequent installation failure symptom. In comparison, our benign apps have little inclusion of repackaged apps,
which is consistent with earlier findings about repackaging in benign apps [17].

Second, the evolution of IIR patterns across years reveals distinct characteristics between the two groups. While
benign apps show clear phase transitions over time (from consistently low rates in 2010-2017, a sharp increase in
2018-2019, to a more targeted pattern in 2020-2021), malware demonstrates a more gradually increasing trend. This is
particularly evident in the progression of peak IIRs: malware shows steadily increasing maximum rates across years
(from 8% in 2010 to 47% in 2019, maintaining 33-39% in 2020-2021), whereas benign apps show more abrupt changes
(staying below 20% until 2017, jumping to 40% in 2018-2019, then dropping to selective high rates only for specific APIs
in 2020-2021). These distinct evolutionary patterns suggest fundamentally different approaches to API compatibility
between legitimate and malicious development – benign apps show evidence of adaptive responses to platform changes,
while malware exhibits a pattern of consistently increasing installation challenges across the Android ecosystem.

A distinctive pattern emerges in 2020-2021: both groups show increased IIRs on API 19 (reaching 23.03% for benign
apps and 32.01% for malware in 2021), suggesting that maintaining backward compatibility with very old Android
versions remains challenging. However, the patterns diverge significantly for newer APIs, with malware showing
consistently high IIRs (27-42% across APIs 21-26) compared to benign apps (7-15% for the same range). This divergence
is particularly pronounced in the transition between API levels—while benign apps show sharp drops in IIR between
certain API levels (e.g., 23.03% to 11.96% between API 19 and 21 in 2021), malware maintains more uniform failure rates
across consecutive APIs, suggesting different compatibility management approaches between legitimate and malicious
app developers.

Finding 2: Overall, malware continues to experience higher installation-time incompatibility issues than benign

apps (with average IIR of 24.25% versus 14.53%). While benign apps show clear phase transitions in compati-

bility patterns over time, malware exhibits steadily increasing incompatibility rates across years, reaching and

maintaining high IIRs across most API levels in recent years.

4.2 RQ2: Distribution of Installation-Time App Incompatibility Symptoms

Figure 3 illustrates the distribution of installation failure effects due to compatibility issues across the 9 failure effects
with non-trivial (at least 1%) app attribution in this study. These effects were error codes, such as
INSTALL_FAILED_INVALID_APK, detected during installation using adb. Although we calculated the distribution for
each Android version separately, the distributions were highly similar. Thus, we present and analyze the aggregate
distribution, combining installation failure effects across all of ten Android platform versions for each app year.

11These invalid APKs are different from the corrupted ones we discarded during data collection as discussed in Section 3.2 that cannot be unzipped or
have missing resource files—they are invalid mainly due to inconsistent code format and structure across different code regions within the Dex files,
which cannot be readily observed until actually getting installed to a device.
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Fig. 3. Percentage distribution of installation-time incompatible benign apps (𝑦 axis, top) and malicious apps (𝑦 axis, bottom) across
the ten studied years of 2010 through 2021 over the varied symptoms they exhibited as observed in their installation failures.

Common characteristics. Despite the diverse range of symptoms, it is clear that for both benign apps and malware
there are only relatively a few noticeable types of symptoms, especially in benign apps. As a result, even after we
dismissed the symptoms with a trivial app attribution, many of the (non-trivial) 9 symptoms still do have a readily
visible representation on the charts. In particular, the single most (commonly between the two app groups) dominant
symptom was INSTALL_FAILED_NO_MATCHING_ABIS. In fact, the majority of failed installations (86.38% in benign apps
and 90.06% in malware across all years) were attributed to this error12, which indicates that the apps utilized native
libraries incompatible with the processor architecture. For instance, installing an app built for Intel x86 CPUs to a device
with the ARM architecture would fail with this error.

A notable shift is observed in the latest years (2020-2021), where INSTALL_FAILED_OLDER_SDK emerged as a
significant symptom in both benign apps (reaching 39.58% in 2021) and malicious apps (reaching 19.64% in 2021). This
indicates an increasing trend of apps targeting newer SDK versions, leading to compatibility issues with older
platforms in Android.

Another notable symptom common between the benign and malicious apps in earlier years was
INSTALL_FAILED_MISSING_SHARED_LIBRARY. Specifically, this symptom showed higher prevalence in benign apps
(averaging 4.50% overall), with peaks in certain years like 2012 (16.96%); for malware, while historically significant
before 2014, its prevalence has decreased to zero in recent years after 2017. These failures were caused by the use of
12According to how we excluded non-compatibility-induced installation failures (§ 3.3), it was confirmed that these apps ran normally (did not crash nor
encounter such errors) on at least one different Android version out of the ten studied, an essential part of our experimental methodology.
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libraries that were missing from the underlying Android framework, hence symptomized as the error code of
INSTALL_FAILED_MISSING_SHARED_LIBRARY. The situation often occurred due to the removal of those libraries
during vendor customizations.

Finding 3: The primary cause of installation failures in apps was their dependency on architecture-incompatible

native libraries, accounting for over 86% of cases in benign apps and 90% in malware across all years studied. This

dominance persisted through 2019, but showed a notable decline in 2020-2021 where it dropped to around 60-70%

due to the emergence of newer Android SDK versions incompatibilities with their older versions as another major

cause (reaching 39.58% in benign apps and 19.64% in malware by 2021).

Benign apps versus malware. For the benign apps, aside from INSTALL_FAILED_OLDER_SDK becoming significant in
2020–2021 (reaching 39.58%), no other substantially notable symptoms were observed beyond the common two (e.g.,
INSTALL_FAILED_NO_MATCHING_ABIS and INSTALL_FAILED_MISSING_SHARED_LIBRARY) that dominated their failure
distributions. This suggests that benign apps were largely consistent in their compatibility behaviors, with newer apps
experiencing issues primarily tied to outdated SDK requirements. The rise of INSTALL_FAILED_OLDER_SDK in recent
years also reflects developers increasingly targeting higher API levels, potentially as a response to platform evolution
and security updates.

In the malware group, however, the symptoms were clearly more diverse and exhibited significant year-to-year
variations. In addition to the common symptoms, several notable issues emerged, such as
INSTALL_PARSE_FAILED_NO_CERTIFICATES, which persisted as a secondary but consistent contributor to installation
failures and peaked at 19.86% in 2020. Notably, while these issues were occasionally observed in benign apps, their
prevalence in malware was significantly higher, suggesting a stronger association with poor or malicious APK
construction practices.

Specifically, the symptom INSTALL_FAILED_INVALID_APK tends to be more malware-specific, as it is rarely present
in benign apps. This partly confirms what we found during our further inspection when examining the generally
much higher IIR in malware than in benign apps (Section 4.1). The widespread adoption of repackaging in malware
construction has contributed significantly to this symptom. Repackaging often leads to improper or corrupted APK
composition/format, rendering many malicious apps invalid for installation. This symptom was particularly prevalent
in earlier years, such as 2010, 2011, and 2015, but has steadily declined in recent years, dropping to below 1% (hence
invisible in the figure) in 2019–2021. This decline may reflect an evolution in malware construction techniques, with
attackers adopting more sophisticated methods to bypass installation barriers.

Our further investigation revealed another two main reasons that led to so many invalid APKs. The first is a signature
mismatch, where the APK file has an incorrect or mismatched signature—Android requires that APK files be signed
with appropriate certificates and keys, a requirement that quite some malicious apps do not meet. If the APK file
has been modified or is signed with a different certificate, the installation will fail with this symptom. This situation
commonly occurs when attempting to install an updated or a modified version of an app, which apparently is again
related to the high prevalence of repackaging in malware production—the repackaging process naturally results in
the updates/modifications that cause certificate inconsistencies. The second is insufficient permission: If the APK file
requires certain permissions that are not granted on the Android device, the installation can fail. A plausible further
explanation for this cause of invalid malware APKs is that malware often asks for excessive permissions. Note that
some other known reasons for this symptom, such as APK corruption and installation of apps with the same package
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Fig. 4. Distribution of IIR (encoded by square color) over app lapse (𝑦 axis) and API lapse (𝑥 axis) between benign (top) ver-
sus malicious (bottom) apps, for all symptoms (leftmost) and the two dominating ones that are common to two app groups:
INSTALL_FAILED_NO_MATCHING_ABIS (middle) and INSTALL_FAILED_MISSING_SHARED_LIBRARY (rightmost).

names, were not relevant here: the corrupted APKs (i.e., those that cannot be unzipped or have missing resource files)
were ruled out during our data collection (Section 3.2), and we assured that each app installation was attempted on a
clean device (i.e., in the fresh status without any app installed).

Another significant malware-specific symptom, INSTALL_PARSE_FAILED_UNEXPECTED_EXCEPTION, while showing
high percentages in earlier years (13.17% in 2010), has seen a decline in recent years (below 0.5% in 2020-2021). The
main underlying reason relevant with respect to our experimental procedure is that the APK file has syntax errors or
incorrect formatting in its manifest file or other essential components. The Android package installer expects the APK
file to adhere to specific XML formatting rules. When there are any inconsistencies or errors in the APK’s manifest or
resource files, the APK will fail to be parsed with unexpected exceptions. Other reasons include conflicts with libraries
or dependencies, especially those that are external, and resource/asset issues (e.g., those with incorrect file paths or
unsupported file formats). Once again, these miscellaneous symptoms are more or less related to how the malicious
apps were produced (e.g., through integrating heterogeneous components of incompatible/inconsistent sources, such as
during repackaging).

