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In the last decade, Android applications have emerged as a primary interface in consumer technology. With approximately 2.5 billion
mobile devices running Android globally, security threats to the Android ecosystem due to vulnerabilities in it become increasingly
broadly consequential via user applications (i.e., Android apps). This necessitates efficient methods for defending them against those
vulnerabilities. Taint analysis, a popular and fundamental security defense technique, assesses the flow of sensitive information within
an app between sources (e.g., reading from user inputs) and sinks (e.g., writing to databases). However, traditional taint analysis is
notably resource-intensive. Performing a comprehensive analysis on a single app given a complete list of potential sources and sinks
can take hours, a situation exacerbated by the frequent updates typical in mobile app development.

In this paper, we propose EVOTAINT, an incremental taint analysis, tailored to fit and exploit the evolving nature of Android apps. It
aims to substantially reduce the time cost of conventional static taint analysis against an evolved version of a given app by narrowing
down the analysis scope from the entire app to only the parts that are changed or impacted by the changes in the evolved version. We
have implemented EVOTAINT as a practical, open-source tool and evaluated it on 100 Android apps each with 2, 3, or even 5 versions
considered. Our results demonstrated a significant (51.8—68.9%) reduction in the time cost of static taint analysis of each of the 1—4
evolved versions on average, without compromising the accuracy of the analysis results (i.e., taint flow paths), compared to using
the conventional approach treating each version as a separate/standalone app. Our further analysis aimed to clarify why and when
EvoTAINT performs favorably. It revealed that the time efficiency gains of incremental taint analysis are strongly correlated with the

ratio of changed methods and the proportion of sources/sinks affected by these changes during app evolution.
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1 Introduction

Mobile computing, especially that primarily through the Android Operating System, plays a pivotal role in contemporary
society. Dominating the smartphone market with over 3.3 billion users worldwide, Android’s widespread adoption
has also rendered it a prime subject to security threats [18, 30, 58? ]. In particular, studies focusing on the evolution

of Android apps have revealed a concerning trend: with each version update, apps tend to exhibit declining security
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with an increase in vulnerabilities in the evolved apps [35, 43, 62]. This degradation in app security during its constant

evolution underscores the urgency for continuous security vetting of evolving Android apps.

Problem/Motivation. One widely used method for enhancing application security on Android is (static) taint analy-
sis [30]. This technique evaluates an app for potential exposure or leakage of security-sensitive or private user data to
unauthorized or malicious entities. Underlying this technique is often a data-flow analysis computing the reachability
between program points where information is retrieved, noted as taint sources (e.g., reading from user inputs), and
program points where information leaves the program, noted as taint sinks (e.g., writing to a database). For taint analysis
to be efficient in terms of time, it must be precise, generating minimal false positives [52]. Additionally, to minimize the
risk of overlooking real threats, the analysis needs to be comprehensive, capturing as many actual security threats as
possible (i.e., being safe) [36]. An accurate taint analysis would achieve both high precision and reliability of its results.

However, achieving accurate taint analysis is also notoriously resource-intensive [6, 36], as it requires complex
modeling and reasoning about code semantics and app behaviors to identify and eliminate false positives while ensuring
safe results. For instance, FlowDroid [6], a well-known taint analysis tool for Android, can take several hours to analyze
a single app at its highest precision setting. While adjusting the settings for greater efficiency can speed up the process,
it often leads to a significant reduction in precision. Many current solutions face similar efficiency and practicality
issues-—they are too resource-intensive to handle large, real-world apps effectively. On the other hand, some approaches
prioritize speed over accuracy, resulting in an excessive number of false positives. These persistent false alerts can
hinder the adoption of taint analysis techniques, as security analysts may find the time and effort required to sift

through the inaccurate results prohibitively expensive.

Existing Solutions. Recent advances in static taint analysis have attended to such challenges through dedicated
performance optimizations of the core analysis algorithm. For instance, integrating heap snapshots with FlowDroid
aims to optimize the trade-off between precision and performance [11]; optimizing the underlying data flow analysis
(IFDS) algorithm helps reduce time and memory requirements for taint analysis [42]. In addition, improving the analysis
efficiency has been attempted for through a refinement-based strategy (starting with an over-approximation of taint
value propagation, followed by feasibility analysis of taint flows) [67]. Context-sensitive inside-out taint analysis [49]
has also been proposed to scale taint analysis to large Java codebases. Adopting just-in-time analysis methodology in
static taint analysis helps reduce the time cost of the analysis as well [27]. Despite the progress made by these existing
efforts, the challenge persists: conducting highly precise taint analysis remains a taxing endeavor, both in terms of
computational resources and the manual effort required to sift through false positives. More importantly, current taint
analysis methods [8] [36] [63] handle each version of an app as if it were a standalone program, ignoring the fact
that the changes that occur over time are incremental. This current approach results in unnecessarily high costs when

analyzing multiple versions of an app throughout its development cycle.

Key Insights. Despite the generally costly nature of precise static Android-app taint analysis, we found that the
analysis cost is much lower when only a much smaller set of sources and sinks needs to be considered by the analysis.
This is intuitive because the analysis is aimed to search any information flow paths between any of the given sources
and any of the given sinks. Thus, as expected, the cost is generally positively correlated with the number of sources and
sinks considered. When an app evolves to its next version, the changes made may not affect all of those sources and
sinks and the reachability between them. The information flow paths between unaffected sources and sinks, which are
available already if the taint analysis has been performed on the original app, should remain the same for the evolved

app. And any additional taint flows induced by the changes are those between the sources and sinks impacted by the
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changes. Hence, given the results of a taint analysis on the original app, the taint analysis on the evolved app should be
performed incrementally—-only concerning the taint flows between the impacted sources and sinks. If this results in a
considerable reduction in the total number of sources and sinks that need to be considered, we may expect that this

incremental analysis, though straightforward in terms of the core ideas, may reduce the analysis cost considerably.

Our Approach. Following the above insights, we introduce EVOTAINT, a new, incremental taint analysis for Android
apps. Our approach aims at a significant reduction of the time cost of accurate (yet costly) taint analysis, so as to provide
a solution that is both efficient and effective for practical adoption. To that end, our analysis focuses on the changes
between different versions of an evolving app and on the parts of the newer version that are affected by the changes,
instead of analyzing each version as an independent app. In this way, the analysis cost will be amortized across multiple
versions of an app.

Our approach begins with a standard/conventional taint analysis (e.g., FlowDroid) on the initial version of an app,
which serves as the basis for subsequent analyses. This traditional taint analysis is performed only once. The incremental

taint analysis, used for later versions, involves three main steps.

o The first step, impact analysis, identifies which methods are affected by changes in the new app version. It detects
modified methods between the two app versions and uses the call graph (of either the base or evolved version) to
determine all change-impacted methods.

o In the second step, impact-guided taint checking, the technique uses the same call graphs to identify impacted
sources and sinks starting from change-impacted methods and thus get impacted flow path results. By tracking
backward from impacted methods, potential sources are identified if their predecessors have predefined source
invocations. Similarly, tracking forward identifies impacted sinks if successors contain sink invocations. With
impacted sources and sinks identified, we proceed to compute the impacted flow paths, naming taint checking.

o Finally, the third step, taint synthesis, merges the impacted results—obtained from running the conventional taint

analyzer on identified impacted sources and sinks—with the analysis results for the previous version of the app.

Results. To evaluate our approach, we implemented the proposed incremental taint analysis algorithm in an open-source
tool, EvOTAINT, and applied it to 255 real-world benchmarks, representing 100 unique apps with multiple versions each.
Specifically, we formed three benchmark groups, with each app in the corresponding group has 2, 3, and 5 versions
in total. Our results indicate a substantial improvement achieved by EVOTAINT in cost-effectiveness compared to the
baseline (i.e., conventional taint analysis with FlowDroid). In the group where each app has two versions, EVOTAINT
achieves a 51.8% reduction on average in analysis cost, seeing cases in which the reduction reached up to 99%. Notably,
the cost reduction is more pronounced with a greater number of evolving app versions. In the groups where each app
has three and five versions, EVOTAINT can save 66.9% and 68.9% of analysis time, respectively. Moreover, EVOTAINT can
reduce the space usage of the baseline analysis for most (65%) of the cases (apps) in terms of peak memory consumption.
Importantly, EvOTAINT achieved all of these efficiency gains without compromising accuracy—it constantly produces
the taint flow paths equivalent to those from the conventional taint analyzer.

Through in-depth analysis, we further discovered that the time efficiency gains achieved by EVOTAINT are strongly
(negatively) correlated with the ratio of an app’s methods that are changed between the two versions of the app.
Moreover, they are also strongly (positively) correlated with the percentage of sources/sinks that can be saved by
only considering those impacted by the changes, with the latter correlation essentially explaining the former. As a
potential guideline, EVOTAINT tends to be effective when the overall change ratio is below 50%. Among the three types
of changes(addition, deletion, and modification), the impact of modifications on EVOTAINT’s time savings is stronger
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than additions and deletions, although none of the individual change types have as strong impact as the overall app
change ratio. Between the percentage of sources and that of sinks saved due to the incremental approach, the latter
tends to have stronger impact on time savings. However, the source code size of either the base or the evolved version

of the app has essentially no correlation with the time efficiency of EvoTAINT.

Contributions. Through the development and evaluation of EvOTAINT, this paper makes the following contributions:

e We proposed incremental taint analysis with EVOTAINT, a new incremental approach to static taint analysis, for
evolving Android apps, which leverages the incremental nature of changes during app evolution to improve the
efficiency hence cost-effectiveness of checking the evolved apps against information flow security vulnerabilities.

o We developed EvoTAINT and implemented it as an open-source tool that works practically on real-world evolving
Android apps, and demonstrated substantial efficiency merits of the proposed incremental taint analysis via the
EvoTAINT tool over conventional taint analysis through empirical evaluation on those apps as benchmarks.

e We conducted extensive further studies to reveal and understand the merit conditions of incremental taint
analysis, i.e, under what conditions does incremental taint analysis demonstrate its time efficiency advantages,
by examining the impact of various relevant factors to the analysis algorithm, including the app change ratio,

portions of impacted sources/sinks, and source-code sizes of both base and evolved apps.

The development of EVOTAINT started with its preliminary, proof-of-concept version [17]. This paper represents
a completion and substantial expansion of that earlier work in terms of both technical contributions and empirical
evaluations. Technically, (1) instead of building and holding in memory call graphs for both app versions, which can
blow the memory for large-scale apps, we now only build the call graph for the evolved version, largely improving
the scalability and efficiency; (2) instead of using method-level dependence abstraction [23] to compute the change
impact set, which again hits scalability barriers with large-scale apps as this abstraction itself is expensive also, we now
only compute conservative impact set based on the call graph. Another design optimization is to move the incremental
taint flow computation for deleted methods entirely to taint synthesis (by simply removing taint flow paths in the

original version that pass through any of the deleted methods). Implementation wise, we have updated/upgraded the

dependent/supporting libraries/tools of EVOTAINT to enable it to work practically and more robustly against apps
released in recent years which are built on latest Android platforms. None of these design/implementation optimizations
compromise the ultimate/overall accuracy of the analysis, though.

Experimentally, (1) we substantially expanded the scale of evaluation experiments, from 19 unique apps to 100,
covering apps of an even greater variety of sizes and application domains, (2) we largely enhanced the diversity of
app evolution scenarios of the evaluation benchmarks from considering only two versions of each app to three groups
with different numbers (2, 3, and 5) of versions considered for each app, (3) we added the evaluation of space efficiency
of incremental taint analysis in terms of peak memory consumption, compared to the conventional analysis, (4) we
conducted extensive statistical (i.e., correlation) analyses to examine how the overall ratio of changes and the ratio
of different types of changes between the app versions impact the time efficiency of EvoTAINT, hence identifying
the conditions under which the proposed incremental taint analysis may be worthwhile, (5) we conducted statistical
analyses to examine how the percentage of sources/sinks that can be reduced by analyzing taint flows incrementally
impacts the time efficiency of EvoTAINT, hence further understanding/explaining such impact of the change ratios, and
(6) we assessed whether the time efficiency of EVOTAINT is affected by the size of analyzed app versions.

In addition, we have provided a new background section on taint analysis, and more detailed accounts about
the motivation of EVOTAINT (including motivating examples) and its technical design. We also gave more detailed
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comparisons to related works and offered new insights into various aspects of using EVOTAINT in practical scenarios
(via a dedicated discussion section). Finally, in accordance with all of the improved technical design, additional details,

and new results, we have also updated the entire paper accordingly in terms of the overall structure and content.

Significance. Given the large number of evolving versions of Android apps on app stores like Google Play, our technique
offers a viable solution for rapid and precise security screening of those apps. Furthermore, it enables developers to
efficiently assess the security implications of minor modifications, such as altering data flow paths or incorporating third-
party libraries, during routine development activities. The incremental analysis approach demonstrated via EVOTAINT
is particularly relevant given the frequent version updates in Android apps. A study of the Androzoo database [3]
indicates that, among 75,963 Android app families, the median number of versions per app is three, with some families
featuring apps each with over one hundred versions [3]. Traditional taint analysis overlooks these incremental changes,
leading to unnecessary recomputation and excessively high analysis costs.