Finding 4: Compared to benign apps, malware has exhibited more diverse symptoms of installation failures.

While invalid APKs and parsing failures were historically significant (up to 13% for unexpected exceptions), recent

years (2020-2021) show new patterns with certificate issues (up to 19.86%) and SDK version incompatibilities

(up to 19.64%) becoming dominant, in addition to the common symptoms that cover most of the benign apps’

installation-time incompatibility issues.

4.3 RQ3: Contributing Factors of Installation-Time App Incompatibilities

To gain further insights into the causes of installation-time incompatibilities and inform on developing strategies for
addressing these issues, we analyzed the distribution of IIRs based on both app lapse and API lapse. This analysis is
Manuscript submitted to ACM
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visualized in the heatmaps shown in Figure 4, which includes the overall distribution as well as separate distributions
for the two prevalent symptoms that were found (in Section 4.2) common to both the benign and malware app groups.
In every heatmap, each row of color squares represents the various API lapse values (i.e., API level deltas) and each
column the app lapse values (i.e., #years), forming a matrix. Since there are not always apps corresponding to each pair
of API lapse and app lapse values, some elements in the matrix correspond to zero IIR values simply because there are
no apps associated with the respective pair of lapse values—not because the apps had an average IIR of zero (i.e., having
seen no installation-time compatibility issues at all).

Common characteristics. The overall distribution (left) reveals a more complex pattern of installation-time
compatibility issues than previously observed. Instead of clear correlation with API lapse ranges, the heatmaps show
scattered hotspots of higher IIRs across various combinations of app and API lapses. These hotspots appear as localized
regions of elevated installation failures, suggesting that compatibility issues have become more nuanced and less
predictable based on version differences alone.

A notable pattern emerges in the form of diagonal clusters of higher IIR values, particularly visible when API lapse
values range between 15–25. This diagonal distribution suggests that installation failures are influenced by the interplay
between chronological development timing (app lapse) and SDK version differences (API lapse), rather than either factor
in isolation. These findings indicate that apps targeting platforms with a substantial API lapse—while maintaining
a moderate app lapse—face increased challenges due to evolving platform requirements and developer adaptation
strategies in the Android ecosystem.

The impact of app lapse has evolved to show more significance than previously observed, particularly in negative
app lapse regions (where apps are older than their target SDKs). This indicates that apps developed before their target
SDK’s release face distinct compatibility challenges, potentially due to mismatches in API evolution and app features.
However, these challenges manifest differently across API lapse values, suggesting a multi-dimensional relationship
between development timing and API level (SDK version) differences.

When examining symptom-specific distributions, distinct patterns emerge for INSTALL_FAILED_NO_MATCHING_ABIS
(middle) versus INSTALL_FAILED_MISSING_SHARED_LIBRARY (rightmost). ABI-related failures show more concentrated
hotspots, indicating that hardware compatibility issues cluster around specific app-age and SDK-version combinations.
In contrast, library-related failures exhibit a more dispersed pattern, suggesting that framework compatibility issues
are less tied to specific combinations and are more broadly distributed across different app and API lapse values. This
broader distribution reflects the varied nature of shared library dependencies and the complexities of addressing them
across diverse Android devices.

These patterns suggest that installation-time compatibility has evolved into a multi-dimensional challenge where
successful installation depends on intricate interactions between development timing, SDK version differences (between
app specification and the hosting platform), and specific types of compatibility requirements. The emergence of diagonal
IIR clusters and symptom-specific behaviors highlights the need for developers to adopt more sophisticated testing and
compatibility strategies, targeting specific app and API lapse interactions to mitigate failure risks.

The Spearman correlation coefficients presented in Table 2 reveal several moderate or stronger relationships common
to both app groups, underscoring the role of technical factors in installation compatibility. For benign apps, we observe
moderate correlations between ABI-related failures and both API lapse (0.34) and minSdkVersion (-0.30). Similarly,
malware exhibits slightly stronger correlations with API lapse (0.38) and minSdkVersion (-0.34) for ABI failures—and
much stronger over all symptoms (0.45 and 0.43 for API lapse andminSdkVersion, respectively). These consistent patterns
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Table 2. Spearman correlation coefficients(moderate or stronger coefficients in boldface) between IIR and contributing factors

App group Symptom app lapse API lapse minSdkVersion SDK API level app year
overall -0.02 0.31 -0.28 0.06 0.06

Benign ABI 0.04 0.34 -0.30 0.14 0.04
LIB 0.19 0.24 0.17 0.24 -0.10
overall -0.07 0.45 -0.43 0.08 0.12

Malware ABI -0.06 0.38 -0.34 0.12 0.13
LIB 0.15 0.15 -0.11 0.13 -0.11

highlight the influence of SDK version differences, with API lapse positively correlated and minSdkVersion negatively
correlated with installation failures. This suggests that larger gaps in API lapse or poorly aligned minSdkVersion values
increase the likelihood of ABI-related compatibility issues.

Generally, the correlation between IIR and the apps’ minSdkVersion is similar to that with API lapse. Considering
that API lapse is essentially based on the minimum SDK version specified in apps, the similarly strong correlation here
indicates that minSdkVersion contributes significantly to the correlation strength observed between IIR and API lapse.

Both groups show weak correlations between installation failures and chronological factors, such as app lapse (-0.02
for benign, -0.07 for malware), SDK API level (0.06–0.08), and app year (0.06–0.12). These results indicate that temporal
aspects of development, including when an app was created relative to its target SDK, play a minimal role in determining
installation compatibility. Instead, compatibility challenges are driven more by SDK version (API level) mismatches
than by the timing of development (either that of the app and the Android platform/SDK).

Library-related failures (LIB) exhibit weak correlations across all factors for both groups, with coefficients generally
below 0.24. This suggests that library compatibility issues are likely governed by more complex interactions, such as
dependency management and platform-specific behaviors, which are not fully captured by simple metrics like API
lapse or minSdkVersion specifications.

These patterns indicate that installation-time compatibility issues in Android apps, regardless of being benign or
malicious, are primarily influenced by technical version differences (API lapse and minSdkVersion). The weak influence
of chronological development factors underscores the fundamental role of version alignment in the Android ecosystem.
Developers and security practitioners should focus on addressing version-related compatibility challenges, especially
for ABI-related issues, to improve installation success rates and enhance defenses against malware.

Finding 5: Installation-time compatibility shows moderate correlations with both API lapse and minSdkVersion,

with malware exhibiting stronger relationships than benign apps. Rather than a clear "safe range," compatibility

issues manifest in scattered hotspots across version differences, suggesting that installation failures are influenced

by complex interactions between SDK targeting and platform versions. Hardware-related incompatibilities (ABI)

show more concentrated patterns of failure compared to the more dispersed framework customization issues (LIB).

Benign apps versus malware. While both app groups show similar overall patterns of installation-time compatibility
issues, there are notable distinctions in how version-related factors affect their installation success. The correlation
analysis reveals consistently stronger relationships in malware compared to benign apps—–for both API lapse (0.45
vs. 0.31) and minSdkVersion (-0.43 vs. -0.28). This indicates that SDK version differences more strongly influence
installation compatibility for malicious apps, likely due to their frequent use of repackaging or incomplete adherence to
Manuscript submitted to ACM
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platform standards. That the slightly stronger correlations observed in malware highlight its sensitivity to API lapse
and minSdkVersion mismatches also suggests malware’s reliance on compatible API configurations to ensure successful
installation as facilitation of defense against malware.

The heatmap visualizations further underscore these distinctions. Malware exhibits more concentrated hotspots of
installation failures, while benign apps show more dispersed patterns. This suggests that malware’s installation-time
compatibility issues are comparatively more predictable based on version relationships, possibly due to their systematic
targeting of specific platform versions or configurations to maximize impact. For ABI-related failures, malware shows a
slightly stronger correlation (0.38) compared to benign apps (0.34), reflecting a more systematic dependence on version
alignment. On the other hand, library-related failures show weak correlations for both groups (0.15–0.24), indicating
that such issues may arise from more varied and less version-dependent factors, such as specific device environments
or library dependencies.

Interestingly, the diagonal patterns of high IIR values are more pronounced in malware, highlighting the combined
effect of app lapse and API lapse in determining installation success. This diagonal clustering suggests that malicious
apps face heightened compatibility challenges when targeting platforms with significant API differences, especially
when their development timing more distantly misaligns with the platform’s SDK release. This may reflect different
development practices in malware creation, such as a greater reliance on automation or less rigorous testing, compared
to the more structured development processes typically seen in benign apps.

Finding 6: Malware incompatibilities exhibit systematically stronger correlations with version-related factors

compared to benign apps, particularly for factors such as API lapse and minSdkVersion. While framework

compatibility issues remain similarly dispersed across both app groups, hardware compatibility issues show more

concentrated patterns in malware.

5 STUDY II: RUN-TIME INCOMPATIBILITIES

We present our empirical findings on run-time app incompatibilities, following a similar structure to our study on
installation-time incompatibilities (Section 4). Per our qualification of run-time compatibility issues, two categories
of such issues are anticipated in general: incompatible launch and incompatible running. Thus, we initially intended
to study both categories. However, our analysis revealed that none of the apps in our datasets were associated with
incompatible launch issues. Therefore, in the subsequent sections, we focus exclusively on the second category of
run-time incompatibilities—–specifically, incompatible running.

5.1 RQ4: Prevalence of Run-Time App Incompatibilities

In a similar visual format to Figure 2, Figure 5 showcases the overall RIR (Run-time Incompatible Rate) of our benchmark
apps across each yearly dataset and the combined RIR of all benchmarks (referred to as "all of 12 years"). The numbers
in this combined group are the weighted averages of per-year RIRs across all the 12 years studied for each platform
version (API level), where the weight for each year is the number of benign/malicious apps we sampled from that year
as used for run-time incompatibility study (see Table 1).

Common characteristics. A notable pattern emerges across both benign and malicious apps: API level 26 consistently
exhibits high RIRs, ranging from approximately 40–63% for benign apps and 32–52% for malware in recent years.
This persistent pattern highlights the challenges posed by API 26, likely due to significant changes introduced in this
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Fig. 5. Run-time incompatibilities in terms of RIR in benign apps (𝑦 axis, top) and malicious apps (𝑦 axis, bottom) over the twelve
studied years of 2010 through 2021 and the combined results for all of the 12 years (𝑥 axis).

version, such as mandatory background execution limits and stricter permission controls, which require substantial app
adjustments. In contrast, newer APIs (28 and 29) demonstrate significantly lower RIRs, typically below 5%. This stark
improvement underscores substantial advancements in handling run-time compatibility issues in the latest Android
versions, reflecting both platform maturity and developer adaptation.

Older APIs, such as API 19 and API 23, also display distinctive patterns. API 19, as the oldest version studied,
consistently shows elevated RIRs, reaching a peak of 70.41% for benign apps in 2016. API 23, which introduced the
runtime permission model, presents similarly high RIRs, such as 67.71% for benign apps in 2017. These high rates
highlight the significant compatibility challenges associated with major platform changes, particularly during their
initial years of adoption [20].

A clear temporal trend is evident: apps from 2014–2017 exhibit notably higher RIRs (often exceeding 50% on specific
API levels in benign apps), compared to more recent years (2018–2021), where RIRs generally remain below 30%,
with the exception of API levels 26 and 27. This temporal decline indicates that newer apps have benefited from
improved development practices, enhanced testing tools, and better alignment with evolving platform requirements.
These findings suggest that developers have adapted to platform changes more effectively over time, leading to fewer
compatibility issues at runtime.

Interestingly, the explicit specification of higher minSdkVersion in recent years (2018–2021), while increasing
installation-time compatibility issues as discussed earlier, appears to have brought significant benefits for run-time
compatibility. This is particularly evident for newer API levels (28 and 29), where RIRs consistently remain below 5%.
This indicates that developers’ deliberate attempts to align their apps with newer platform features and
requirements [74] have successfully reduced run-time issues, even at the cost of introducing installation barriers.

Finding 7: Run-time incompatibilities show distinct patterns across API levels: older versions (19-23) exhibit

high RIRs (up to 70% in some years), while the newest versions (28-29) maintain consistently low rates (below 5%).

API 26 stands out with persistently high RIRs (40-63%) across all years, while temporal trends show decreasing

incompatibilities in apps from 2018-2021 compared to earlier years.
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Benign apps versus malware.While the general pattern of RIR variation across API levels shows similarities between
the two app groups, notable distinctions emerge in their overall incompatibility rates and specific API-level behaviors. On
average across all studied years, benign apps exhibit a higher overall RIR of 20.77% compared to malware’s 14.48%. This
disparity is particularly evident during specific periods—most notably from 2013–2017, when benign apps consistently
showed elevated RIRs above 23% (peaking at 28.85%), while malware maintained comparatively lower rates between
11–15%. These differences suggest that benign apps faced greater challenges adapting to evolving platform requirements
during this time, potentially due to a wider variety of app features and use cases.

API-specific patterns further highlight these distinctions. For benign apps, run-time incompatibilities are particularly
pronounced for API 26, where RIRs reached up to 63.60% in 2021, and API 23, which peaked at 67.71% in 2017. These
peaks reflect significant challenges introduced by the corresponding platform changes—–API 26’s introduction of
background execution limits and stricter permission handling, and API 23’s implementation of the run-time permission
model [20]. These platform changes likely required developers to make substantial adjustments, contributing to the
higher RIRs observed in benign apps.

In contrast, malware exhibits a slightly different pattern. While malware also shows elevated RIRs for API 26 (ranging
from 40–52%), its rates are generally lower across other API levels. This includes notably better compatibility on newer
APIs (28–29), where RIRs remained consistently below 7%. This improved compatibility in newer APIs may indicate
that malware authors are increasingly optimizing their apps to align with modern platform requirements, potentially to
evade detection or improve installation success across a broader range of devices.

Interestingly, benign apps demonstrate a higher sensitivity to platform changes, with larger fluctuations in RIRs
across API levels and over time. Malware, on the other hand, shows more stable patterns, suggesting a more deliberate
focus on maintaining compatibility with specific platform configurations. This difference may stem from the fact
that benign apps often integrate a wider variety of features and dependencies, leading to more complex compatibility
challenges. Malware, by contrast, tends to focus on fewer, more targeted functionalities, enabling better alignment with
platform requirements.

Another key observation is the declining RIRs for both app groups in newer APIs (28 and 29). For benign apps, this
reflects improved development practices and better adaptation to platform updates. For malware, this trend highlights
an evolution in construction practices, where compatibility optimization is likely becoming a priority for maximizing
reach and avoiding runtime issues that could expose malicious behavior.

To understand this persistent difference, we looked into the run-time behaviors of these studied benign apps versus
malware from the perspective of code structure in terms of calling relationships, especially those among the three
typical code layers of an Android app: user code, SDK, and third-party libraries [17]. We found that the studied (1)
benign apps generally have much higher percentages of calls within the SDK (i.e., calls to one SDK API from another
SDK API) than malware, whereas (2) the malicious apps generally have much lower percentages of calls from third-party
libraries (noted as 3rdLib) to SDK. These findings are highly consistent with those from an earlier study comparing the
run-time behaviors between benign apps and malware from the same code-structure/cross-layer-calls perspectives [10],
where the differences between the two app groups in terms of (1) and (2) were both found statistically significant (in
terms of 𝑝 values) and large (in terms of effect sizes), although we did not use the same dataset as in that prior study.

Here the SDK-to-SDK calls represent the behaviors of the Android framework itself, while the 3rdLib-to-SDK calls
represent the behaviors of third-party libraries with respect to their use of the framework capabilities13. Thus, the

13Note that Android apps, benign or malicious, are known as heavily framework-based [10, 17] in general, meaning that in both app groups the majority
of app functionalities are provided by the framework, rather than being developed by the app developers specifically for the apps.
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higher RIR in benign apps suggests that run-time incompatibilities seen by Android apps may be considerably attributed
to the incompatibility between the Android framework and the underlying Android device [68–70]. This is consistent
with the results from our study on installation-time incompatibilities (i.e., Section 4), where we discovered that the
primary reason for the studied apps failing in that first line of compatibility was their dependency on native libraries
that are incompatible with the (CPU) architecture of the Android device that the apps run on.

Meanwhile, our closer examination also revealed that (3) the studied benign apps have notably higher percentages of
calls from user code to SDK. Keeping this in mind while putting together the higher RIR of benign apps than malware
and their difference in terms of (2), we see that the various third-party libraries used in Android apps seem to have
done a better job than the app-specific user code in using the Android SDK APIs in a compatible manner. And this
further difference in terms of (3) between the two app groups provides another point of explanation for the higher RIRs
seen by the benign apps than those by the malware among our studied apps. In fact, a number of prior peer studies
have found that incompatible use of SDK APIs is a major reason for widespread compatibility issues in Android apps,
referred to as API/evolution-induced incompatibilities [40, 43, 47, 50, 53, 60, 61, 72].

Finding 8: Once successfully installed, malware shows lower overall run-time incompatibilities than benign apps

(14.48% versus 20.77% on average), with particularly better compatibility on newer APIs (28-29). While both groups

exhibit high RIRs on API 26 (40-63%), malware maintains more consistent failures rates across API levels. These

contrasts may be explained by the run-time behavior differences between the two app groups.

5.2 RQ5: Distribution of Run-Time App Incompatibility Symptoms

Figure 6 illustrates the distribution of app execution failures across various run-time incompatibility symptoms. These
symptoms are represented by 11 keywords (as listed in the legend), which are the most frequently appeared patterns in
the traces of failed app executions. Similarly to how the aggregated distribution of installation-time incompatibility
symptoms for each app year (that encompasses all Android versions) is presented in Figure 3, here we show the
aggregated distribution of run-time incompatibility symptoms for each app year over all the Android versions given
the similarity of per-version distributions.

Common characteristics. For both benign and malicious apps, the three dominant symptoms across all app years were
verify error, null pointer (dereference), and native crash, listed in descending order of dominance. Despite fluctuations in
their relative proportions, these symptoms consistently remained significant over the years.

The prevalence of verify error strongly suggests that SDK/API changes were likely the primary cause of these
incompatibilities. Apps compiled against older SDKs and executed on newer ones often experience inconsistencies in
bytecode verification, leading to verify error. Such inconsistencies are a major cause of verify errors [36, 63], especially
when platform changes introduce stricter validation rules.