Although for the ease of presentation, the rest of the paper assumes the most typical scenario of incremental taint
analysis (in which the two apps taken by the analysis as inputs are two versions of the same app during its evolution),
our approach is not necessarily limited to that scenario. Without loss of generality, EVOTAINT can work with any
two given apps, regardless of their being the same app—although the technique would only be cost-beneficial when
these two given apps are similar enough so that the incremental analysis is worthwhile (i.e., more cost-effective than
separately analyzing each app independently). Even more generally, the quite straightforward incremental analysis
methodology we demonstrate with EvoTAINT should also be applicable to other software application domains beyond

Android apps, although a different tool implementation would be necessary.
Artifact. EvOTAINT has been made available as an open-source project at

https://bitbucket.org/wsucailab/iterative-taint-analysis/src/v1.0-Evotaint/

2 Background and Motivation

In this section, we first provide basic background on taint analysis as a general technique in software security defense
(82.1). Then, we discuss how conventional taint analysis misses the opportunity of improving efficiency for evolving
software (§2.2) through a motivating example (§2.3) in Android taint analysis, so as to motivate our technique presented

in this paper.

2.1 Taint Analysis in Software Security

The behaviors of a program can be largely captured by how information flows in the program. Thus, intuitively
information-flow security of a program plays a central role in the holistic security of the program. Taint analysis
has long since been a fundamental technique for addressing information-flow security of various software systems
and applications [33, 34, 51, 60], including Android apps [8, 36, 63, 68]. It is particularly useful for finding security
vulnerabilities related to data input validation, such as information/privacy leaks, SQL injection, cross-site scripting
(XSS), or other forms of injection attacks.

Taint analysis helps users track and understand the flow of sensitive/tainted data within a program, where "taint" refers
to data (e.g., user inputs) that may be influenced by or derived from untrusted or insecure sources. It works by tracing
the propagation of tainted data through a program’s execution, hence identifying potential security vulnerabilities,

especially information-flow vulnerabilities that can be solved as a source-sink problem (i.e., taint-style vulnerabilities).
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As its core technical step, taint analysis tracks how the tainted data flows through various program entities (e.g.,
variables, expressions, and functions). How this data-flow tracking is realized differentiates static versus dynamic taint
analysis. In static taint analysis [32], the flow is tracked statically (by analyzing the source code without executing
it); thus, the analysis analyzes the source code to predict all potential flows of tainted data. In contrast, dynamic taint
analysis [66] performs the flow tracking dynamically (during program execution), observing the actual runtime behavior

of the program that is exercised by the run-time inputs considered.

2.2 The Need for Incremental Taint Analysis

Given the rising prevalence of data breaches and the consequences of security lapses, ranging from personal user
impacts to substantial financial losses for companies, ensuring the secure handling of sensitive user data in apps via taint
analysis is a crucial means against those security threats. In particular, when concerned with a more comprehensive
view of such threats rather than only the vulnerabilities exercised in specific program executions, developers would
intuitively find static taint analysis a more desirable option [28].

However, traditional approaches to static taint analysis can be resource-intensive hence costly. In a study comparing
state-of-the-art static taint analyzers for Android apps, it was found that none of the three most representative tools
can finish analyzing more than 18 out of 30 chosen relatively-large real-world apps in 30 minutes [55]. In our prior
experience with one of the tools, FlowDroid [8], analyzing one app could take up to an hour or longer, while other peer
representative tools, DroidSafe [36] and Amandroid [63], can be generally even less efficient for the same or even lower
levels of accuracy [68]. When pursuing higher accuracy with this analysis, the cost tends to be even higher [8, 70].
Despite efforts on speeding up the analysis, including through optimized data-flow analysis [42] or a different route
such as type analysis [44], static taint analysis remains a generally costly technique. Not only does the cost concern
execution time of the analysis, the memory consumption is also quite substantial [41, 44].

This efficiency problem is exacerbated when frequent updates (e.g., during constant software evolution) are necessary—
users would need to repeatedly suffer from the significant cost incurred by the taint analysis used for security vetting
each updated version of the software. In particular, in the context of Continuous Integration/Continuous Deployment
(CI/CD) practices, where small and frequent updates are common, the need for an efficient taint analysis method tailored
to these incremental changes becomes increasingly evident. Moreover, during a widely adopted practice of CI/CD, the
need to quickly vet each intermediate version to make sure the committed changes do not introduce taint-style security
vulnerabilities is further stronger. Compared to software evolution through various official releases, the differences
between committed versions are even smaller, for which the traditional (standalone/independent) taint analysis tends to

be even more wasteful.

2.3 Motivating Example

To illustrate, let us consider the use scenario of static taint analysis for Android apps. The developer routinely performs
taint analysis after each app update. The analysis tool chosen is the classical FlowDroid [8], a choice well-justified
when considering both the performance and usability of state-of-the-art tools for Android taint analysis—Amandroid is
notably less precise while DroidSafe does not provide information flow paths (but only the source and sink methods
of identified taint flows) [69]. As normal, the developer runs FlowDroid in a standalone manner—i.e., treating each
version of each app as an independent subject of the analysis. Apparently, this approach is unnecessarily expensive and
inefficient, particularly for apps undergoing frequent evolution. Yet, at present, this is the common approach.
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For example, let us assume one of the Android apps involved is LMS [29], an open-source app from F-Droid [1]
that is relatively small in size (around 3.5MB) but has over two hundred commits in its version-control repository.
Comparing two adjacent versions revealed modest changes: 10 methods modified, 9 added, and 2 deleted, resulting
in (method-level) change ratios of 0.95%, 1.06%, and 0.21%, respectively. These minimal differences between versions
raise the question: is it necessary to perform a separate, full taint analysis for each version, especially when changes are so
small? Intuitively, the answer is clearly no—we may perform the analysis of the app in a standard way on its first (i.e.,
base) version and then compute taint flows only for the changed and change-impacted parts of each evolved version.

This is where our concept of incremental taint analysis comes into play. By building upon the analysis of prior

versions, it seeks to provide an efficient alternative to the traditional, standalone method. For instance, in the LMS
app case, the conventional taint analysis for the newer version required 1,104 seconds, whereas the incremental taint
analysis took only 404 seconds. This resulted in a 63.4% efficiency improvement and a time saving of 700 seconds.
Given the app’s extensive commit history, the cumulative benefits of using our approach over conventional methods
become even more pronounced. We anticipate that this efficiency will be greater in larger apps where conventional
taint analysis is typically more time-consuming.

In summary, the introduction of incremental taint analysis and EVOTAINT, our instantiation of this analysis method-
ology for static taint analysis of Android apps, is designed to make taint analysis a more practical and cost-effective
part of a developer’s workflow, particularly for apps that are frequently updated. In the rest of the paper, we present

our design and evaluation of EVOTAINT.

3 Approach

In this section, we present the design of our incremental taint analysis approach, starting with an overview of the
methodology (§3.1) and followed by technical details of each of the three core components of our technique: impact
analysis (§3.2), impact-guided taint checking (§3.3), and taint synthesis (§3.4).

Incremental taint analysis
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Fig. 1. An overview of our incremental approach to static taint analysis. It examines only the parts impacted by the incremental
changes (from V; to Vj, i < j) to compute taint flows to sources/sinks from each impacted entity (a), and synthesizes the solution for
V; with the impact-guided taint checking results to obtain the solution for V; (b).



3.1 Overview of EVOTAINT

Figure 1 depicts an overview of our incremental approach to static taint analysis of Android apps. In particular, the
overall idea of our approach is illustrated in Figure 1 (a). Multiple versions of an evolving Android app under vetting
are considered and sensitive information flows are examined on the basis of the analysis results of previous versions.
Analysis of evolved versions focus on program entities (methods) affected by the incremental code changes between two
versions of the same app to save analysis cost, rather than exhaustively examining all possible paths between any source
and any sink in the evolved app. More specifically, for each evolved version of an app, the changed methods (added,
deleted, and modified) between this version and a previous version of the same app are first obtained. Next, methods
that are impacted by any of the changed methods (i.e., impacted methods) are identified. Then, backward-reachable
sources and forward-reachable sinks are considered the impacted sources and impacted sinks, respectively. And the taint
analysis can be performed incrementally (based on the results on the previous version) by searching (statement-level)
taint flow paths between these impacted sources and sinks only.

This high-level process flow of our technique is illustrated in Figure 1 (b). As shown in this figure, our approach takes
two apps that are typically different—ideally adjacent—versions (named V; and V; (i<j)), of the same app, as input.
Given this input, first, a conventional taint analysis is applied to V; to obtain the analysis result R; for V;, either through
a whole-program (i.e., conventional) taint analysis if it is the first/base version of the app or, without loss of generality,
through incremental taint analysis on its earlier version (iteratively). Then, based on R;, a pass of incremental taint
analysis is performed on V; to obtain the taint analysis result R; for V;, which consists of three stages: impact analysis,
impact-guided taint checking, and taint synthesis. In particular, the impact analysis aims to find methods impacted by
code changes—i.e., impacted methods. It first performs app differencing between V; and V;j to find changed methods,
thereby finding impacted methods by forward traversing the call graph of the app. In Figure 1 (a), the method in yellow
is such an example. Then, impacted sources and sinks are identified through backward and forward search on the same
cal graph as noted above, and incremental taint flow paths between these impacted sources and impacted sinks are

computed—a procedure referred to as impact-guided taint checking. In Figure 1 (a), solid gree arrows starting from

impacted methods (in green color) correspond to identifying impacted sources and sinks by forward and backward
graph traversal, whereas dashed red arrows starting from methods that have impacted sources and ending in methods
that host impacted sinks (both in red color) demonstrate the impact-guided checking process. By doing this, we can
avoid analyzing apps with numerous sources and sinks in order to get holistic taint flows in V;. This holistic result (R;)
is obtained by taint synthesis, the last step of our approach, which combines/merges the impact-guided taint checking
analysis result (i.e., incremental taint flow paths) with R; to derive the full set of taint flows in V;—the ultimate output
of our technique for the given input.

Illustrating/working example. As noted above, each pass of incremental taint analysis addresses two versions of an
app: the original version (e.g., V;) before changes are made, and the changed/evolved version (e.g., V;) that incorporated
the changes. To illustrate our approach more vividly, consider a simple app with two versions V; and V; corresponding
to Listing 1 and Listing 2, respectively. Suppose this app only has a button which will gather sensitive information
(device id and SIM serial number) after click. As shown in Listing 1, taint sources are located in method oNCricKk whilst
taint sinks are located in methods m_sink_x. Methods m1, m2, and m3 are bridge methods which are the intermediate
nodes on the taint flow paths. The same app then evolves into the next version V; with all the three kinds of code
changes: method m3 is removed, a new method m_sink_new is added, and m2 is modified. As shown in Figure 2, every

program path of the app that originates from method oNCLick and ends in any sink method is a taint flow path. After
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Fig. 2. The call graph of the example app V; (Listing 1).
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Fig. 3. The call graph of the example app V; (Listing 2).

having evolved to V;, this remains true for the app. However, there may be previous flow paths disappearing and new

paths emerging between the two app versions. Below we use this example to walk through how our approach works in

detail, performing taint analysis incrementally for this evolving app.
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@Override
lic »id onClick (View arg0) {
Intent i = new Intent (Intent.ACTION_SEND) ;
i.setType ("text/plain™);

TelephonyManager tManager =(TelephonyManager) this

act.getSystemService (Context .TELEPHONY_SERVICE) ;

String uid = tManager.getDeviceId();//SOURCE
String num =tManager.getSimSerialNumber ();//SOURCE
i.putExtra("secret", uid);
1 (uid, i);
m3 (num) ;
}
1i oid ml(String uid, Intent intent) {
m2 (uid, intent);

id m2(String uid, Intent intent) {
m_sink_1 (uid);

m_sink_2 (intent);

m3 (String num) {

m_sink_3 (num) ;

m_sink_1(String uid) {

Log.i("uid", uid); // SINK

d m_sink_2 (Intent intent) {

is.act.startActivityForResult (intent, 0); //SINK

oublic void m_sink_3(String num) {
Log.i("num", num); //SINK

37 @Override

38 oublic void onClick (View arg0) {

39 Intent i = new Intent (Intent.ACTION_SEND) ;

140 i.setType ("text/plain™);

41 TelephonyManager tManager =(TelephonyManager) his
act.getSystemService (Context.TELEPHONY_SERVICE) ;

42 String uid = tManager.getDeviceId();//SOURCE

43 String num =tManager.getSimSerialNumber ();//SOURCE

44 i.putExtra("secret", uid);

45 1(uid, 1);

46 }

47

148 oid ml(String uid, Intent intent) {

149 m2 (uid, intent);

50 }

51

52 bublic void m2(String uid, Intent intent) {

53 m_sink_1 (uid);

54 m_sink_new (uid);

55 }

56

57 public void m_sink_1(String uid) {

58 Log.1i("uid", uid); // SINK

59 }

60

61 bublic void m_sink_2 (Intent intent) {

62 this.act.startActivityForResult (intent, 0); //SINK

63 }

64

65 oublic void m_sink_3(String num) {

66 Log.i("num", num); //SINK

67 }

68

69 public void m_sink_new(String uid) {

70 Log.v("uid", uid); //SINK

71 }

72 }

Listing 1. Code snippet of V;, lines in red are deleted in V;.

Listing 2. Code snippet of Vj, lines in green are newly added.




To start with, the impact analysis identifies three categories of changes in Vj relative to V;, which are addition (i.e.,
a new method is added to V; since Vj; here m_sink_new), deletion (i.e., a current method in V; is deleted during its
evolution to Vj; here m3), and modification (i.e., a method is carried over from V; to Vj, whose definition is changed but
the name remains the same; here m2).