Null pointer exceptions, in this context, often appear as derivative symptoms resulting from underlying issues
caused by verify error or native crash. These compatibility-induced run-time conditions cascade into unexpected null
dereferences. Therefore, SDK/API changes are considered the primary cause of run-time incompatibilities in both
benign apps and malware.

Native crash errors, which are attributed to issues in the Android native (C/C++) code layer, further compound
these compatibility challenges. Bugs in the Android Support Library [62] and limited API support—–less than 23% of
newly introduced APIs were supported [40]—–are notable contributors to this symptom. Although intended to alleviate
Manuscript submitted to ACM



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Characterizing Installation- and Run-Time Compatibility Issues in Android Benign Apps and Malware 25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Verify error

Unsatisfied link

Security

Null Pointer

No Class

Native Crash

lang.error

Linkage error

Illegal State

Activity not found

Class Cast

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Verify error

Unsatisfied link

Security

Null Pointer

No Class

Native Crash

lang.error

Linkage error

Illegal State

Activity not found

Class Cast

Fig. 6. Percentage distribution of run-time incompatible benign apps (𝑦 axis, top) and malicious apps (𝑦 axis, bottom) across the ten
studied years of 2010 through 2021 over the varied symptoms they exhibited as observed in their run-time failures.

compatibility issues, the Support Library often became a source of additional run-time failures due to its incomplete
API coverage.

Beyond these prominent symptoms, two additional observations are common to both app groups. First, for apps of any
given year, a variety of other symptoms are notably represented. These include Unsatisfied link errors—–caused when
the definition of a native method is missing; Null pointer exceptions; lang.error (i.e., java.lang.Error, representing
serious and unrecoverable runtime errors); and Activity not found—–which occurs when a call to startActivity is
invoked against a nonexistent Activity component. While these symptoms are not as prominent as the top three, they
collectively form a significant portion of the run-time error landscape.

Second, despite the variety of symptoms observed, there was no consistent pattern in how their proportions among
the eleven main categories evolved over the twelve years of this study. Both malware and benign apps exhibited
fluctuations in symptom distributions without any clear trends. This indicates that while compatibility issues remain a
persistent challenge, their specific manifestations vary depending on the interplay of app characteristics, API changes,
and platform evolution.
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Finding 9: The predominant symptoms of run-time incompatibilities that were common to both benign and

malicious apps were verify errors (on average 56%) and null pointer (on average 14%). These symptoms were

primarily caused by changes in the SDK/API during the evolution of Android. Meanwhile, there were various other

symptoms almost as prevalent overall but not as commonly predominant in both app groups, and there were also

no consistent common patterns of changes in these symptoms’ strength of presence over time.

Benign apps versus malware. While both app groups share the three prominent symptoms of verify error, null
pointer, and native crash, benign apps exhibit a greater prevalence of these symptoms overall. Specifically, the average
percentage of the verify error symptom over the 12 years was 63.8% for benign apps, compared to 47.9% for malware.
Similarly, null pointer errors occurred at an average rate of 15.2% in benign apps versus 12.2% in malware. These findings
highlight that benign apps are more susceptible to run-time compatibility challenges related to API evolution.

Also, benign apps andmalware as studied have exhibited different dominating symptoms of run-time incompatibilities
beyond the three shared ones. Notably, malware exhibited a significantly stronger presence of the Unsatisfied link error,
with an average ratio of 16.14% over 12 years, compared to just 1.3% for benign apps. This stark contrast underscores a
fundamental difference in the underlying causes of run-time failures between the two app groups.

The causes of these symptoms reveal distinct patterns of incompatibility. For benign apps, run-time incompatibilities
often stemmed from evolution-induced API misuses, such as the use of deprecated or older APIs on newer, incompatible
platforms. This can be attributed to a well-documented phenomenon in the Android development community, where
developers tend to lag behind in updating their apps to align with the latest Android platforms and SDKs [54, 66]. As a
result, benign apps are more likely to encounter compatibility challenges when executed on newer devices.

In contrast, malware’s run-time failures were more often caused by issues related to undefined native code or severe
and unrecoverable problems within the Android runtime. This difference can be explained by the frequent use of
repackaging in malware development. Repackaging, a common technique used to alter legitimate apps for malicious
purposes, is prone to introducing semantic corruption, such as missing the definition of native methods called by the
app. These errors lead to a higher prevalence of Unsatisfied link errors and other critical run-time failures in malware.

Furthermore, malware’s reliance on repackaging also explains why its run-time errors are more concentrated around
severe system-level issues, whereas benign apps display a broader spectrum of errors related to API evolution and
compatibility. This distinction between the two app groups highlights the need for tailored approaches to addressing
run-time incompatibilities: improving API migration support for benign apps and enhancing detection mechanisms for
semantic corruption in malware.

Finding 10: In comparison between the two app groups, run-time incompatibilities in benign apps are more often

due to API evolution and usage of outdated/incompatible APIs, while run-time incompatibilities in malware are

more often due to the problematic/error-prone construction practice in their creation.

5.3 RQ6: Contributing Factors of Run-Time App Incompatibilities

Similar to Study I, we analyzed the distribution of RIR across the same possible contributing factors. Figure 7 presents the
distribution based on app lapse and API lapse, both overall and separately for the top two symptoms common between
benign apps and malware. The plot, in a format same as Figure 4, consists of data points (squares) each representing the
RIR of all apps with specific app lapse and API lapse values, regardless of their creation years.
Manuscript submitted to ACM
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Fig. 7. Distribution of RIR (encoded by square color) over app lapse (𝑦 axis) and API lapse (𝑥 axis) between benign (top) versus
malicious (bottom) apps, for all symptoms (leftmost) and the two dominating ones that are common to two app groups: verify
error (middle) and null pointer (right).

Common characteristics. In the overall distribution (left), the RIRs were generally lower compared to the per-symptom
distributions. This is because the overall distribution includes all our benchmarks regardless of their app lapses and
API lapses. The two per-symptom distributions, on the other hand, focus only on apps that experienced run-time
incompatibilities during execution (i.e., with RIRs greater than zero).

The distribution patterns reveal a complex relationship between run-time compatibility issues and version differences
measured via the two lapse metrics. Figure 7 shows scattered hotspots of higher RIRs appearing in diagonal patterns
across the version space, suggesting that run-time failures are influenced by the combined effect of chronological and
SDK version gaps rather than either factor alone.

Examining the symptom-specific distributions, verify errors (middle) show more concentrated patterns of failures,
while null pointer errors (right) exhibit a more dispersed distribution. This difference suggests that verification-related
compatibility issues are more predictable based on version relationships, while null pointer errors may arise from more
complex interactions between app implementation and platform evolution. For these null pointer errors, the dispersed
distribution aligns with the varied and often complex interactions between app-specific implementations and evolving
platform behaviors.

A notable pattern emerges where higher RIRs tend to cluster around moderate API lapse values (10–20), particularly
when combined with certain app lapse ranges. This indicates that run-time compatibility issues are most prevalent
when there’s a moderate gap between the app’s minimum SDK requirements and the platform version, rather than
at extreme version differences. Interestingly, the diagonal distribution of hotspots suggests that compatibility issues
are more likely to occur when the sum of app lapse and API lapse reaches certain thresholds. This implies that the
total version distance, combining both chronological development timing and SDK version differences, may be a better
predictor of run-time compatibility issues than either measure alone.

These patterns indicate that Android’s compatibility mechanisms operate most effectively within certain bounds
of combined version differences, beyond which both forward and backward compatibility become less reliable. This
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Table 3. Spearman correlation coefficients (moderate or stronger coefficients in boldface) between RIR and contributing factors

App group Symptom app lapse API lapse minSdkVersion SDK API level app year
overall -0.03 0.41 -0.43 -0.01 0.03

Benign null pointer 0.07 0.25 -0.28 -0.07 -0.10
verify error -0.08 0.36 -0.38 -0.01 0.08
overall -0.06 0.45 -0.44 0.08 0.10

Malware null-pointer -0.01 0.40 -0.38 0.12 0.07
verify error -0.01 0.40 -0.38 0.12 0.06

challenges the traditional notion of straightforward backward compatibility and suggests a more nuanced reality where
successful run-time behavior depends on the interplay between development timing and API evolution.

The visual patterns indicating correlations between RIR and app/API lapses were largely supported by the Spearman
correlation coefficients presented in Table 3. Overall, both API lapse and minSdkVersion demonstrate significant
correlations (of moderate strength) with RIR for both benign apps (0.41, -0.43) and malware (0.45, -0.44), suggesting
these version-related factors are key determinants of run-time compatibility regardless of app type.

For both groups, the correlations maintain similar patterns across different symptoms. Verify errors show moderate
correlations with API lapse (0.36–0.40) and minSdkVersion (-0.38), while null pointer errors exhibit slightly weaker
but consistent relationships (0.25–0.40 for API lapse and -0.28 to -0.38 for minSdkVersion). The uniformity of these
correlations suggests common underlying mechanisms affecting run-time compatibility across all apps, likely tied to
how SDK/API updates interact with app behavior at runtime.

Notably, both app groups show consistently weak correlations (below 0.1) between RIR and app lapse, SDK API level,
or app year. This indicates that chronological factors, such as the timing of app development or the release year of the
SDK, have relatively minor direct influence on run-time compatibility issues, regardless of whether the app is benign or
malicious. Instead, the correlations highlight the importance of the gap between minimum and actual (hosting device’s)
SDK versions (API lapse) and the targeting choices made by developers (minSdkVersion) as primary factors influencing
run-time compatibilities.

These statistical results reinforce that run-time compatibility in Android is primarily governed by SDK version
differences rather than temporal development factors, a characteristic that holds true across both benign and malicious
applications. The strong influence of API lapse and minSdkVersion suggests that developers can mitigate run-time
compatibility issues by carefully aligning their apps’ minimum SDK requirements with the expected platform versions,
regardless of the app type (i.e., app group).

Finding 11: Run-time compatibility issues in both benign apps and malware show significant correlations with

API lapse and minSdkVersion, while chronological factors such as app lapse show minor influence—suggesting that

SDK version gaps, not development timing, are the primary determinants of run-time compatibility issues.

Benign apps versus malware.While both app groups show moderate correlations between run-time compatibility
and version-related factors, malware exhibits more consistent and slightly stronger relationships, as visually observable
from Figure 7. This reflects the structured and systematic impact of version differences on malware compared to the
broader and more varied compatibility challenges seen in benign apps.
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This difference is even clearer in Table 3, where for malware, both verify errors and null pointer errors show identical
correlations with API lapse (0.40) and minSdkVersion (-0.38). In contrast, benign apps exhibit more varied correlations
across different symptoms, with API lapse ranging from 0.25 to 0.36 and minSdkVersion ranging from -0.28 to -0.38.
This variation indicates that benign apps are influenced by a wider range of factors beyond strict version differences,
potentially due to their more diverse feature sets and API usage patterns.

The overall correlation pattern is stronger in malware (API lapse: 0.45, minSdkVersion: -0.44) compared to benign apps
(API lapse: 0.41, minSdkVersion: -0.43), suggesting that run-time compatibility in malicious apps is more systematically
tied to version differences. This systematic relationship likely reflects differences in development practices or constraints
in malware creation, such as the reliance on repackaging or targeting specific platform versions for exploitability.

Looking at the heatmap distributions in Figure 7, malware shows more concentrated patterns of high RIR values, while
benign apps exhibit more dispersed patterns across minimal SDK and platform version combinations. This concentrated
pattern suggests that run-time compatibility issues in malware are more predictable based on such version relationships,
as malicious apps may target a narrower range of platform configurations to ensure functionality. Conversely, the more
dispersed patterns in benign apps reflect a greater variety of run-time challenges, likely stemming from their broader
API usage and feature implementations.

Additionally, the uniform correlations in malware highlight its dependence on specific platform features or APIs,
making it particularly sensitive to version-related discrepancies. On the other hand, benign apps, with their varied
correlations and broader heatmap distributions, encounter compatibility challenges that are influenced by a mix of
platform evolution and complex app-specific factors.

Further analysis of the diagonal patterns reveals that the hotspots (high RIR areas) are more prominent for benign
apps compared to malware. For benign apps, the concentrated hotspots in the verify error distribution suggest that
compatibility mechanisms introduced in certain API levels (e.g., API 26) are more likely to trigger verification failures
when used with apps developed significantly earlier. In contrast, malware hotspots are comparatively sparser and exhibit
smaller RIR clusters for verify errors, potentially due to more targeted API usage or limited feature sets in malicious
apps. For null pointer errors, the broader spread of null pointer errors in benign apps could indicate their reliance on a
more diverse range of APIs, making them susceptible to unexpected runtime behaviors as platform features evolve.
Conversely, malware’s narrower spread suggests a focus on a smaller subset of API features, reducing its exposure to
such compatibility challenges.

Finding 12: Malware demonstrates more consistent and stronger correlations between incompatibility-induced run-

time failures and version-related factors compared to benign apps. While both groups show moderate correlations,

malware exhibits identical patterns across different types of failures, suggesting more systematic relationships

between SDK version differences and compatibility issues in malicious apps.

6 STUDY III: INCOMPATIBILITIES ON LATEST ANDROID VERSIONS

To ensure our findings remain relevant with the latest Android platform versions, we conducted an additional study
examining compatibility patterns on Android 14 (API 34) [1] and Android 15 (API 35) [4]—the two latest Android API
levels by the end of year 2024. From each of the 12 yearly (2010–2021) datasets described earlier, we randomly selected
apps until 50 can be successfully installed hence used for run-time compatibility testing on each of these two additional
target API levels. This sampling approach mirrors that adopted for the main study while providing a reasonable number

Manuscript submitted to ACM



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Jiawei Guo et al.

of data points to enable observing compatibility patterns. We also follow the same methodology to characterize the
installation- and run-time compatibilities of these sampled apps.

During our experimentation, we encountered a significant platform policy change [2] starting with API 34. Beginning
with this version, Google has implemented stricter installation requirements that mandate a minimum targetSdkVersion.
Specifically, API 34 requires apps to target no lower than SDK version 23, while API 35 further raises this requirement
to target SDK version 24 or higher. These policy changes directly impacted our installation testing results. For API
34, we observed that all apps developed before 2016 consistently failed to install, resulting in an IIR of 100% for these
older apps. The installation failures uniformly produced the symptom INSTALL_FAILED_DEPRECATED_SDK_VERSION:

App package must target at least SDK version 23, but found 𝑥 , where 𝑥 represents the app’s actual
targetSdkVersion. This outcome aligns with historical context, as API 23 was released in late September 2015, making it
unlikely for apps developed before 2016 to target this version. Similarly, for API 35, all apps created before 2017 failed
installation with the symptom INSTALL_FAILED_DEPRECATED_SDK_VERSION: App package must target at least

SDK version 24, but found 𝑥 . This again corresponds with the timeline of API 24’s release in August 2016, meaning
most pre-2017 apps would not have targeted this API level.

However, adb also provides an option bypass-low-target-sdk-block that allows circumventing these restrictions.
This enabled us to proceed with our compatibility study by installing apps that would otherwise be blocked due to their
lower target SDK versions. By utilizing this bypass option, we were able to complete our installation tests and proceed
with run-time compatibility analysis, ensuring continuity with our methodology from the main study.

After examining compatibility patterns on API 34 and API 35, we found both consistencies with our prior findings
and several noteworthy new patterns. These observations provide valuable insights into how compatibility issues
evolve with the latest Android platforms. Next, we present main results in our additional analysis.

Installation-Time Incompatibility. As seen in Figure 8, for installation-time incompatibility, malware continues to
exhibit higher incompatibility rates than benign apps across both API 34 and 35, with average IIRs of 30.3% and 30.5%
for malware compared to 21.7% and 21.3% for benign apps, respectively. This reinforces our earlier finding (Finding 2)
that malicious apps generally face greater installation barriers than legitimate applications.
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Fig. 8. Installation-time incompatibilities in terms of IIR in benign apps (𝑦 axis, top) and malicious apps (𝑦 axis, bottom) over the
twelve studied years of 2010 through 2021 and the combined results for all of the 12 years (𝑥 axis).
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Meanwhile, we observed a dramatic shift for apps developed in 2020, which showed near-zero IIRs (below 1%)
on both API 34 and 35. This suggests that recent app development practices have significantly improved alignment
with newer platform requirements, likely due to developers’ increased awareness of compatibility requirements and
Google’s stricter enforcement policies. However, malware from 2021 exhibited substantially higher IIRs (54% on API
34 and 53% on API 35) compared to benign apps from the same year (1% on both APIs). This growing disparity
suggests that while legitimate developers have adapted to platform evolution requirements, malware creators may be
deliberately using outdated development approaches or repackaging techniques that result in greater incompatibilities
with newer Android versions. Despite these trends, the dominant failure symptom across both app groups remains
INSTALL_FAILED_NO_MATCHING_ABIS, consistent with our Finding 3. This suggests that even with platform policy
changes mandating minimum target SDK versions, hardware architecture mismatches continue to be the primary
barrier to installation compatibility.

Run-Time Incompatibility. As Figure 9 shows, for run-time incompatibility, we again observed that malware
experiences higher incompatibility rates than benign apps, with average RIRs of 32.7% and 33.9% for malware versus
28.3% and 24.8% for benign apps on API 34 and 35, respectively. This further validates Finding 8, indicating that even
successfully installed malware faces distinct execution challenges compared to benign apps.
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Fig. 9. Run-time incompatibilities in terms of RIR in benign apps (𝑦 axis, top) and malicious apps (𝑦 axis, bottom) over the twelve
studied years of 2010 through 2021 and the combined results for all of the 12 years (𝑥 axis).

A notable temporal pattern emerged in run-time compatibility for both app groups. Benign apps show a steady
increase in RIRs from 2018 (23% and 16%) to 2020 (71% and 79%), followed by a substantial decrease in 2021 (12% and
11%). This pattern suggests that while 2018-2020 apps encountered significant run-time challenges on newer platforms,
apps developed in 2021 have considerably better run-time compatibility, reflecting improved adaptation to platform
evolution. Malware exhibits an even more pronounced upward trajectory in RIRs from 2018 through 2021, reaching
alarmingly high values of 69% and 68% by 2021. This consistent increase suggests that malicious apps face increasing
execution barriers on newer Android versions, potentially due to enhanced security measures in these platforms or
incompatible exploitation techniques. On the other hand, the dominant run-time failure symptom across both APIs
and app groups remains java.lang.VerifyError, confirming our Finding 9 that SDK/API changes during Android
evolution continue to be the primary cause of run-time incompatibilities.
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These observations on API 34 and 35 largely reinforce our earlier findings while revealing new evolutionary patterns
in Android compatibility. They confirm that both installation-time and run-time compatibility issues persist in the
latest Android versions, with distinct manifestations between benign apps and malware. Importantly, these additional
study results suggest that conclusions derived from our original dataset (covering up to 2021 apps and API 29) might
sustain their relevance as newer Android versions continue to be released.