Next, the impact-guided taint checking is performed on Vj, concerning only the added and modified methods—after
all, the deleted methods are not present in V; anymore. Here the impacted methods of added and modified methods
are m_sink_1 and m_sink_2, plus these changed methods themselves—changed methods are trivially considered their
impacted methods as well by convention in the area of change impact analysis [20, 23-25]. Our approach traverses both
backward and forward from each of these impacted methods on the call graph of V; to find reachable methods that
include calls to any sources and sinks, respectively.! All such sources and sinks are regarded as impacted sources (in
this example, tManager.getDeviceld and tManager.getSimSerialNumber) and impacted sinks (in this example, Log.v and
Log.i). In this example app which only has one simple component, it is not a surprise that most of the methods (hence
sources and sinks) are impacted. In a real-world app which is generally more complex, it is reasonably expected that
usually only a small part of the whole app (and a smaller subset of the sources/sinks considered) would be impacted
because typically the changes are usually small (e.g., in a repository commit or between adjacent app versions).

After obtaining these impacted sources and sinks, our approach applies the conventional (statement-level) taint
analysis (e.g., FlowDroid [8]) to V; with the analysis configuration set such that the analysis only considers these
impacted sources and sinks, so as to get the taint analysis result R;j—i.e., statement-level taint flow paths between the
impacted sources (tManager.getDeviceld and tManager.getSimSerialNumber) and the impacted sinks (Log.v and Log.i).
Here R;;j consists of two flow paths: 42 < 45 < 49 < 53 < 58 and 42 < 45 < 49 — 54 — 70.

Now, a similar impact-guided taint checking would be performed on V;, concerning only the modified and deleted
methods—after all, the added methods are not presented in V;. However, to be more efficient, our approach takes a
shortcut, directly dealing with the impact of the code changes between V; and V; on the taint analysis result of V;
(i.e., R;) during the taint synthesis step. The rationale is two-fold. First, for the deleted methods, it is intuitive that
our approach would just compute taint flow paths between sources and sinks impacted by these methods and their
impacted ones, and then remove these paths from R; in order to obtain the remaining flow paths that should be carried
over to the taint analysis result of V; (i.e., Rj). Second, given that we have only computed the taint analysis results
induced by the modified methods for Vj, taint flow paths between sources and sinks impacted by the modified methods
and their impacted ones in V; should also be removed from R; for the purpose of obtaining R;. To identify these taint
flow paths in R; to remove, we do not really need to conduct impact-guided taint checking on V;, though: we can simply
identify them directly from R;—i.e., flow paths in R; that pass through any of the deleted or modified methods.

In the last step, our approach performs taint synthesis, merging R; and R;;. Let us assume that R; has been computed
in advance, which includes three taint flow paths according to the sources and sinks considered as marked in Listing 1:
69— 14— 18 27,6 > 9 < 14 < 19 < 31, and 7 — 10 < 23 < 35. As justified above, we would remove
taint flow paths in R; that are impacted by deleted or modified methods. Thus, the first two paths are removed since
they pass through the modified method m2 and the third path is also removed as it passes through the deleted method
m3. As a result, the synthesis results in R as 42 < 45 < 49 < 53 < 58 and 42 < 45 < 49 < 54 < 70.

!Note that for efficiency purposes, our control flow analysis does not descend down to the Android SDK/libraries; thus, the code of sources and sinks
(which are usually library/SDK APIs) is not analyzed during the call graph construction. As a result, the call graph does not include nodes corresponding
to source/sink methods.



3.2 Impact Analysis

The key to the efficiency enhancement with incremental taint analysis is to avoid the redundant computation for
program entities of the original app that are not impacted by the changes during the evolution. Given this insight, the
first step of EVOTAINT is to identify the impacted entities—which is achieved by (change) impact analysis [13, 22].

For impact analysis, given an earlier version V; and a later (evolved) version V; of an app, the first step is to find
the difference between V; and Vj, i.e., what changes are introduced in V;. In our incremental analysis methodology,
the main idea is to identify change-impacted sources and sinks, so that the fine-grained (statement-level) standalone
taint analysis can be performed with respect to those impacted sources and sinks only. Thus, overall, the changes are
defined and computed at method level: the resulting change set is a set of methods. Also, we quantify the changes by
the percentage of changed methods, named change ratio. Specifically, changes can be classified to three different kinds:
addition, modification, and deletion. For added and deleted methods, we can find them simply by comparing the method
signature for all the methods between the two versions.

For modified methods, the detection is performed at statement level. In other words, if any statement within a
method is different, we consider this method modified. This fine-grained detection is necessary, because statement-level
changes may lead to changes in (ultimately statement-level) taint flows relative to the results of the previous version
Vi. In particular, even if the backward-reachable sources and forward-reachable sinks of a method remain the same
between V; and V}, the method still needs to be treated as changed if the method body or signature (e.g., the set of
parameters) is changed, because the taint flows between those sources and sinks may be impacted by the changes in
the method. Including such methods in the change set in our impact analysis ensures that those sources and sinks are
identified as impacted hence will still be considered during the impact-guided taint checking step (in particular, during
the step of applying the conventional statement-level taint analysis for the impacted sources/sinks), essential for the
soundness of our incremental taint analysis.

The (method-level) impact analysis [14, 21] itself is straightforward. Once the changed methods are identified,
EvoTAINT computes their corresponding impacted methods by traversing on the call graph of the app: all the forward-
control-flow-reachable methods on the call graph are considered impacted. Per our discussion of the intuition behind
the design of EVOTAINT (53.1), impact-guided taint checking only needs to be performed on V;. So, we only need to
identify impacted taint sources and sinks in V;. Accordingly, the impact set only needs to computed in V;. Thus, the call
graph used in the impact analysis is that of V;.

Next, we elaborate on the two major steps of the impact analysis module in EvOTAINT: identifying changed methods

and computing impacted methods.

3.2.1 Identifying Changed Methods. Algorithm 1 delineates the process for detecting changes between two versions
of an app. Initially, the entire set of methods in the original and evolved apps is retrieved. Our version differencing
algorithm then iterates through each method in the original app (line 6). For every method in the original version,
the algorithm searches for a corresponding method with an identical signature in the evolved app (line 7). In cases
where a matching method is not found, it is classified as deleted (D) and subsequently added to the set of deleted
methods (lines 8-9). Upon detecting a match between methods of the original and evolved apps, the algorithm conducts
a statement-level comparison (line 11). Any disparity in statements of such methods leads to the classification of those
method as modified (M) (line 12).

Following the identification of both deleted (D) and modified (M) methods via the traversal of the original app’s
methods, the algorithm proceeds to analyze the methods in the evolved app (line 13). It mirrors the earlier process:
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Algorithm 1: Identify Changed Methods
Input: Mo,y the set of methods in the original version (V;)
Input: Meyo: the set of methods in the evolved version (V)
Output: My pp: the map from each change type to the set of methods changed in that type
Function FindChangedMethods(Morg, Mevo)
Mamp < 0;
My 0;
Mg < 0;
Mp < 0;
foreach method om in Morg do
m « searchMethodInM (om, Meyo)
if m = @ then
| Mp.add(om)
else
if twoMethodsEqual (om,m) then
L ‘ Mps.add(m)

foreach method em in Mgyo do

if searchMethodInM (em, Myrg) = @ then
| Ma.add(m)

MAMD.put(A,MA);

Mamp-put(M,Mpr);

Mamp-put(D.Mp);

return Mapp

for each method in the evolved version, it looks for a method with a matching signature in the original app (line 14).

Methods in the evolved app without corresponding matches are marked as added (line 15).

3.2.2 Computing Impacted Methods. After categorizing methods into the three distinct change types: added (A),
modified (M), and deleted (D), the next step is to compute impacted methods. The main idea is to (1) build the app call
graph and then (2) compute impact set based on control flow reachability on the call graph.

To optimize efficiency without compromising accuracy, added and modified methods are grouped together for impact
analysis on V;. This treatment is inspired by two insights. First, modification can be essentially broken down into
deletion + addition: modified methods can be treated as their original version being deleted from V;, followed by their
evolved version being added to V;. Thus, the three kind of changes can be reduced to two kinds: deletion in V; and
addition in Vj. Second, deleted methods, which will not be involved in the impact-guided taint checking; instead, they
will be directly handled during the taint synthesis step, as discussed earlier (§3.1).

Therefore, only the call graph of the evolved app (V;) is constructed, while that of V; is not needed. To reiterate the
justification, this decision is driven by two factors: (1) efficiency, as modified methods in the original app are treated as
deleted (and then added to the evolved app); and (2) correctness, since some newly added methods, which only exist in
the evolved app, are inherently impacted.

It is important to note that the mere identification of impacted methods does not immediately lead to the efficiency
merits of incremental taint analysis. Oftentimes, these impacted methods do not always yield new taint flow paths.
The focus, instead, is on the sources and sinks within data flow paths affected by the change set, forming the basis
of the taint analysis. This strategy is central to the cost-effectiveness of our methodology: it eliminates the need to
reanalyze unchanged data flow paths between the base and evolved apps. Our algorithm distinctively analyzes only the
changed/impacted data flow paths between given sources and sinks, enhancing both efficiency and precision.
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3.3 Impact-Guided Taint Checking

This section outlines the procedure of our impact-guided taint checking module, which computes the effects of code
changes between the two given apps (app versions) on the static taint analysis of the original app version. The essence
of this approach is to refine the scope of sources and sinks between which the analysis needs to search information flow
paths, based on the (indirect) influence of those code changes on them. The input of this module is the set of impacted
methods and the output is the additional taint flow paths in the evolved app/version compared to the base analysis
result (R;) of the original app/version (V;). As discussed in $3.2, the impacted methods here are the set of methods
impacted by the added and modified methods, and the taint checking is performed on the evolved app/version (V;) only.

Algorithm 2: Impact-Guided Taint Checking

Input: V;: the evolved version of the app

Input: Maap: the map from each change type to the set of methods changed in that type between the prior version of V; and V;
Output: R;;: incremental taint flow paths in V;

Function FindImpactedSourcesSinks(Mapmp., CGeovo)

Ma — Mamp.get(A);

Mum — Mamp get(M);

Mam — Ma UMy

Mimpacted < getSuccessors (Mam, CGevo);

Msources < getPredecessors (Mimpacted> CGeoo);> identify sources backward-reachable from any impacted method
Msinks < getSuccessors (Mimpacteds CGewo); > identify sinks forward-reachable from any impacted method
SourceSinkDefinition < deserialize(SourcesAndSinks.txt);

Sources < retriveSources (Msources, SourceSinkDefinition);

Sinks « retriveSinks (Msinks, SourceSinkDefinition);

return Simpacted < Sources, Sinks

Function TaintChecking(Mamp., V;)

CGeyo < constructCallGraph (Vj);

Srcimpacteds Sinkimpacted < FindImpactedSourcesSinks (Mamp, CGeovo);
Rij « GETTAINTFLOWPATHS(ST Cimpacteds Sinkimpacteds V);

return R;;

Since precise taint checking addresses the (information-flow) reachability from sources to sinks that are specified
beforehand, the key to our impact-guided taint analysis lies in reducing the scope of sources and sinks by identifying
those that are (indirectly) affected by the code changes between V; and V;. As depicted in Algorithm 2, the process
begins with identifying impacted methods (lines 2-5). For each impacted method, the algorithm traverses backward in
the evolved app’s call graph (line 6), marking all backward reachable methods as ancestors. Following this, it traverses
forward (line 7), marking forward reachable methods as descendants. Notably, the descendant methods are essentially
impacted methods themselves, allowing for the omission of this step to enhance efficiency.

Furthermore, the algorithm retrieves the signatures of methods within these ancestors and descendants. It then
compares these signatures with source/sink definitions from a complete, predefined source/sink set (noted as Source-
sAndSinks.txt) (lines 8-9). Identified source methods are added to the set of impacted sources. Similarly, it then identifies
sinks within descendant methods (line 10), adding them to the set of impacted sinks. The expectation is that the impacted
sources and sinks represent a small fraction of the complete source/sink set, which aligns with the condition of efficiency
merits of our approach. These impacted sources and sinks are serialized in a format compatible with the conventional

taint analyzer (e.g., FlowDroid [8]).



Once the call graph of V; is constructed (line 13) and the impacted sources and sinks are identified (line 14), EvOTAINT
applies the conventional taint analyzer of choice to V; while considering these impacted sources/sinks only (line 15),
rather than the complete set of predefined sources/sinks in a common use scenario. This impact-guided taint checking
step results in the set R;; of taint flow paths induced by the added and modified methods between V; and V; (line 16).
Here, performing the conventional taint analysis is denoted by invoking a subroutine GETTAINTFLOWPATHS (line 15)

which essentially computes taint flows between the given lists of sources and sinks.

3.4 Taint Synthesis

The synthesis process integrates the taint analysis results for the evolved app version, R;, by combining the original/base
version’s results, R;, with the outcomes of the impact-guided taint checking, denoted as R;; (as per Algorithm 2).
Specifically, for the base version Vp, Ry is derived using the standard conventional static taint analysis—i.e., invoking the
subroutine GETTAINTFLOWPATHS on the complete sets of all possible sources and sinks considered. For other versions,
R; (i > 0) is derived from the prior incremental taint analysis between V; and the version prior to V;.

The taint synthesis occurs in two primary stages. In the first stage, any flow paths in R; that pass through (any
statements enclosed in) any of the modified (M) or deleted (D) methods are excluded. In the second stage, the remaining
elements of R; are merged with R;;, the result of the impact-guided taint checking for the evolved app version, to get
the final result R; (for the evolved app). This approach ensures a comprehensive and updated representation of data
flow paths in the evolved app.

This synthesis approach also ensures that no security vulnerabilities are overlooked, regardless of whether they exist
in changed or unchanged code. When analyzing an evolved version of an app, any security issues present in unchanged
code would have already been identified in the base version’s taint analysis results (R;). During the taint synthesis step,
we carefully merge these existing results with the new analysis results from changed code (R;;) to produce the final
results (Rj). Specifically, only the taint flows that pass through modified or deleted methods are removed from R;, while
all other taint flows—including those representing security issues in unchanged code—are preserved in the final results.
Taint flows with respect to the effects of the modifications (in V;) are later added to R;. In this way, only the taint flows
that become absent due to the evolution are removed from R;.