Finding 13: Testing on the latest Android versions (API 34 and 35) confirms our previous findings while revealing

new patterns. Both platforms enforce stricter installation requirements that block apps with lower target SDK

versions, yet they maintain similar incompatibility trends.

7 THREATS TO VALIDITY

Internal validity threats. A potential threat to the internal validity of our study results is the presence of errors
in the implementation of our experimentation utilities, including tools and scripts. To mitigate this threat, we took
several measures. First, we conducted a thorough code review of our own toolkit and scripts. We ensured that they were
implemented correctly and aligned with our experimental design. Additionally, we manually verified the functional
correctness of these utilities through selected benchmark validations. It is important to note that other tools utilized in
our study are widely used within the Android SDK by both researchers and developers, which adds to their reliability.

Another potential internal threat relates to test flakiness in Android app executions. Despite using fixed seeds for
test inputs and running each app across multiple Android versions, the generally possible non-deterministic nature
of mobile app executions implies that even the same test inputs might trigger different behaviors across runs on
multiple SDK versions. While our methodology of requiring successful execution on at least one version helps mitigate
misclassification of flaky failures as compatibility issues, we cannot completely eliminate the impact of test flakiness
on our results. Our approach of running each app on 10 different SDK versions provides some robustness against
flakiness as we did not observe such cases happen during our manual verification, but this remains a potential source of
inaccuracy of our methodology for determining incompatibility-induced installation/run-time failures in general.

External validity threats. The main concern regarding the external validity of our study results relates to the selection
of benchmark apps. Despite our efforts to utilize a substantial collection of apps from diverse sources, the vast number
of Android apps available on various app markets means that our selection represents only a relatively small subset.
Consequently, the apps studied from each of the 12 years may not provide a fully representative sample of all Android
apps during those years. As a result, our findings and conclusions are limited to the specific apps included in our study.
This concern is particularly pronounced in our extended analysis on API 34 and 35, where we sampled only 50 apps
per year. This limited sample size for the newest Android versions may not fully capture the diversity of compatibility
issues in the broader app ecosystem, potentially restricting the generalizability of our observations about compatibility
patterns on these latest platforms.

The effectiveness and quality of dynamic analysis results are influenced by the coverage of run-time inputs. In our
study, the dynamic analysis approach used was relatively simple, and the identification of run-time incompatibility
effects relied on the execution of app behaviors during a five-minute runtime. However, there is a possibility that
the random inputs generated by Monkey might have missed certain execution paths and, consequently, specific
incompatibility effects of the apps. Furthermore, although we maintained consistent test inputs for each app across the
ten runs (each corresponding to a different Android version), the coverage of the app’s behavior may have varied due
Manuscript submitted to ACM
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to changes in the Android platform across different versions. This introduces a threat to the external validity of our
study results concerning run-time incompatibilities.

Another concern regarding external validity relates to the multi-APK phenomenon in Android. Developers often
upload multiple APKs of an app to support different devices, and Google Play ensures that users receive the appropriate
APK based on their device characteristics such as hardware, vendor, and Android version. To preliminarily assess the
impact of this phenomenon on our results, we randomly selected 10 apps that were identified as incompatible with
API 21 in our study. We attempted to manually install and run these apps on a real Samsung Galaxy S4 phone (API
21) directly from Google Play. Our findings indicate that all 10 apps remained incompatible, suggesting that multiple
APKs may not exist for these particular apps. However, a comprehensive examination of all our benchmarks would
be necessary to thoroughly evaluate the impact of the multi-APK phenomenon. Additionally, we did not consider the
possibility that apps included in our benchmarks, which were identified as incompatible, may have received updated
versions that resolved the compatibility issues at a later time. These factors may contribute to a potential overestimation
of incompatibilities in our study.

Construct validity threats. The primary concern regarding construct validity pertains to the metrics and measurement
procedures employed to assess the extent and distribution of app incompatibilities. It is possible that there are other
measures and metrics that we did not consider, which might have better supported or further substantiated our
conclusions. To mitigate this threat, we employed a diverse set of measures to characterize compatibility issues in
Android apps from various perspectives. We also employed different measurement approaches, including group statistics
to understand overall characteristics (e.g., aggregate RIR) and statistics of yearly subsets to uncover relevant evolutionary
patterns. Additionally, our study did not specifically address app incompatibilities in relation to the targetSdkVersion
specified in apps (e.g., IIR of apps on platforms with API levels equal to, smaller than, or greater than the app’s
targetSdkVersion). Exploring this aspect could potentially impact our overall conclusions regarding installation-time
incompatibilities, particularly those related toAndroid’s forward and backward compatibility. Furthermore, it’s important
to note that the ten Android Virtual Devices (AVDs) used in our studies were all based on x86/x86_64 processors.
However, some of our benchmarks may have been developed for hence meant to be used on ARM architectures. In such
cases, the installation incompatibilities observed, indicated by the "INSTALL_FAILED_NO_MATCHING_ABIS" errors,
could be attributed to the apps’ architecture preferences. Running these benchmarks on devices with ARM processors
could yield different IIR results, potentially leading to changes in our current conclusions based on such results.

Additionally, our use of the –bypass-low-target-sdk-block option in adb to circumvent installation restrictions
on API 34 and 35 also introduces a potential threat. This approach allowed us to study apps that would otherwise be
blocked by Android’s security mechanisms, creating an artificial testing environment that may not reflect real-world
usage scenarios—ordinary users (installing apps via GUI operations) may not bypass these restrictions.

Conclusion validity threats. The heavy overhead of our study necessitated certain limitations. We focused on a
specific set of hardware configuration parameters for all ten devices corresponding to the Android versions under
investigation. Consequently, there is a potential threat to the conclusion validity of our results, as they may not generalize
to all possible hardware configurations and API levels of Android devices in use. To address this concern, we selected
the most prevalent API levels utilized by various Android devices with respect to the time range of our subject app
collection. However, it is important to note that our conclusions should primarily be interpreted within the context of
the device API levels and configurations employed in our study. Considering the dominant symptoms and underlying
causes of the observed incompatibilities, as well as the case study conducted on the Samsung phone, it appears that the
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incompatibilities are attributed to the broader Android ecosystem rather than the specific Nexus One device utilized.
Consequently, we anticipate that our results would yield similar findings if the study were conducted on a different
device, such as a Samsung phone. Nevertheless, to achieve more comprehensive and conclusive results, experimentation
with multiple hardware devices would be necessary.

8 DISCUSSIONS

Building upon our empirical findings presented earlier, we have derived additional insights into installation-time and
run-time app compatibility issues in Android. We aim to discuss the implications of our results, lessons we learned
from this research, and provide practical recommendations to both app developers and end users on how to effectively
address respective problems and challenges.

In particular, we start with discussing how to deal with benign-app incompatibilities according to our study
(Section 8.1). These discussions are mainly based on the results on benign apps—we do not intend to make malware
more compatible; in fact, if an app is detected as malware, it would not be attempted for installation or execution hence
making installation-time and run-time compatibility issues irrelevant. Then, drawing on our comparative results
between benign apps and malware, as well as the unique characteristics of malware with respect to our study results,
we also discuss how the security property may be relevant to app incompatibilities (Section 8.2). These discussions are
mainly poised to help/inform defenses against malware in Android.

8.1 Dealing with Benign-App Incompatibilities

Explicitly attempting for installation-time compatibility. Regarding installation-time compatibility issues, our
findings suggest that these issues seem to be closely tied to the age of an app (see Figure 2). However, the actually
critical factor affecting (strongly correlated with) such incompatibilities is the installation-time compatibility attempt of
developers via the minSdkVersion attribute they specified in the apps. When installing an app on an Android version
where the delta between the specifiedminSdkVersion and the platform API level is within 7 to 10, compatibility concerns
at installation time are relatively minor. However, if the gap exceeds 12, there is an increased risk of installation failure.

Thus, to ensure successful installation of an app on a device, developers should leverage the explicit compatibility
attempt by exercising caution when specifying the minSdkVersion attribute. It is important to strike a balance and
ensure that the specified minSdkVersion is not too far from the API level of the targeted Android platform. Meanwhile,
neglecting to specify this attribute poses a risk, as it defaults to 1, resulting in a potentially large API lapse, particularly
with newer Android versions. Thus, the bottom line is to explicitly make that attempt.

Proactively mitigating compatibility-induced installation failures. Per our results in Section 4.2, the most
dominating symptom of installation-time incompatibilities was INSTALL_FAILED_NO_MATCHING_ABIS. Thus, in cases
where installation fails, it is typically due to the app utilizing native functionalities that are not supported by the
targeted hardware architectures—particularly the processor (CPU) architectures. App developers need to be aware
of the architectural support of any native capabilities that the app depends on. Avoiding or at least reducing such
dependencies should be considered, when possible (e.g., by utilizing hardware-architecture-independent alternatives).

Additionally, using libraries that are not available in a vendor-customized Android framework was observed as
another cause of installation failures. To mitigate such failures, developers should verify whether the targeted devices
support all the app’s functionalities in terms of any Android customizations introduced by device vendors, in addition
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to the hardware architecture of the devices. This assessment is crucial to ensure (installation-time) compatibility hence
a smooth installation process.