To illustrate how EvOTAINT performs taint synthesis, consider the example shown in Figure 4, where the top diagram
shows a base version of an app and the bottom shows its evolved version, with corresponding taint flow paths listed on
the right. The synthesis process starts with the base version containing five taint flow paths (shown in "Base Paths").
When handling the evolved version, EVOTAINT first removes paths that are impacted by modified or deleted methods
from the base version’s results. In this example, four paths are removed: two paths through m2 (which was modified),
one path through m3 (which was deleted), and one path through m_sink_4 (which was deleted), leaving only the path
"onResume -> m_sink_5" from the base results. Then, EvOTAINT adds the taint flow paths computed for the evolved
version that are impacted by modified or added methods. These include two recomputed paths through the modified
method m2 to existing sinks m_sink_1 and m_sink_2, one new path through m2 to a newly added sink (m_sink_new_1),
and one completely new path to another added sink (m_sink_new_2). Finally, EvOTAINT synthesizes the complete set of
taint flows for the evolved version by combining the remaining path from the base version with these newly computed

paths, resulting in five synthesized paths as shown in the bottom-right box of the figure.



onClick onCreate onResume Base Paths
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Fig. 4. An example of taint synthesis.
4 Implementation and Limitations

We implemented our technique as a tool, EVOTAINT, based on Soot [46] and FlowDroid [6]. These supporting tools
expect APK inputs and provide essential functionality that would be complex to reimplement for source code analysis.
For instance, for impact analysis, we use Soot to extract methods from APK files to conduct differencing. In this way, we
can skip the engineering effort of analyzing version history, parsing source code, and then identifying changed methods.
This is why we chose to work with APKs despite targeting developers who have source code access. In general, for
the conventional taint analysis (i.e., the subroutine GETTAINTFLOWPATHS) employed in both the impact-guided taint
checking and taint synthesis modules, the core is an exhaustive, pair-wise reachability analysis that tracks all possible
sensitive data flows between all predefined sources and sinks. In particular for Android apps in this work, we use
FlowDroid [6] for this conventional whole-program taint analysis. For precise analysis results, we adopt the default,
conservative settings for flow and context sensitivity.

In addition, FlowDroid is also used for constructing the call graph of V; (i.e., the subroutine constructCallGraph)
underlying the impact-guided taint checking module of EvOTAINT. Soot is used by FlowDroid itself, and additionally in
EvoTAINT for retrieving/traversing all of the methods and statements in a method of a given Android app (APK), so as

to enable the app differencing step of the impact analysis in EvOTAINT (§3.2.1).



Since many real-world Android apps are obfuscated, which impedes both the app differencing and impact-guided taint
checking in EvOTAINT, EVOTAINT applies deobfuscation to the given apps (V; and V;) prior to the impact-analysis phase.
While deobfuscation is orthogonal to EvOTAINT and dealing with itself is out of scope of this work, it is a necessary
engineering step for a practical tool. To deobfuscate an app, we used two state-of-the-art Android deobfuscators,
Simplify [31] and DeGuard [12] (as the primary and secondary options, respectively). Thus, our current implementation
will not work well on apps that either cannot be analyzed by Soot/FlowDroid or have been obfuscated but cannot be
deobfuscated with the two deobfuscation tools (a more advanced deobfuscator can be plugged in to replace them).
By the same token, EVOTAINT relies on the ability to obtain the taint analysis results of the base version of the given
evolved app—if for the given app the base-version result cannot be obtained (e.g., when using FlowDroid against the
base version, because it ran out of the user’s time budget while not producing the taint flow result), then EvoTAINT
would not work properly for this app either. While for increasing the applicability of our tool, we deal with obfuscation
purposely, we note that in the most typical use scenario of incremental taint analysis, developers would want to check
each evolved (committed or released) version against taint flows as part of the security vetting during continuous
integration/development, where there is no motive for obfuscating the app at that point. Thus, in those common use
scenarios, deobfuscation is not essential or even necessary. Accordingly, possible failures to deobfuscate successfully
should not become a practicality barrier to EvOTAINT.

The source/sink identification is orthogonal to our incremental taint analysis approach. The complete, predefined
source/sink set (i.e., SourcesAndSinks.txt in Algorithm 2) is generated using SuSi [5]. Susi is a machine-learning based
automated tool that classifies each of the SDK APIs in a given version of the Android platform as a source, a sink, or
neither. Considering the evolution of the Android platform, we applied SuSi to all the existing known Android versions
(by the time this paper is written), obtaining the complete source/sink set for each Android version in terms of API
level. For a given Android app, EVOTAINT automatically retrieves the minimum Android platform version the app is
aimed to run on (as indicated by the minSdkVersion attribute in the app’s AndroidManifest.xml file located in the app’s
APK) and chooses the corresponding source/sink set to use for the static taint analysis.

Our technique currently achieves an efficiency improvement in the incremental taint analysis mainly by reducing the
sources and sinks to be applied to the conventional taint analysis. Directly computing affected (statement-level) taint
flows via incremental data flow analysis [53, 56, 59] would avoid invoking the GETTAINTFLOWPATHS subroutine, which
however may be more expensive than our current straightforward approach hence making the overall incremental taint
analysis for Android apps less cost-beneficial.

Moreover, it should be noted that the cost-effectiveness of EVOTAINT is constrained by the number of impacted flow
paths, which intuitively would be affected by the changes between the two (preferably adjacent) versions of an app
under analysis. In the case of this number being very large, the cost of incremental analysis may not be paid off.

Regarding the usability of our tool, EvOTAINT follows a straightforward installation process as a standard Java
application. The tool requires minimal configuration, so developers who are already familiar with FlowDroid can easily
transition to using EVOTAINT, as it maintains similar input and output formats. We provided simple command-line
interface pattern: java —-jar evotaint.Jjar base.apk evolved.apk torun EvOTAINT. The tool can also

be incorporated into continuous integration pipelines with minimal additional effort.

5 Evaluation Design

In this section, we describe the design of empirical evaluation of EvOTAINT, including the research questions that guide

our evaluation (§5.1), the datasets used as study subjects (§5.2), and the evaluation methodology (§5.3), following the
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guidelines from [65]. The goal of our empirical evaluation is to assess whether incremental taint analysis provides
statistically significant efficiency improvements over conventional taint analysis while maintaining the same level of

accuracy and explore factors that impact EVOTAINT’s effectiveness.

5.1 Research Questions
Our evaluation aims to address the following six research questions (RQs):

e RQ1: What are the time efficiency advantages of incremental taint analysis compared to conventional (standard/whole-
app) taint analysis?

e RQ2: Under what conditions does incremental taint analysis demonstrate its time efficiency advantages?

e RQ3: How does the number of impacted sources and sinks influence the time efficiency of incremental taint
analysis (in terms of cost reduction)?

e RQ4: How does app size influence the time efficiency of incremental taint analysis?

e RQ5: Does our incremental taint analysis lead to reductions in memory usage?

e RQ6: Does our incremental taint analysis achieve the same accuracy in taint checking as the conventional

approach?

To be specific, these RQs are set as justified as follows. RQ1 examines whether our approach can reduce the time
cost of taint analysis when analyzing evolved versions of Android apps; RQ2 investigates the relationship between
code changes and analysis efficiency; RQ3 explores how the reduction in analysis scope affects performance, helping
understand the underlying mechanisms of our efficiency gains; RQ4 examines whether the benefits of our approach
vary with app size, helping understand its scalability; RQ5 investigates whether our approach provides benefits beyond
time efficiency by examining its impact on memory consumption. RQ6 validates that our efficiency improvements do
not come at the cost of reduced analysis accuracy.

The subsequent sections detail the experimental setup and methodology employed to answer these research questions.

5.2 Dataset

To evaluate EvoTAINT, we applied our incremental taint analysis to a diverse set of Android apps sourced from the
F-Droid [1] repository. Our dataset comprises 100 unique apps, encompassing 255 distinct versions. This selection
includes 100 apps each with 2 versions, 10 apps each with 3 versions, and 5 apps each with 5 versions, together making
up of 255 distinct versions. Specifically, 10 apps from the 2-version group were also used in the 3-version group and
5-version group. This overlap was intentional and serves a specific research purpose: it allows us to evaluate how
EvoTAINT performs on the same app across different lengths of evolution history. For each app with multiple versions,
the lowest version number was designated as the base version, while subsequent versions were treated as evolved
versions, resulting in a total of 140 app pairs, i.e., 100 pairs for the second versions in the 2-version group, plus 20 pairs
for the second and third versions in the 3-version group, plus 20 pairs for the second through fifth versions in the
5-version group., 2 undergoing incremental taint analysis.

Although many of the chosen subject apps each has more versions than we considered, we chose 2, 3, and 5 versions
for research evaluation purposes. In particular, we consider these three groups of benchmarks in order to account
for different use scenarios of incremental taint analysis in terms of the extent to which developers may benefit from

incrementally checking sensitive information flow during app evolution. In particular, by analyzing an app pair, i.e., 2

22-version group: 100 X (2 — 1) = 100, 3-version group: 10 X (3 — 1) = 20, 5-version group: 5 X (5 — 1) = 20
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Table 1. 2-version benchmark group, including for each app the package name, functionality description, and the version no. and size
(in terms of #methods) of each of the two considered versions (V; and V;).