Pragmatically, it is recommended that app developers conduct installation testing of their apps on various CPU
architectures and against different Android customizations before releasing the apps. From the end users’ point of view,
it would be very helpful if the developers make clear about results of such testing in the app descriptions, including the
specific hardware architectures and customizations that have been tested.

Also, while the Android platform has made improvements in accommodating apps in terms of installation-time
compatibility (especially starting with Android 7.0), the general likelihood of encountering installation failures on
Android devices did not appear to consistently correlate with the SDK API level of the Android platform running on
those devices. That is, older or newer Android platforms did not necessarily exhibit better or worse compatibility with
older or newer apps. Thus, it primarily relies on app developers to make explicit and particular efforts to mitigate
installation-time compatibility issues, such as checking for hardware-incompatible and vendor-absent functionalities
and making clear compatibility attempts.

Cautiously choosing target Android platforms (SDK API levels). Beyond installation-time incompatibilities,
run-time compatibility issues also pose a significant challenge across the Android ecosystem, with distinct patterns
across different API levels. While newer APIs (28-29) show improved compatibility with consistently low RIRs, API 26
exhibits notably high incompatibility rates, suggesting that careful consideration is needed when targeting different
Android versions. Once an app is successfully installed on a device, the specified minSdkVersion becomes less of a
concern as other factors more significantly impact whether the app can run normally on the device.

Our findings indicate that compatibility between the SDK an app is built against and the SDK it runs on remains
crucial, particularly due to API changes. The stark contrast in RIRs between API levels suggests that developers need to
be particularly cautious when targeting certain Android versions. Furthermore, apps developed closer to a platform’s
release year showed different compatibility patterns than those developed several years before or after, indicating that
temporal proximity to platform release doesn’t necessarily guarantee better compatibility.

Thus, to minimize run-time compatibility issues, developers should consider several strategies: prioritize testing on
API 26 due to its notably high incompatibility rates; leverage the better compatibility demonstrated by newer APIs
when possible; and thoroughly review API changes between versions. More generally, for reducing run-time issues,
minimizing API lapses and aligning the app’s minSdkVersion with the targeted platform’s SDK version is a critical step.
There have been a number of techniques/tools that aim to assist developers with this task by identifying the specific
APIs that need to be updated [55] and further automatically upgrading/updating the APIs used in given apps [66].
Developers of Android apps should leverage these tools while paying particular attention to SDK versions that are
known to have higher incompatibility rates.

Purposely diagnosing run-time failures using errormessages/logs. From our study results presented in Section 5.2,
run-time incompatibilities are most often symptomized as verify errors and native crashes. We identified these symptoms
by actually running the sample apps and observing their execution traces. Moreover, we summarized these symptom
codes explicitly from the error messages in the run-time traces and logs.

Thus, when encountering run-time failures, app developers should pay close attention to error messages and logs
related to verify errors and native crashes, as these can provide valuable insights into potential compatibility issues. For
instance, tracking from where these errors were manifested back to the likely error-originating locations in the apps
would help developers understand the specific root causes and identify fixing strategies.
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Timely updating Android platforms/SDK APIs on user devices. Our results pointed to changes in the evolution
of Android platforms, especially that of the SDKs/APIs, as the underlying reasons for the dominating run-time
incompatibility symptoms like verify errors and native crashes. While app developers may take proactive actions to
prevent these issues from happening and take postmortem steps to fix such issues during app maintenance and
evolution, end users of the apps also have an important role to play in the battle against those compatibility-induced
run-time failures.

Specifically, for app users, updating to the latest Android versions (e.g., APIs 28-29) could help reduce compatibility
issues, as these more recent versions show consistently lower RIRs. However, users should be aware that certain
versions, particularly API 26, demonstrate significantly higher incompatibility rates regardless of app age. This suggests
that blindly updating to a newer version may not always improve compatibility. The common bottom line is that end
users should make informed decisions about platform updates based on their specific app usage needs. Before updating,
users should consider checking their critical apps’ compatibility with the target Android version, particularly when
updating to known problematic API levels.

8.2 Security Relevance of App Incompatibilities

Platform improvement in app compatibility not forming a concomitant defense. According to our results in
Section 4.1, like benign apps, installation-time incompatibilities in malware were mostly independent of the version of
the Android platform they are installed to. This observation implies that any of the improvements made in the Android
platform/framework for better accommodating app compatibility did not affect much how easily/hard malware can be
installed and hence penetrate/propagate successfully. From the overall declining IIRs in the recent (last three) years,
such improvements did happen over the years.

While for benign apps these platform-wise improvements are encouraging and beneficial, they are also concerning
with respect to the fact that malware also benefits the same from those improvements. Overall, it is clear that the platform
improvement in app compatibility has not been forming a concomitant, implicit defense against the dissemination of
malicious apps. Even worse, the latest improvements, as noted above, apparently facilitated malware installation hence
dissemination. This observation raises significant security concerns about the relationship between app compatibility
and app security. To the best of our knowledge, such a security warning has not been raised before. The implications
are particularly concerning given that newer Android versions, initially expected to provide better security through
improved platform features, may actually propel easier malware distribution.

In response, a practical, multi-layered defense strategy is needed. First, static installation-time malware detection
should be strengthened to prevent malware from being installed as a first line of defense, especially for apps targeting
newer API levels where malware shows better compatibility. Second, given that malware shows distinctly different
compatibility patterns from benign apps (particularly on newer APIs), these patterns could potentially be leveraged as
additional signals for malware detection systems.

Repackaging as a two-edged sword.Our results in Section 4.1 also suggest that malware tended to be subject to serious
(a substantially higher degree of, than benign apps) installation-time compatibility issues. Our further investigation
revealed that this major difference can be attributed to the widespread practice in malware production—repackaging.
Indeed, per earlier studies, most (e.g., 80.6% [75]) of the malware in Android is produced through repackaging, especially
piggybacking popular benign apps with malicious payload [48]. As we reported in Section 4.2, beyond the use of
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hardware/CPU-architecture-incompatible native capabilities as the predominating causes common to both app groups,
the next dominant cause of installation-time incompatibilities in malware is invalid APKs—mainly a result of repackaging.

On the one hand, repackaging has become a cheap productive way of developing malware; on the other hand, this
practice led to greater installation-time incompatibilities in malware, potentially counteracting the intention (e.g., wide
and easy malware propagation) of mass malware production through repackaging. Thus, from a mixed standpoint of
app security and app development productivity, repackaging is a two-edged sword for Android malware.

Our results in Section 4.2 further revealed that among the benign apps across the 12 years studied, when an app
failed to be installed, the failure symptoms were almost always limited to the two common, dominating
ones—INSTALL_FAILED_NO_MATCHING_ABIS and INSTALL_FAILED_MISSING_SHARED_LIBRARY. In the malware,
however, the failure symptoms were much more diverse. From a perspective of defending against malware, if an
arbitrary Android app fails at installation time while exhibiting symptoms other than the two common dominating
ones, it is more likely to be malicious than benign—a potential assistive decision factor to be considered in developing a
static malware detection technique.

Leveraging SDK version difference and compatibility influence factor patterns as security indicators. Our
results in Section 5.3 reveal that run-time compatibility issues in malware are more systematically tied to SDK version
differences, as evidenced by their consistent and stronger correlations with API lapse and minSdkVersion. This more
systematic compatibility-related malware behaviors contrast with the more varied patterns observed in benign apps,
making SDK version difference patterns a potential distinguishing factor that may be leveraged for identifying malware.
For example, apps that exhibit concentrated run-time incompatibility hotspots for moderate API lapse values (10–20) and
predictable relationships with minSdkVersion may warrant closer inspection. These behaviors align with the narrower
compatibility focus of malware, which often targets specific platform configurations to maximize reach or exploitation
of security vulnerabilities.

Moreover, distinctive behavioral patterns, such as uniform correlation strengths across multiple symptoms (e.g.,
verify errors and null pointer errors), can serve as additional indicators of malicious intent. Unlike benign apps, which
tend to display more diverse symptom distributions, malware’s more uniform behavior provides an opportunity to
detect potential threats based on their compatibility footprint. Similarly, patterns of statistical correlation with various
compatibility influence factors may be leveraged as malware detection features too. As shown in Table 3, run-time
compatibility symptoms in malware are clearly most uniformly correlated with different influence factors (e.g., API
lapse and minSdkVersion) than in benign apps.

Strengthening dynamic malware detection. As per our results presented in Section 5.1, benign apps show notably
higher RIRs overall than malware. That is, once passing the installation bar, malware in Android tended to be alarmingly
easier to run through without any compatibility-induced problems than benign apps. This is very concerning because it
implies that once an arbitrary Android app gets successfully installed, it would have a less chance to fail hence more
easily cause harms if it is malicious indeed. Therefore, it is vital to deploy malware detection at runtime, despite the
well-known challenges with utilizing dynamic malware detection techniques (e.g., the more hassles for setting up, the
greater overhead during app usage) [13].

Particularly, malware demonstrates consistently high RIRs on API 26 and better compatibility on newer APIs (28-29),
suggesting more reliable execution on modern platforms. This is particularly concerning as it implies that malware, once
installed, can more predictably execute its malicious behaviors on certain API levels. Thus, robust dynamic malware
detection is especially essential on these platforms where malicious apps face fewer execution barriers. Also, the pattern
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of varying RIRs across API levels further suggests a need for targeted defense strategies that consider platform-specific
(dynamic) detection features.