Package name Functionality description V; V;
version no. #methods version no. #methods
agrigolo.chubbyclick FOSS Metronome with the gigging musician in mind. 22 399 23 310
app.fedilab.mobilizon a tool to help manage your events, your profiles and your groups. 1 3,446 2 3,442
appfedilab.openmaps Display maps with OpenStreetMap 11 1,943 12 1,967
app.mlauncher Forked from Olauncher. Minimal and clean 64 13,991 65 13,937
at bitfire.nophonespam Block calls from annoying or private numbers on your Android device. 13 349 14 349
at.linuxtage.companion Browse the "Grazer Linuxtage” schedule 1700005 6,978 170000009 6,531
be brunoparmentier.wifikeyshare Share Wi-Fi passwords with QR codes and NFC tags 2 509 3 512
be.ppareit.swiftp_free Access your phone wirelessly 30000 842 30001 843
bou.amine.apps.readerforselfossv2.android A new RSS reader for selfoss. 123051471 26,711 123061651 26,711
ca.mimic.apphangar Access recent and top apps 62 587 74 611
ca.rmen.android.networkmonitor Check network connectivity 13100 3,195 13101 3,197
click.dummer.have_radiosion Internet radio player with comic figure as music visualizer 25 318 26 321
lick.dummer.i Send very small photos with long text SMS and without MMS or internet 13 297 14 297
click. dummer.textthing a simple text file editor 214 184 215 184
click.dummer.UartSmartwatch Bluetooth App for a UART-Smartwatch 31 155 32 155
cloud.valetudo.companion Easily find and connect Valetudo robot vacuums on and to your network 11 235 12 237
com.aaronhalbert.nosurfforreddit Browse the top posts on Reddit without infinite scrolling or addictive features 5 16,007 6 16,089
com.abh80.smartedge Android alternative for Dynamic Island 20202 6,015 20203 6,032
com.adam.aslfms Last.fm/Libre.fm Scrobbler 55 904 58 906
com.addi Math calculation environment 37 2,092 40 2,091
com.akdev.nofbeventscraper Import Facebook-Events to the calendar 13 4,654 14 1,654
com.alaskali user igslis Search posts on Craigslist 9 113 10 115
com_altillimity.satpredict "An offline satellite tracking app 1 6,852 2 6,856
com.ap di P Igenerator Generate diceware passwords B 1,083 9 1,192
com.benny.pxerstudio Pixel drawing tool for Android 7 1,466 B 1,465
com.bleyl.recurrence Get reminded about notifications 22 998 23 998
com.cgogolin library Browse BibTeX files 60 278 61 278
com.chesire.nekome Keep track of your anime and manga, through the use of the Kitsu APL 23062323 14,851 23062419 14,910
com.conceptltech.instalate Online dictionary - Translate content directly in your apps 11 2,419 12 2,419
com.corvettecole.gotosleep Reminds you to go to sleep... until you do 50 1,536 57 1,552
com.coste.syncorg Take and organize notes 10 9,309 7 9,293
com.craigd Imsmaterial.app Simple webview wrapper for MaterialSkin on an LMS server 301 919 400 954
com.danefinlay.ttsutil Text-to-Speech Utility Application 6 4,218 7 4,220
com danhasting radar An application featuring customizable, real-time doppler radar images 3 7,155 4 6,485
com.danielkim.soundrecorder Record audio files 130 1,049 5 1,037
com.decred.decredaddressscanner Scans Decred addresses for available funds and notifies of changes. 8 993 9 946
com denytheflowerpot scrunch Play sounds whenever you fold or unfold your Galaxy Z Fold. 2 3,438 3 3,438
com.dfa.hubzilla_android Client for the Hubzilla social network 44 1,710 45 1,710
com.dkanada.chip Chip8 emulator 1 2,759 2 2,759
com.dozingcatsoftware.bouncy Pinball game 36 12,851 37 12,856
com.eventyay.organizer Event management app for Organizers using eventyay platform 12 28,960 13 29,274
com.example tobiastrumm.freifun "Add multiple Freifunk SSIDs o your device 10 1,022 3 385
com.fabienli.dokuwiki Access in local to your dokuwiki 71 1,211 72 1,211
com.fastebro.androidrgbtool Get RGB and HEX values of a color 11 4,714 12 5,172
com.fediphoto Fedi Photo - quickly post photos to the Fediverse. 24 147 25 144
com flasskamp.subz Subscription and contract management with notification function. 2 664 3 1,665
com forrestguice.suntimescalendars A calendar provider add-on for Suntimes. 15 587 16 589
com.fredhappyface.fhcode Code editor for android 20211104 257 20220110 263
com.freshollie. keyboard.k d Monkeyboard FM & DAB/DAB+ radio interface 115 851 116 851
com.gbeatty.arxiv Browse, search, and download arXiv articles with arXiv eXplorer! 34 2,529 39 2,649
com.github.cythara Musical instrument tuner 25 1,590 27 1,601
com.github.dawiddé.andttt simple tic tac toe game 64 8,125 65 10,009
com.github.gianlucanitti.expreval Math expression calculator with variables and functions support 1 237 2 258
com.github.igrmk.smsq Receive your SMS messages in Telegram 13 1,127 4 1,131
com.github.muellerma.coffee Keep display awake 37 742 38 755
com.github.muellerma.mute_reminder Remind you to mute media 15 697 16 696
com.github.muellerma.prepaidbalanc: Keep track your prepaid balance 30 907 31 907
com.github.muellerma.stopwatch Stopwatch as quick tile 1 46 2 16
com.github.nutomic.controldlna DLNA/UPnP control point 12 5,400 13 5,400
com.github.pires.obd.reader Car diagnostics 12 7,910 13 7,916
com.gitlab.dibdib.dib2calc The crazy calculator. Once you get used to it, you will love it :-) 2324 1,130 2326 1,130
com.glanznig beepme Experience sampling (ESM/DES) 20 916 21 936
com.gmail.afonsotrepa.pocketgopher A fast, elegant and modern Gopher Client 1 375 2 375
com.haringeymobile.ukweather View weather forecast 27 1,464 30 1,478
com hwloc Istopo Display the topology of your hardware using the hwloc library and Istopo tool 269 562 270 562
com james status An overlay-based statusbar replacement 41 5,075 42 5,282
com jarsilio.android otate Automatically remembers your auto-rotate setting for every app 30 6,508 31 6,518
com jereksel libresubstratum Bucket is UNOFFICIAL app for Substratum Theme Engine 1 5,888 3 6,500
com jim.sharetocomputer Share anything to your computer 1120 2,150 1130 2,155
‘com Ketanolab.nusimi Nusimi is your dictionary of native american languages 6 332 7 332
com knirirr.beecount Knitting row counter 119 3,299 120 3,299
com Kolserdav.ana Foreign Language Dictionary 135 1,105 136 1,119
com ktprograms.watertracker reminds you to drink water 3 63 4 63
com.launcher.silverfish A launcher with focus on a simple UI 7 1,348 8 1,350
com.manimarank.websitemonitor This app helps to monitor your websites periodically with notification. 5 6,143 6 6,143
com.mehmetakiftutuncu.eshotroid Bus times in Turkey 3 449 4 451
com.mikifus.padland Padland is a tool to manage, share, ber and read collaborative d ba 23 786 24 789
com.mrbime.selinux Set SELinux mode on boot 20170724 6,266 20171031 6,268
com.naman14.stools Collection of system tools 10 1,047 11 1,047
com.nathaniel. motus.cavevin Wine cellar manager 2 301 3 301
com.nhellfire.kerneladiutor Manage kernel parameters 245 7,391 246 7,290
com.nilhcem.hostseditor Edit system hosts file 3 4,562 4 4,712
com.oF2pks jquarks LineageOS Jelly browser +adsBlocker +tiles +ofjie_mht +... 17 507 18 507
com.philliphsu.clock2 View time, set alarms and timers 112 2,015 113 2,015
com.phpsysinfo Monitor phpSysInfo 940 549 950 549
com.pindroid Bookmark manager 68 1,633 69 1,635
com.quaap.bookymcbookface An extremely unfancy and very basic ebook reader 420 697 430 697
com.rastating.droidbeard Manage SickBeard installations 1500 854 1502 854
com.sensirion.smartgadget Connect to your Sensirion Smart Gadget via BLE 90 2,644 96 2,578
com servoz.appsdisabler Disable any applications, and easily enable it with a pretty isable launch 121 1233 122 1233
com.stoptheballs Flying balloons shooting. Action. Shooter for kids and adults. 108 1,794 114 11,901
com.tomer.draw Draw and take notes everywhere on your device 51 1,553 100 1,555
com.truchsess.send2car send geo-locations to your bmw car from any app that allows sharing locations 11 3,220 12 3,220
com.tunerly A minimalistic pitch tuning app for Guitar, Bass and Ukulele. 3 1,236 7 1,236
com.veniosg.dir Modern file manager 1523 2,449 1560 2,455
com.vlath.beheexplorer Browse the web 20051 472 20064 485
com.workingagenda fissure Create and view GIFs 2 146 3 146
com.chooloo.www.koler uniquely stylized phone app with customizable features 145 15,524 146 15,716
com.github.muellerma.mute_reminder Remind you to mute media 22 728 23 728

Teluk m Toudeookbool

View all your recipes stored in your Nextcloud instance. 140 12,866 141 12,366




Table 2. 3-version benchmark group, including for each app the package name, and the version no. and size (in terms of #methods) of
each of the three considered versions (from Vj to V3 ).

Package name Vo i Vs
version no. | #methods | version no. | #methods | version no. | #methods
com.github.nutomic.controldlna 12 5,400 13 5,400 14 5,406
com.bleyl.recurrence 22 998 23 998 24 986
app.fedilab.mobilizon 1 3,446 2 3,442 3 3,444
com.flasskamp.subz 2 1,664 3 1,665 4 1,828
agrigolo.chubbyclick 22 399 23 410 24 437
com.gianlu.dnshero 38 2,991 39 3,072 40 3,072
com.craigd.Imsmaterial.app 301 919 400 954 401 961
com.forrestguice.suntimescalendars | 15 587 16 589 17 625
com.eventyay.organizer 12 28,960 13 29,274 14 30,768
com.launcher.silverfish 6 1,348 7 1,347 8 1,355

Table 3. 5-version benchmark group, including for each app the package name, and the version no. and size (in terms of #methods) of
each of the five considered versions (from Vj to Vy ).

Package name Vi Vi \Z V; \Z

version no. #methods version no. #methods version no. #methods version no. #methods version no. #methods
com.chooloo.www.koler 8d8d785 15,513 80966ea 15,460 e3c38de 15,478 fe1dfed 15,524 da638ee 15,716
de.luk b: cloudcookbook e536f2f 12,866 a396f00 12,866 1472453 12,866 7f2e2e7 12,867 559938d 12,867
com.craigd.Imsmaterial.app a5ac007 944 064ccOb 944 a5f8b53 951 Obfcfae 951 2c672b2 955
com.github.muellerma.mute_reminder 4ccfsfc 728 c6leae 728 acf869c 739 a588102 741 9d69f18 688
com.github.cythara a74da7d 1,546 2419097 1,590 9a6165¢e 1,601 b435ee6 1,601 1871ad9 1,628

versions of an app, we are able to assess the efficiency benefits of incremental taint analysis in the one-time evolution
scenario—i.e., when developers just want to use the incremental analysis on one evolved version only. By analyzing
apps with multiple versions, i.e., groups of apps of 3 and 5 versions, we can assess the cumulative efficiency benefits of
incremental taint analysis in a continuous evolution scenario—i.e., when developers use the incremental analysis on
one evolved version after another.

Moreover, for the 2-version group, we considered 100 benchmarks as 100 is a sizable scale for evaluating a static
analysis for Android apps relative to peer works in the relevant literature. For the other two groups, we considered
fewer benchmarks because (1) it is not as handy to get as many benchmarks each with many (continuously) evolved
app versions (that can all be deobfuscated successfully and analyzable by Soot/FlowDroid) as for the 2-version group
and (2) the total experimentation cost is considerably higher for each benchmark than those in the 2-version group.
For apps in the 2- and 3-version groups, we were able to find and use the most adjacent version in respective release
histories, whilst in the 5-version group, the versions were retrieved from their version-control/commit histories (starting
from a randomly selected commit, followed by the next 4 consecutive commits) and then manually built to be the
continuously-evolving versions. This approach reflects the incremental nature of app development during continuous
integration/deployment practices. Tables 1, 2, and 3 summarize the 2- 3-, and 5-version group of our study benchmarks,
respectively. The core of EVOTAINT itself works at method level (although in its last phase synthesizing base and
incremental taint flow results at statement level by resorting to the conventional, statement-level information flow
analyzer). Therefore, this size measure will help us understand the efficiency gains EvOTAINT brings. This is why for
each benchmark app, the size is measured via the total number of methods in that app (rather than a more commonly
used measure such as SLOC).

Based on preceding decisions we made, we formulated three app selection criteria. First, we chose F-Droid as the
primary data source for as it hosts open-source apps for which we can find evolved versions that are mostly analyzable
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with the tooling support (i.e., Soot+FlowDroid) available to us. This choice aligns with our target users—developers who
have access to their application codebases and need to check for potential security vulnerabilities during development.
F-Droid’s open-source nature also allows other researchers to replicate our studies. To automate the app collection
process, we selected and downloaded apps using F-Droid’s repository metadata file. This file contains package name
and available release versions of hosted app. From this data source, we selected benchmarks in each group randomly—
for each group, we randomly sampled an app that has at least the corresponding number of versions, checking the
analyzability and repeating the process until we obtain the target number of benchmarks for that group. Note that
for each benchmark app, we specify the minimal version available in this file as the base version. This is because,
conceptually, the minimal version is aligned with the base version in our technique/evaluation design for which the
conventional taint analysis needs to be applied. Then, the next version is intuitively the immediate later version.

Second, if the conventional taint analysis with FlowDroid took more than 8 hours for the base version of an app and
still did not finish, we also skipped that app. This decision is justified by the need to contain the total experimentation
cost under a reasonable bound, and we chose 8 hours as the limit because it is a reasonably long enough time for one
single app, considering the total number of apps we need to analyze in our evaluation studies.

Third, we included only apps that were either distributed as unobfuscated release APKs or could be built from source
without errors. This requirement was necessary to ensure reliable analysis results, as heavily obfuscated code (e.g.,
with identifier renaming) can interfere with differencing.

Note that our selection methodology did not explicitly filter apps based on the frequency or magnitude of changes
between versions. Change ratios were calculated post-selection rather than used as selection criteria. This approach
allowed our dataset to naturally include a diverse spectrum of evolution patterns, ranging from apps with minimal

changes (e.g., nearly identical) to apps with substantial differences across their versions (e.g., with 50%+ change ratio).

5.3 Methodology

Baseline selection. To establish a baseline for comparison, consider an app a with initial version vy (denoted as ay)
and subsequent versions v1, vy, . . ., up, Where vy is the latest or the maximum version considered. v;41 is the version
immediately following v; in the commit history, where 0 < i < n. The total time for the conventional approach (running
FlowDroid separately/independently on each version) is expected to be 3.7 t; , with t4; representing the conventional
static taint analysis time for a;. In contrast, the total time for our approach would be t4, + > ta;,, —a,, Where ta,,,—a,
includes the time for each step of our incremental taint analysis (i.e., app differencing and impact analysis, impact-guided
taint checking, and taint synthesis). The primary comparison lies between t4,,, and tq;,, —q;.

Thus, we measured the time cost of EvOTAINT versus FlowDroid as the baseline on the evolved version of each
benchmark, since both approaches share the same analysis cost on the base versions. On the evolved versions, FlowDroid
treats each as an independent app and performs a whole-app taint analysis, while EVOTAINT performs the incremental

taint analysis proposed.

Metrics. As explained above, we only compared the costs for the evolved versions incurred by between EvoTAINT and
FlowDroid. More specifically, we computed the percentage of cost reduction achieved by EVOTAINT relative to the cost
of FlowDroid on each benchmark (for answering RQ1 and RQ4). For the same reason, we only compared the resulting
taint flow paths in the evolved versions as produced by the two tools for accuracy validation (i.e., confirming that our
incremental taint analysis produces taint flow paths that are equivalent to those that are produced by the conventional

analyzer, for answering RQ6).
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This cost reduction percentage is our primary efficiency metric (E), as computed as

1

Chaseline Chaseline

R= (Cpaseline = CEvoTaint) —1_ CEvoTaint. 1)
where ¢ stands for cost of time or other resources (e.g., memory).

For apps of multiple evolved versions, we compute the cost reduction for each evolved version separately, just for the
apps in the 2-version benchmark group. In addition, to measure the overall cumulative efficiency benefits of iteratively

applying incremental taint analysis, we also measured aggregate reduction, with which we assume that each app

has n + 1 versions, starting with vy and ends with v,,. Suppose the time cost of conventional taint analysis on app of
version v; is denoted as t¢t4; and the time cost of incremental taint analysis on app of version v; is denoted as tjz4;. The
aggregate efficiency can be computed as:

tetag + titay + - + tita,

@)

Raga =1 -
99 tetay + tetay + 00 +tetay,

Essentially, this metric measures the cumulative time saving when considering the total cost of analyzing all the n + 1
versions, using incremental taint analysis versus using conventional analysis.

In addition, we use the number changed methods to quantify changes between two apps of different versions, referred
to as app change ratio. Suppose there are two apps a; and a;. If a; has N,; methods, and the number of any category of

changed (i.e., added, modified, or deleted) methods in a j is Nchg) the change ratio r;; is computed as:

rij = ®)

Finally, to understand when our incremental taint analysis works, we examine the statistical correlation between
the cost reduction it achieves and a few influence factors, including the app change ratio, the numbers of impacted
sources/sinks, and the code size of apps (for answering RQ2, RQ3, and RQ5, respectively). In particular, to quantify

the correlation statistics, we used Spearman’s rank correlation coefficient p. Specifically, efficiency (in terms of cost

reduction percentage) will be treated as the dependent variable X, whereas each of the influence factors (such as app
change ratio) will be the independent variable Y. To quantitatively assess the correlation, we adopted the interpretations
of correlation strength according to varied value ranges of the Spearman coefficient r in [64], as Spearman’s method
does not assume linear relationships between variables and is robust against outliers, making it appropriate for our
data which may contain some extreme values. Specifically, the correlation is considered very weak if ||r|| is below 0.20,
weak if ||r|| is between 0.20 and 0.39, moderate if ||r|| is between 0.40 and 0.59, strong if ||r|| is between 0.60 and 0.79,
and very strong if ||r|| is 0.8 or above. Moreover, we report the p-value associated with a correlation coefficient, which
represents how likely the correlation is due to random chance. Typically, a p-value < 0.05 is considered statistically

significant, hence indicating a significant correlation here.

Procedure. We ran our incremental taint analyzer EVOTAINT versus the baseline FlowDroid separately on every
considered version of each chosen benchmark app in our evaluation dataset. By comparing the performance between
these two tools in terms of the above-mentioned metrics, we answer our research questions based on the performance
numbers (e.g., time/memory cost reduction) collected in the experiments and statistics (e.g., correlation coeflicients)
further computed based on those numbers. EVOTAINT was configured to collect and report extensive metadata related
to the execution of the static taint analysis. We focus on several unique attributes, particularly time and space metrics,
to compare our approach with the baseline. These include memory usage and time cost for function retrieval, app
differencing, and impact analysis. For detailed timing statistics including those of data flow analysis, taint propagation,
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and path reconstruction, we utilized the relevant capabilities offered (through its InfoflowResults.getPerformanceData()
function) by FlowDroid. For time efficiency, we further conducted two-tailed Wilcoxon signed-rank tests [2] as this
non-parametric test is appropriate when comparing paired samples without assuming normal distribution of the
differences. We verified this was appropriate by first confirming our time measurement data did not follow a normal
distribution using Shapiro-Wilk tests (p < 0.001) [61]. We choose two-tailed tests as the directionality of the difference
(< 0 or > 0) is not known in advance. This was verified as we later observed that EvOTAINT mostly reduces the time
cost of taint analysis, but sometimes incurred higher costs, so overall whether the difference is in one direction or the
other is not known. We calculated effect sizes in terms of Cliff’s delta [26] to measure the statistical significance and

magnitude of the differences between EvOTAINT and the baseline, respectively.

5.4 Experiment Environment

Hardware specification. The experiments using EvOTAINT and baseline were conducted on a machine equipped with
a 64-Core AMD Ryzen Threadripper PRO 5995WX 2.70GHz processor and 512 GB DDR4 RAM.

FlowDroid configuration. For our experiments, FlowDroid was mostly set to default specifications for achieving
high analysis precision—after all, a rough and cheap taint analysis producing highly imprecise results would take
very little time on each app version, hence diminishing the need for incremental taint analysis. Particularly, we set
PathReconstructionMode to Precise and PathAgnosticResults to false, so that FlowDroid can produce taint flow paths
with all the path element details rather than just the involved sources and sinks. Such details are desirable for many use
scenarios as they allow better understanding of and diagnoses against sensitive information flows [33, 34, 51]. These
details are also essential for our taint synthesis to be able to remove the flow paths in V; that pass through any of the

deleted methods relative to V;. Additionally, MergeDexFiles was enabled to ensure complete app analysis.

6 Results and Analysis

In this section, we present and discuss our main evaluation results, answering each of our research questions (§5.1).

6.1 RQT: What are the time efficiency advantages of incremental taint analysis compared to conventional

(standard/whole- app) taint analysis?

This research question investigates whether incremental taint analysis offers greater efficiency compared to standard
whole-app conventional taint analysis across various Android apps, in terms of the reduction of time cost.

We conducted experiments on the three sets of benchmark apps, grouping them based on the number of (2, 3, and 5)
versions considered in our study as detailed earlier on evaluation dataset (§5.2). Each app underwent both incremental
taint analysis and conventional taint analysis for a comparative evaluation, as described in our study procedure. Below,
we will first separately look at the results from each of the three experiments each focusing on one set (group) of
benchmarks.

Table 4 lists the (time) cost reduction (Column Reduction) EvOTAINT achieved on each of the 2-version benchmarks
(Column Package Name) relative to using the conventional taint analyzer. To assist with understanding the extent to
which the taint analysis time was reduced, all the reduction numbers are annotated through background cell colors of
varying depth. In particular, to facilitate observing the overall reduction distribution and meritorious cases, positive
reductions are marked in green background. For instance, as shown in the second row and first column, for the benchmark
agrigolo.chubbyclick, EvOTAINT reduced by 75.19% (i.e., only incurred 24.81% of) the cost of the conventional
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Table 4. Time cost reduction brought by EVOTAINT on each of the apps in the 2-version benchmark group

Package Name Reduction | Package Name Reduction
agrigolo.chubbyclick 75.19% | com.github.cythara 94.68%
app.fedilab.mobilizon 83.64% | com.github.dawidd6.andttt -172.73%
app.fedilab.openmaps 54.72% | com.github.gianlucanitti.expreval -40.32%
app.mlauncher -73.91% | com.github.igrmk.smsq 56.79%
at.bitfire.nophonespam 93.55% | com.github.muellerma.coffee 53.94%
at.linuxtage.companion 38.68% | com.github.muellerma.mute_reminder 58.59%
be.brunoparmentier.wifikeyshare 89.71% | com.github.muellerma.prepaidbalance 80.02%
be.ppareit.swiftp_free 28.13% | com.github.muellerma.stopwatch 99.93%
bou.amine.apps.readerforselfossv2.android 99.83% | com.github.nutomic.controldlna 96.15%
ca.mimic.apphangar -17.06% | com.github.pires.obd.reader 45.69%
ca.rmen.android.networkmonitor 54.79% | com.gitlab.dibdib.dib2calc 45.95%
click.dummer.have_radiosion 19.51% | com.glanznig.beepme 96.62%
click.dummer.imagesms 63.64% | com.gmail.afonsotrepa.pocketgopher 95.65%
click.dummer.textthing -37.14% | com.haringeymobile.ukweather -14.30%
click.dummer.UartSmartwatch 22.84% | com.hwloc.Istopo 55.32%
cloud.valetudo.companion 53.57% | com.james.status -14.29%
com.aaronhalbert.nosurfforreddit 95.65% | com.jarsilio.android.autoautorotate 65.28%
com.abh80.smartedge -1.35% | com.jereksel.libresubstratum 84.20%
com.adam.aslfms 17.49% | com.jim.sharetocomputer 55.07%
com.addi 54.29% | com.ketanolab.nusimi 99.78%
com.akdev.nofbeventscraper 55.34% | com.knirirr.beecount -58.81%
com.alaskalinuxuser.justcraigslist -49.05% | com.kolserdav.ana 42.52%
com.altillimity.satpredict 92.22% | com.ktprograms.watertracker 38.57%
com.aptasystems.dicewarepasswordgenerator -49.24% | com.launcher.silverfish 91.72%
com.benny.pxerstudio 43.57% | com.manimarank.websitemonitor 84.65%
com.bleyl.recurrence 84.38% | com.mehmetakiftutuncu.eshotroid 69.01%
com.cgogolin.library 78.80% | com.mikifus.padland 84.72%
com.chesire.nekome 39.68% | com.mrbimec.selinux 0.94%
com.conceptltech.instalate 90.70% | com.namanl4.stools 98.86%
com.corvettecole.gotosleep 90.45% | com.nathaniel. motus.cavevin 52.00%
com.coste.syncorg 14.93% | com.nhellfire kerneladiutor 69.47%
com.craigd.lmsmaterial.app 57.43% | com.nilhcem.hostseditor 43.92%
com.danefinlay.ttsutil 94.77% | com.oF2pks.jquarks 98.37%
com.danhasting.radar 67.19% | com.philliphsu.clock2 99.80%
com.danielkim.soundrecorder 28.57% | com.phpsysinfo 65.52%
com.decred.decredaddressscanner 39.70% | com.pindroid 79.11%
com.denytheflowerpot.scrunch 60.69% | com.quaap.bookymcbookface 10.35%
com.dfa.hubzilla_android 67.60% | com.rastating.droidbeard 89.69%
com.dkanada.chip 41.56% | com.sensirion.smartgadget 52.54%
com.dozingcatsoftware.bouncy 84.51% | com.servoz.appsdisabler 79.16%
com.eventyay.organizer 90.06% | com.stoptheballs 78.50%
com.example.tobiastrumm.freifunkautoconnect [~ -106.90% | com.tomer.draw 59.18%
com.fabienli.dokuwiki 99.11% | com.truchsess.send2car 64.31%
com.fastebro.androidrgbtool 1.85% | com.tunerly 50.20%
com.fediphoto 10.13% | com.veniosg.dir 78.19%
com.flasskamp.subz 94.56% | com.vlath.beheexplorer 37.58%
com.forrestguice.suntimescalendars 90.81% | com.workingagenda.fissure 88.89%
com.fredhappyface.fhcode 73.82% | com.chooloo.www.koler 70.83%
com.freshollie.monkeyboard.keystoneradio 95.53% | com.github.muellerma.mute_reminder 99.82%
com.gbeatty.arxiv 39.13% | delukasneugebauer.nextcloudcookbook 84.73%




taint analysis on the (only one) evolved version considered. To facilitate identifying cases in which EvoTaINT did not
help (i.e., incurring an even higher cost on the evolved version with incremental analysis versus running the chosen
conventional taint analysis on that version), negative reductions are marked in red background. For instance, as shown
in the third row and fourth column, for the benchmark com.github.dawidd6.andttt, EVOTAINT reduced the
conventional taint analysis cost on the evolved version of this app by -172.73%—i.e., the incremental taint analysis
took 72.73% longer time than the conventional analyzer. In both the positive and negative reduction cases, the absolute
values of the reduction are encoded through the respective depth of the annotating background color—the larger the
value, the greater the color depth.

B Version0-Version1 [l Version 1 - Version 2

100%

75%

50%

Time saving

25%

0%
Numbers of applications analyzed

Fig. 5. Cost reduction by performing incremental taint analysis over conventional taint analysis on each evolved version of apps in the
3-version benchmark group.

Overall, EvOTAINT exhibited its merits through incrementally computing taint flows through the reduction of time
cost that would otherwise be incurred using the conventional approach treating each app version independently. Among
the 100 cases, EVOTAINT was able to save that time cost in 88 cases, with the reduction ranging from merely 1% to
as high as 99.8%. In the remaining 12 cases, incremental taint analysis with EVOTAINT was not worth it—using the
conventional approach would be more efficient. Accounting for all of these 100 cases, the mean time cost reduction
EvoTaINT achieved was 51.8%, a significant saving of time.

For the 3-version benchmark group, Figure 5 shows the cost reduction EvoTAINT achieved against each evolved
version treated independently (as opposed to cumulative efficiency merits). In particular, the cost reduction on the first
evolved version is indicated by bars labeled as Version 0 - Version 1, while the reduction on the second evolved version
is indicated by bars labeled as Version 1 - Version 2. In most of the cases, cost reduction on the first evolved version
appeared to the greater. Our inspection revealed that this was simply due to the respective apps were chosen such that
the further evolution introduced greater and/or more complex changes relative to the first evolved version than the

changes made in the first evolved version relative to the base version. Overall, the cost reduction is 68.9% on average.
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Fig. 6. Cost reduction by performing incremental taint analysis over conventional taint analysis on each evolved version of apps in the
5-version benchmark group.

Similarly, for the 5-version benchmark group, Figure 6 shows the cost reduction EvOTAINT achieved against each
evolved version, in the same format as Figure 5. The results confirmed that the cost reduction on each evolved version
varied without a clear/consistent pattern, which is intuitively justified by the fact that the size and complexity of code
changes made in each evolved version do not necessarily follow a consistent pattern. The average cost reduction for
this benchmark group is 66.9%.

Note that the cost reduction was generally higher in absolute terms in the 3- and 5-version benchmark groups than
in the 2-version group. In fact, there were no negative reduction at all in the 3- and 5-version benchmark groups. This
greater efficiency for the benchmark groups of more versions considered can be attributed to the closer proximity
between adjacent versions in those groups (each version corresponds to a release from the app’s version history
based on commits) than in the 2-version group (each version corresponds to a major/stable release). Table 5 presents
descriptive statistics comparing conventional taint analysis and EVOTAINT across our benchmark groups and the
statistical significance test results, i.e., the statistical significance and effect size for the differences between the baseline
and EVOTAINT in terms of time cost for all the benchmarks. The 3,5-version group results are presented together because
we combined these data points for statistical analysis due to: (1) their similar characteristics in terms of representing
continuous software evolution scenarios with multiple (more than the minimum of two) versions, (2) the relatively
limited sample sizes of each group individually (20 data points each), and (3) their consistent performance patterns as
observed in our initial analysis—they both have greater time reduction (from our incremental taint analysis) compared
to 2-version group and have no negative time reduction as seen by the 2-version group. As shown in Table 5, substantial
differences in central tendency measurements highlight EvoTAINT’s efficiency improvements. For example, for the
2-version group, EVOTAINT reduced the mean analysis time from 3,706s to 1,299s (65% reduction) and the median from
1,089s to 229s (79% reduction). The difference is even more pronounced in the 3,5-version group, with mean times

decreasing from 1,139s to 315s (72% reduction) and median times from 696s to 135s (81% reduction). EvOTAINT also
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shows substantially lower standard deviations, indicating more consistent/stable performance across different apps
compared to the conventional taint analysis.