Moreover, our investigation as discussed in Section 5.1 revealed distinct behavioral patterns between benign apps
and malware in terms of their SDK interactions and third-party library usage. First, the benign apps have much higher
percentages of calls to SDK functionalities from both within the SDK and user code than malware. Second, the malware
has much notably lower percentages of calls to SDK from various third-party libraries than the benign apps. These code
structural differences not only explain the compatibility patterns but also offer potential signals for malware detection.
Thus, future research on mobile app security should further explore how to leverage these differences, particularly on
API levels where malware shows better compatibility, for effective dynamic malware detection.

Paying attention to older apps/platforms for compatibility and newer ones for security. Our results reveal
that different API levels present varying levels of compatibility barriers against malware execution. API 26 shows
consistently high RIRs for both benign and malicious apps, while newer APIs (28-29) demonstrate better compatibility
overall. This suggests, for dealing with incompatibilities in Android apps, a need for attention to the older apps that tend
to target older platforms, and that the fixing strategies need to be tailored to specific API levels rather than assuming
uniform behavior across platforms.

On other hand, concerning security, particularly noteworthy is the incompatibility pattern on newer APIs where
malware maintains more consistent RIRs compared to benign apps. This indicates that malware authors may be
specifically targeting these platforms for better reliability. Therefore, enhanced security measures should be deployed
on these newer API levels where malware demonstrates more predictable execution patterns. Additionally, special
attention should be paid to apps showing unusually good compatibility across multiple API levels, as this might be an
indicator of potentially malicious behavior—legitimate apps tend to show more variation in their compatibility patterns
across different Android versions.

9 RELATEDWORK

Studies on app issues relevant to incompatibilities. In previous research, there has been a notable focus on the
compatibility issues in Android apps. To gather empirical evidence regarding the Android fragmentation phenomenon,
Han et al. [39] specifically examined bug reports submitted by users of HTC and Motorola devices. Through the
application of topic models and topic analysis techniques, they were able to identify evidence related to the Android
fragmentation issue. The primary objective of their study was to enhance understanding of the fragmentation problem
itself, rather than specifically investigating the compatibility issues that resulted from this problem. In contrast, our
study immediately addresses app compatibility issues.

Several previous works investigated crashes of Android apps to understand their causes [22] and to reproduce the
crashes [56]. However, it is important to note that the crashes studied in these works were not necessarily tied to app
incompatibilities. In our study, we specifically focused on crashes that were caused by compatibility issues in order to
characterize app incompatibilities; yet our study is not limited to such issues symptomized as crashes.

Research on API/evolution-induced app incompatibilities. Recent studies [40, 72] specifically examine
compatibility issues arising from SDK evolution and API changes. These studies investigate the impact of these changes
on compatibility and explore strategies employed by developers to address these issues. In [43], the authors particularly
address such kinds of compatibility issues that are caused by the evolution of callback APIs used in Android apps.
When the Android framework evolves, those APIs often get updated as well from one framework version to another.
Manuscript submitted to ACM
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Accordingly, several techniques [47, 53, 69] have been developed to detect these kinds of app compatibility issues
by analyzing API changes during the Android framework evolution. Liu et al. developed a dedicated technique for
identifying the APIs that cause compatibility issues [51]. Mobilio et al. developed FILO [55], a tool to help app developers
diagnose backward compatibility issues due to the evolution of the Android framework. These kinds of techniques
have also been empirically evaluated and compared [50, 60, 61]. In addition, instead of focusing on application-level
compatibility issues, the approaches proposed in [19, 44] target application libraries in general, which may be applied
to resolve SDK/framework-level incompatibilities in Android.

In contrast, our study is not limited to a specific cause and has a much larger scale compared to previous studies. We
investigate compatibility issues at different phases, including installation and execution, based on actual observations
during app executions, rather than relying solely on static code analyses. The detection approaches used in prior studies
are predictive in nature and may suffer from false positives, as demonstrated in their results [40, 47]. In comparison, all
the compatibility issues we studied are true-positive issues.

Furthermore, previous studies did not specifically address installation-time compatibility issues nor examine the
evolution of app incompatibilities. However, their findings complement our research by covering developers’ practices
in preventing and fixing incompatibilities. Additionally, our study results can be used to improve incompatibility
diagnosis techniques and provide valuable insights beyond that scope.

Other compatibility testing techniques. In [68], Wei et al. studied 191 instances of fragmentation-induced
compatibility (FIC) issues in five Android apps and analyzed the causes of these issues. Based on their findings, they
developed a tool for automatically detecting FIC issues. While Android fragmentation is a significant factor
contributing to these issues, it is not the sole cause that we are concerned about in our study. Zhang et al. [73]
proposed an approach for testing app compatibility with a particular aim to reduce testing costs. Their approach
focuses on evaluating the compatibility of apps with different configurations. In comparison, our study examines app
incompatibilities broadly, not specifically concerning one cause or another.

Mimic [45] is a tool for testing the UI compatibility of Android apps through differencing UI behaviors between
apps or app versions across different devices. Our study implicitly covers, but is not limited to, compatibility issues
manifested via app UI differences. Fazzini et al. [23] developed an automated tool for detecting inconsistent behaviors of
apps across different Android platforms. While incompatibilities can contribute to the detected behavioral differences,
our work primarily focuses on the incompatibilities themselves and their effects.

Characterization of the evolution of compatibility issues. A few studies on Android have applied an evolutionary
lens to examine specific characteristics of apps. McDonnell et al. [54] investigated the evolution of the Android API
prior to 2013 by analyzing the API update rate. They found that the API evolution was faster than the adoption rate of
clients. In [7, 8, 64], the authors focused on the evolution of malware, specifically the effectiveness of anti-malware
analysis tools, rather than studying incompatibilities in malware.

Furthermore, Zhang et al.[74] particularly investigated developers’ intentions regarding app incompatibilities, which
provides another perspective for understanding the causes of incompatibilities. However, this investigation is limited to
installation-time issues, although an evolutionary view was also applied.

In comparison, our study focuses on characterizing incompatibilities in both benign apps andmalware.We also explore
the evolution of app incompatibilities, rather than solely examining the API evolution as a cause of incompatibilities.
Additionally, our study spans a much longer period of ten years compared to previous relevant evolution studies.
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Comparison to preliminary work. This work is an extension of the preliminary version of our study on Android
app incompatibilities [18], which only addressed benign apps of eight years (2010 through 2017) without considering
malware, and considering eight Android SDK versions. The extension mainly consists of four aspects: (1) we expanded
the evolutionary lens from eight years to 12 (2010 through 2021), hence increasing the size of subject benign app
set from 62,894 to 74,545 for the installation-time incompatibility study and from 15,045 to 22,529 for the run-time
incompatibility study; (2) we broadened our motivation to cover the need for understanding the incompatibilities
in malware as opposed to those in benign apps, hence the security relevance of app incompatibilities in Android;
(3) in accordance with (2), we essentially replicated (i.e., doubled the scope of) our preliminary study by examining
the same research questions against malware from the same 12 years, including 56,919 and 18,675 subjects for the
installation- and run-time incompatibility study, respectively; (4) in addition to examining the prevalence, causes and
effects, and contributing factors of the two classes of compatibility issues for malware as for benign apps, we also
extensively examined the differences between these two app groups in the same three angles; (5) we increased the
number of Android platform/SDK versions from eight to ten (adding API 28 and API 29) for all the studies; (6) we
substantially expanded our discussions on the implications of our results and actionable recommendations accordingly
to the previous four aspects of extensions; and (7) we updated our discussion on related works to the latest relevant
literature and polished the writing of the entire manuscript as a new paper.

10 CONCLUSION

We conducted a comprehensive study on app compatibility issues in the Android ecosystem. Our investigation covered
both installation-time issues in 131,464 apps and run-time issues in 41,204 apps. We analyzed the prevalence, distribution,
and evolutionary patterns of these compatibility issues over a 12-year period of time from 2010 to 2021. To understand
the factors contributing to app incompatibilities, we examined the relationships between these issues and the API levels
specified in the apps and used by the devices. We also introduced two app properties, app lapse and API lapse, and
investigated their correlation with compatibility issues. Additionally, we explored the impact of other individual app
and platform properties on compatibility issues. We particularly looked into both these compatibility characteristics
that are common to benign apps and malware, as well as those that differentiate between the two app groups.

Our study design allowed us to uncover new insights and draw novel lessons regarding compatibility issues in
Android apps. Based on our findings, we provide practical recommendations for effectively addressing these issues
for benign apps. We also provide insights into the security relevance of app compatibility issues, as well as actionable
recommendations on how to enhance defenses against malware in Android by utilizing our findings and insights on
the compatibility issues in the malware studied across 12 years.

One immediate step for future work is to leverage our study results on installation-time incompatibilities to develop
automated tools that detect and even repair those compatibility issues. These tools need to be efficient (e.g., running
much faster than actually installing apps to Android devices) and they will complement existing tools that focus on
detecting/repairing API/evolution-induced incompatibilities that may occur during app executions. Meanwhile, such
existing tools and the like may be improved in efficacy by utilizing our results on run-time incompatibilities (e.g.,
generating inputs towards covering calls to updated APIs to exercise those issues). Another promising direction is to
develop prioritization strategies in new dynamic malware detection approaches as informed by our insights into the
security relevance of app incompatibilities.
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