For significance tests, we used a significance level of a = 0.05. For the 2-version benchmark group (n=100), the
two-tailed Wilcoxon signed-rank test yielded a p-value of 4.56 X 10713, which is substantially below our significance
threshold (p < 0.05), allowing us to reject the null hypothesis that there is no difference between the performance of
EvoTaINT and conventional taint analysis. The effect size (Cliff’s delta) of 0.724 indicates a statistically large difference
according to the guidelines proposed by [57], where |d| > 0.474 is considered large. Similarly, for the combined
3,5-version group (n=40), we obtained a p-value of 1.82 X 10712 and an effect size of 0.871, which also represents a
significant and large difference. These results provide strong statistical evidence that EvOTAINT consistently outperforms

conventional taint analysis in different app evolution scenarios.

Table 5. Descriptive statistics and statistical significance tests comparing EvOTAINT and baseline.

Metric Mean Median Standard Deviation p-value effect size
Conventional | EvoTaiNT | Conventional | EvoTaiNT | Conventional | EvoTaINT
2-version group 3706 1,299 1,089 229 6,359 3065 4.56x 10713 0.724
3,5-version group 1,139 315 696 135 1,240 452 1.82 x 1012 0.871

Measuring the efficiency benefits of incremental taint analysis in terms of the aggregated reduction metric, Figures 7
and 8 depict the results for the 3- and 5-version benchmark group, respectively, in the same format as Figures 5 and 6.
With this measure, the merits of incremental taint analysis with EVOTAINT are apparently much more pronounced
when perceived iteratively over the evolution history than considering each evolved version separately. This is why
there are much more cases here (compared to what Figures 5 and 6 show) in which the later evolved versions saw
greater (aggregated) cost reduction than the earlier versions. On the other hand, in terms of absolute cost reduction
numbers, the efficiency gains (53.2% and 51.3% cost reduction on average for the 3- and 5-version group, respectively)
seem to be even smaller than when considering the cost reduction on each evolved version separately. This is due to
the way we calculate the aggregated cost reduction—the numerator (i.e., total cost of analyzing all of the app versions
considered) includes the base version’s cost incurred by the conventional taint analysis (see Eq. 2): oftentimes, the base
cost (conventional analysis of vg) significantly outweighs the incremental analysis cost, resulting in larger numerators

hence smaller aggregate cost reduction.

e D

Answer to RQ1: Overall, incremental taint analysis with EVOTAINT can bring substantial time efficiency in terms
of cost reduction, either in individual evolved version treated separately (on average 51.8—68.9% cost reduction)
or when considering the total cost of analyzing all the app versions during the evolution history considered (on
average 51.3-53.2% cost reduction). Generally, cost reduction can vary widely across different apps and different

evolved versions of the same app.

6.2 RQ2: Under what conditions does incremental taint analysis demonstrate its time efficiency

advantages?

This research question examines the conditions under which (i.e., use scenarios where) incremental taint analysis with
EvoTAINT is meritorious (i.e., leading to positive cost reduction hence being worthwhile). An underlying premise here is
that the efficiency of EvOTAINT is relatively greater when changes between two versions of an Android app are relatively
smaller. Thus, an intuitive route to investigating the conditions is to examine app change ratio (as defined earlier in §5.3)
as a main factor that is presumably correlated with the cost reduction that may be achieved by EvoTAINT. After all,

change ratio is exactly a metric we proposed to quantify the extent of changes between two apps (or app versions). Note
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Fig. 7. Aggregate (cost) reduction by performing incremental taint analysis over conventional taint analysis on each evolved version of
apps in the 3-version benchmark group.
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Fig. 8. Aggregate (cost) reduction by performing incremental taint analysis over conventional taint analysis on each evolved version of
apps in the 5-version benchmark group.

that at its core, EVOTAINT’s effectiveness is determined by how code changes affect the reachability between sources
and sinks, rather than by the semantic nature of the changes themselves. Whether a change involves UI modifications,
backend logic updates, or API changes, our approach considers it relevant only if it impacts source/sink reachability. For
instance, UI changes that only modify layout parameters or visual elements without affecting information flow paths
would not impact our analysis. However, if a UI change involves modifying how user input is collected or displayed
(affecting sources or sinks), our impact analysis would identify and analyze these changes. Therefore, we did not
consider how semantic categorization of changes affects EVOTAINT’s effectiveness.

Figure 9 illustrates the (1) change ratio (the chart on the top) of each app in the two-version benchmark group,

represented by stacked bars that each contains three different kinds of ratio of change (i.e., percentage of methods
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Fig. 9. Change ratio (of the three kinds of changes, in the top chart) between the two app versions versus cost reduction achieved by
EVOTAINT (in the bottom chart) for each app in the 2-version benchmark group.

deleted, modified, and added, noted as Deletion ratio, Modification ratio, and Addition ratio, respectively), and (2) time
savings (i.e., cost reduction, in the chart on the bottom) achieved by EVOTAINT on each app in the benchmark group.
Note that both charts share the same x-axis, which indicates the individual apps while linking the stacked bar (i.e.,
change ratios) for each app to the respective blue bar (i.e., time savings) for that same app. For example, the (total)
change ratio of the 1st app is approximately 13%, and if we need to check its corresponding time saving, we can check
the 1st column in the chart below, which is approximately 75%. In all, the figure visualizes how the efficiency merits

achieved by EVOTAINT on an evolved version of a benchmark Android app are related to the extent to which the evolved
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Table 6. Correlations between app (overall and different kinds of) change ratio and EvoTaINT’s efficiency gains (time saving).

Independent Variable Dependent Variable | Coefficient [[r]| | p-value
Overall ratio of (all) changes Time Saving -0.627 | <.001
Ratio of additions Time Saving -0.461 | <.001
Ratio of modifications Time Saving -0.599 | <.001
Ratio of deletions Time Saving -0.453 | <.001

version has changed relative to the base version. Some of the bars are hardly visible in this visualization, indicating that
the associated change ratio or time saving is unnoticeable.

Putting the two charts in contrast, we can readily observe a clearly negative correlation between change ratio and
time saving for these benchmark apps: i.e., EVOTAINT tends to save more static taint analysis time when the overall
change ratio is lower. In particular, EVOTAINT often achieved the highest (nearly 100%) cost reduction when the ratio of
change was almost negligible—mostly, the time saving was positive when the change ratio was under 50%. On the flip
side, for the apps that were changed substantially (e.g., almost or even over 100%), the cost reduction was negative—e.g.,
at the greatest change ratio (over 200%), the time saving was the lowest (-180%). This rough observation preliminarily
supports the general premise that our incremental taint analysis is worthwhile when relatively modest changes are
made between the two app versions considered by the analysis.

There did not seem to be clear/consistent relationship between ratios of individual kinds of changes between the
analyzed app versions and the time savings achieved by EvoTaINT, though. Even when looking at the different kinds
of changes separately, the ratio of the changes still mattered much more than what kinds they are (among deletion,
modification, and addition). A side observation is that at least for these 100 studied apps, code changes made during
their evolution were rarely concentrated on one kind (e.g., deletion or addition only). In fact, in most of the cases in
which the total change ratio was noticeable, all of the three kinds of changes were involved in the evolved version of
the apps relative to their previous versions.

To have a closer and quantitative look into the above-mentioned correlation/relationships, we calculated the Spear-
man’s rank correlation coefficient between the change ratio and time saving, which is shown in Table 6. Overall, these
numbers corroborate our previous visual observations: the correlations are all clearly negative and the ratio of changes
matter more than the kinds of changes. The p values are consistently much lower than the significance level (0.05),
indicating that all of the correlations are statistically significant. More specifically, the correlation between the overall
change ratio and time saving is strong (coefficient of —0.627), which suggests that as overall change ratio increases, the
time saving can be generally expected to decrease as much. For the ratio of individual kind of change, which is listed
from the second row to the fourth row of the table, we can see that they are relatively less impactful on the efficiency
gain achieved by our incremental taint analysis.

In particular, the gain only has moderate correlations with the ratios of addition and deletion of methods (with a
coefficient of —0.461 and —0.453, respectively) between the two apps/versions that the analysis is concerned with. By
contrast, modifications of existing methods (in the base app/version) have notably stronger impact on the efficiency
gain, as indicated by the nearly strong correlation (with a coefficient of —0.599) between this kind of change and the
time saving. In other words, when looking beyond the overall change ratio into specific kinds of changes, how many
merits our incremental taint analysis approach has is primarily tied to how many methods are modified, as opposed to
how many of the existing methods are removed or how many new methods are added.

On the other hand, under the hood of these changes, what really matters ultimately is how many sources and sinks
the changes would impact, since our techniques works by reducing the analysis cost induced by searching taint flow

between relevant sources and sinks. Therefore, next we dive even deeper into the merit conditions of our incremental
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taint analysis approach with EVOTAINT by examining how the number of sources/sinks relates to the time cost of static

taint analysis on the evolved apps that EVOTAINT can reduce.

Answer to RQ2: Incremental taint analysis with EVOTAINT tends to be meritorious when the changes made in the
evolved apps are relatively moderate (e.g., lower than 50% ). Meanwhile, the overall change ratio is strongly negatively

correlated with the cost reduction EVOTAINT achieves; also, among the three kinds of changes, modifications tend

to have a greater impact on the cost reduction than additions and deletions.

6.3 RQ3: How does the number of impacted sources and sinks influence the time efficiency of incremental

taint analysis?

This research question examines how the number of impacted sources and sinks influences the efficiency of our
incremental taint analysis. As noted earlier, our approach achieves savings in the cost of analyzing the evolved apps
mainly by reducing the scope of sources/sinks between which taint flows need to be computed using a conventional
taint analyzer backed by statement-level data flow analysis (i.e., FlowDroid [8]). Thus, examining the influence of
impacted sources/sinks is a natural means of looking more closely into the mechanisms of EvOTAINT’s cost reduction.

Figure 10 correlates cost reduction (i.e., time savings) accomplished by EvOTAINT with the source/sink scope reduction
(i.e., sources and sinks savings) it achieved. The bars in red represent the percentages of total sources and sinks are
reduced when performing incremental taint analysis compared to conventional whole-app taint analysis, whereas
the bars in blue represent corresponding time saving. Since the total number of sources and sinks in incremental
taint analysis can never surpass that in the conventional whole-app taint analysis, the source/sink saving is always
non-negative. Therefore, if there is a positive time saving for an app, the two quantities (source/sink saving and time
saving) are depicted as a stacked bar for that app.

For the same 12 cases (app) as shown in Table 4 and Figure 9 for which the time saving was negative, the source/sink
savings were generally the lowest among the benchmark group. In those cases, the source/sink scope of the expensive
data-flow analysis (at the core of the static taint analysis) was not much reduced, making the cost reduction by our
incremental taint analysis negative—as the extra cost for identifying the impacted sources/sinks outweighs the slightly
reduced cost for computing the taint flows between the sources and sinks (which are only slightly fewer than those fed
to the conventional analysis). Yet otherwise, where the source/sink saving was greater (smaller), the time saving was
generally greater (smaller) as well. Thus, overall, the source/sink saving and time saving are (positively) correlated, as
expected per the inner workings of our technique.

To quantify this visually perceived correlation relationship between time saving and the reduction of sources and

sinks, we calculated the Spearman correlation coefficient between these two quantities, as shown in Table 7.

Table 7. Correlations between the reduction of # sources/sinks (sources/sinks saving) and reduction of analysis cost (time savings)

Independent Variable Dependent Variable Coefficient [[r]| | p-value
Sources and Sinks Saving Time Saving 0.642 | <.001
Sources Saving Time Saving 0.502 | <.001
Sinks Saving Time Saving 0.673 | <.001

[ Overall change ratio [ Sources and Sinks Saving [ -0.801 [ <.001 ]

From the first row of Table 7, we can observe that the time saving and sources and sinks saving has a moderately
strong positive correlation with a Spearman coefficient 0.642, which suggests that generally with fewer impacted

sources and sinks, the more analysis time cost can be saved in the incremental taint analysis. Noted that in the second
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Fig. 10. Source/sink saving (percentage of total sources and sinks reduced) versus time saving (cost reduction) achieved by EvoTaINT
for each app in the 2-version benchmark group.

row and the third row, we also broke down the sources and sinks saving in total to sources saving and sinks saving
separately, and we found that the number of impacted sinks has a more significant correlation with the time saving,
with Spearman coefficient being 0.673, versus the lower strength of correlation of the impacted sources saving with the
time saving (0.502).

As shown in the fourth row in Table 7, we also computed the correlation between overall change ratio and sources
and sinks saving. As a result, they exhibit a strong negative correlation with a Spearman coefficient —0.801, which
implies impacted sources and sinks are directly induced by the change ration between the given two app versions. Since
we have already revealed the role the number of impacted sources and sinks plays, it is beneficial to explore how change
ratio is inextricably intertwined with the number of impacted sources and sinks. This strong statistical connection
between sources/sinks saving and overall change ratio explains our earlier observation about the correlation between
the (method-level) code change ratio and taint analysis cost reduction brought by EvoTAINT. It also consolidates our
earlier conclusion that under the hood of the impact of change ratio on the cost reduction is essentially the impact of

sources/sinks saving.

Answer to RQ3: The percentage of sources and sinks (considered in the taint analysis) that is saved by EVOTAINT
is strongly correlated with the reduction of analysis time it can bring, with the impact of saving in the number of

sinks being greater than that of sources. The very-strong correlation between the change ratio and the total sources

and sinks saving justifies/explains the earlier observed impact of the change ratio on the time cost reduction.

6.4 RQ4: How does app size influence the time efficiency of incremental taint analysis?

Considering how it works in terms of the technical nature, EvoTAINT’s time efficiency is intuitively clearly influenced
by how much of the code in the base version of an app is changed in the evolved version (i.e., measured by the overall
change ratio). Yet the influence does not separately account for the total size of the code, both of the base and evolved
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versions. Intuitively, per its definition in our study (Eq. 3), the app change ratio has the base app version’s size in its
calculation; yet that size is measured in terms of the number of methods. How the app size in terms of the number of
Source Lines Of Code (SLOC), for both the base and evolved versions, affects the time saving that our incremental taint
analysis may bring about remains to be examined.

This research question investigates the influence of app size in terms of SLOC on the time efficiency of EvoTAINT,
from the perspective of statistical correlation analyses. We hypothesized that the efficiency of incremental taint analysis
might be influenced by the complexity of the app, with complexity in this context being quantified as SLOC. To assess
this hypothesis, we again calculated the Spearman correlation coefficient between SLOC and time savings. Again, as
the 3- and 5-version benchmark groups do not have enough apps to carry out a meaningful statistical analysis, this

correlation analysis here is still performed against the 2-version benchmark group.

Table 8. Correlation between the app size (of both the base and evolved versions) and reduction of analysis cost (time savings)

Independent Variable Dependent Variable | Coefficient [|r|| | p-value
Base App Source Lines Of Code Time saving 0.002 | <.001
Evolved App Source Lines Of Code Time saving 0.002 | <.001

As shown in Table 8, the correlation between the time saving achieved by EvoTAINT and the app size, with respect
to either (base or evolved) version of the app, is so weak (the Spearman coefficient value being 0.002) that we should
consider it essentially none.

Contrary to a possible hypothesis, which might suggest that larger apps (with greater SLOCs) would result in more
methods in total, at least in the base versions, hence potentially smaller overall app change ratio (Eq. 3)—then further
being connected to greater time cost reductions (through the strong correlation between time saving and overall app
change ratio as we observed earlier). Or, a greater total number of methods, as a possible result of greater SLOCs, may
imply more sources and sinks in total invoked in the app, hence potentially smaller percentages of impacted sources
and sinks—which then also is connected to greater time cost reductions (through the strong correlation between time
saving and sources/sinks saving). However, our results here do not support any of these hypotheses. In fact, even apps
with relatively smaller SLOCs exhibited a significant number of impacted sources and sinks between the base and

evolved versions in our benchmarks.

Answer to RQ4: There is essentially no correlation between app size (in terms of SLOC) and the time efficiency
of our proposed incremental taint analysis, making the sheer code size of apps a largely irrelevant factor in the

merit conditions of EVOTAINT.

6.5 RQ5: Does our incremental taint analysis lead to reductions in memory usage?

In RQ1, we examined the time efficiency of EVOTAINT in terms of how much time cost reduction it can bring by
computing taint flows incrementally. Taking a step further, this research question explores whether our incremental
taint analysis leads to reductions and, if any, how much, in space usage in terms of memory consumption. Specifically,
we tracked the peak memory usage during each run of EVOTAINT and the conventional taint analysis baseline. The
results on these space usages along with how they are related to the app change ratio for the 2-version benchmark
group are depicted in Figure 11. Specifically, in Figure 11, the top chart shows the total and dissected change ratio
between the two versions of each app in the 2-version benchmark, identical to its counterpart in Figure 9. Juxtaposed to
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this chart is the bottom chart, which shows the memory saving (i.e., percentage of peak memory consumption reduced)

brought by EvOTAINT for each of the same suite of apps.
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Fig. 11. Space efficiency in terms of the percentage of peak memory consumption reduced (i.e., memory saving, shown in the bottom
chart) by EVOTAINT versus the app change ratio between the two versions for each app in the 2-version benchmark group.

Table 9. Correlation between app (overall and different kinds of) change ratio and EvOTAINT’s space efficiency gains (memory saving)

Independent Variable | Dependent Variable | Coefficient [|[r|| | p-value
Overall change ratio Memory Saving -0.311 | 0.002
Ratio of additions Memory Saving -0.202 | 0.438
Ratio of modifications Memory Saving -0.254 | 0.107
Ratio of deletions Memory Saving -0.242 | 0.153

First of all, the memory saving results reveal that our incremental taint analysis brought memory efficiency gains, in
addition to time efficiency merits: for the majority (65%) of the 100 benchmarks in this 2-version benchmark group, the

memory time savings were positive. On the other (35%) of the benchmarks, EVOTAINT consumed higher peak memory
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than the conventional analysis baseline. In contrast, EVOTAINT achieved positive time savings for 88% of these same
benchmarks (Table 4).

Second, putting the two charts in contrast, we observe that, unlike time savings, memory usage savings exhibited
more variations and did not show as clear and consistent correlation with the change ratio. To quantify this observation,
we calculated the Spearman correlation coefficient as well, detailed in Table 9. The results indicated a far weaker
correlation between memory savings and change ratio, as evidenced by smaller absolute values of coefficients, which
ranges from —0.311 to —0.202. In addition, the much higher p-values (up to 0.438) indicate that memory savings are
not significantly correlated with the ratio of any individual type of changes, although the correlation with the overall
change ratio is statistically significant.

These findings suggest that memory savings are not as directly correlated with incremental taint analysis efficiency as
time savings are. Therefore, while incremental taint analysis can offer significant time savings, it does not as consistently
lead to reduced memory usage. To explain this, we can think of the ingredients of memory cost of incremental taint
analysis. Apart from executing FlowDroid, incremental taint analysis also involves other steps beforehand such as
collecting methods from the app and change impact analysis. All these parts will also consume memory, which might

exhaust more than the memory cost reduction benefited from having to analyze fewer sources and sinks.

Answer to RQ5: While EVOTAINT reduced the peak memory consumption of static taint analysis by doing it
incrementally for most (65%) of the benchmarks, the memory saving benefits are not as commonly seen as for the

time savings (in 88% of the benchmarks). Moreover, there is only a weak correlation between the overall app change

ratio and these memory savings. Such correlations are insignificant with the ratio of individual types of changes.

6.6 RQ6: Does our incremental taint analysis achieve the same accuracy in taint checking as the

conventional approach?

Per the motivation and design goal of EVOTAINT, it should not compromise the accuracy of static taint analysis while
aiming to improve efficiency for analyzing evolved versions of Android apps. Now that the efficiency gains are evaluated
with respect to the conventional taint analyzer FlowDroid, a natural way to evaluate the accuracy of EVOTAINT is to
validate the consistency between these two analyzers in terms of their final sets of flow paths produced (given the same
source/sink setting and on the same apps).

Intuitively, per our technical design, EvoTaINT should produce the same flow paths (out of the final step of taint
synthesis) as FlowDroid does against each evolved version of each benchmark we considered—for the very first/base
version of the app, EVOTAINT simply runs FlowDroid on it. To empirically validate this assumption, on each of the (1, 2,
and 4) evolved versions of each app in our (2-, 3-, and 5-version, respectively) benchmark groups, we compare the set of
final taint-flow paths produced from EvoTaINT with that from running FlowDroid against the same evolved version
treated as a standalone app. We found no difference between the two analyzers on any of our benchmarks, suggesting

that EvOTAINT does not compromise the accuracy of FlowDroid when improving its efficiency.

Answer to RQ6: EVOTAINT produced the same taint analysis results (flow paths) as the conventional, standalone
taint analyzer for all of our benchmarks, hence achieving the same level of accuracy of analysis results. That is,

EvOoTAINT does not compromise taint analysis accuracy while achieving efficiency gains.

34



7 Discussion
7.1 Generalizability

While EVOTAINT’s current implementation focuses on Android apps, the core methodology of incremental taint analysis
is platform-independent and can be readily adapted to other software systems and platforms.

The fundamental components of our approach—impact analysis, impact-guided taint checking, and taint synthesis—
are designed to work with any software system where static taint analysis is applicable. The key insight of reducing
analysis scope based on code changes and their impact on sources/sinks remains valid regardless of the underlying
platform. To adapt EVOTAINT to a different platform, one would primarily need to take two steps. First, they replace
FlowDroid with an appropriate static analyzer for the target platform and programming language. The core algorithms
of EvoTAINT would remain unchanged—only the interface with the underlying analyzer would need adaptation. Second,
they adjust the call graph construction mechanism according to the target platform’s characteristics. Our current
implementation uses Android-specific call graph construction through FlowDroid, but this component can be substituted

with appropriate alternatives like LLVM’s [47] call graph analysis for C/C++ programs.

7.2 Applicability

From the perspective of practical usefulness, users of EvOTAINT would benefit from knowing in advance whether
applying an incremental taint analysis like what we propose on a given app is worthwhile. As we examined earlier, an
obvious factor is the amount of code change that has occurred between the base and evolved version of the app, as
measured as app change ratio in our study. We have studied the relationship between this merit condition factor and
EvoTAINT’s time efficiency.

In our specific 2-version dataset, only 12 out of 100 showed increased time costs with EVOTAINT compared to
conventional analysis. Through careful examination of these cases, we identified several meaningful thresholds. For
evolved apps with changes (addition, modification, and deletion aggregated) below 1.63%, the incremental taint analysis
consistently showed positive efficiency gains, making EVOTAINT a safe choice in these scenarios. The risk of increased
costs begins to appear with changes between 1.63% and 16%, though most cases in this range still benefited from
incremental taint analysis. The risk increases substantially when changes exceed 16%, with the median change ratio for
cost-increasing cases being 30.52%. Cases with changes above 58% almost consistently showed increased time costs.
Based on these findings, we can provide developers with practical guidelines: EVOTAINT is most reliably beneficial
when changes are below 16% of methods, should be used with careful monitoring for changes between 16-30%, and may
not be advantageous for changes exceeding 50%. However, we maintain our earlier observation that these thresholds
should be considered guidelines rather than strict rules, as the specific context of changes (particularly their impact on
source/sink reachability) remains important. The more reliable indicator we found was the percentage of impacted
sources and sinks, which showed a stronger correlation with time savings (as detailed in Section 6.3). However, this
metric is not readily available to developers before running the analysis.

To better understand this relationship in a more tangible manner, we have picked a few concrete cases that appear
to be outliers in our evaluation benchmarks for case studies. They represents two opposite ends in the spectrum of

changes, categorized as two scenarios, which may help us reveal what is under the mask.

e Scenario 1: There are essentially no code changes between the two app versions; hence the overall app change

ratio and the change ratio of any of the three types of changes are all zero.
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e Scenario 2: There are massive code differences between the two app versions; hence a very high overall app

change ratio.

Scenario 1 may be exemplified by the development scenario in which developers only modified the assets of an app
but did not alter the code (e.g., likely between two adjacent commits or releases). In our 2-version benchmark group,
we picked two apps bou.amine.apps.readerforselfossv2.androidand com. fabienli.dokuwiki,
which have no code changes between the two versions of their apps. Without surprises, their time savings are extremely
high (99.11% and 99.93%, respectively)—i.e., analyzing the evolved version takes an almost negligible amount of time.

Scenario 2 might seem too unusual when considering what adjacent versions of an app during its evolution should
look like. In our 2-version benchmark group, we found four apps falling in this scenario, at least with respect to the base
and evolved versions we considered. These cases can also be noticed from Figure 9, where there are four stacked bars
that are apparently higher than others. After looking into these four cases, we found that they are heavily obfuscated;
as a result, despite our deobfuscation steps, the remaining unresolved obfuscation still substantially impeded our app
differencing, making it detect excessive code changes. The ratio of changes is so high that the incremental taint analysis
ended with taking more time than a conventional approach. There are two points that we would like to make here. First,
as discussed earlier, obfuscation is widely present in real-world apps after they have been distributed to the app market,
yet developers are not expected to obfuscate their apps during the development while using EVOTAINT to check if the
incremental changes they make introduce more sensitive taint flows in the apps—the primary use scenario targeted by
our technique. Second, such heavy obfuscation cases can be viewed equivalently to those in which the two versions of
an app are indeed enormously different, similar to the cases in which one may apply incremental taint analysis to two
arbitrary, unrelated apps.

By studying these two extreme scenarios discussed above, we reach a further consolidated understanding about
the merit conditions of incremental taint analysis in terms of the relationship between the portion of code that differs
the two app versions during the incremental changes and the merit of the incremental analysis in terms of its time
efficiency gains. Looking at these extremities, when the changes are minimum, the time saving can be gratifyingly huge,
whereas when the changes are drastic, it can incur additional time expenditure which makes the choice of analyzing
taint flows incrementally a penalizing rather than rewarding one. Looking between these extremities, the efficiency of
incremental taint analysis on two given app versions is closely tied to the specific extent of code changes between the
two versions. As the version gap widens, an increase in method change ratio can be expected, potentially lengthening
the analysis time of EvOTAINT itself.

On the other hand, the selection of version intervals is critical in deciding whether incremental taint analysis should
be a good choice and, if chosen, deciding which two specific app versions to apply the analysis to. Moreover, as observed
from our evaluation results on the 2-version benchmark group versus the 3- and 5-version benchmark groups, the length
of the evolution history during which the incremental taint analysis is applied consistently also matters: generally, the
longer the history (meaning more evolved versions the analysis is applied to in a continuous fashion), the greater the
overall merits of the incremental approach to the static taint analysis.

These general interplay between the app change ratio and EvOoTAINT’s efficiency have been quantitatively charac-
terized through the statistical (correlation) analysis we have performed. However, due to the complexity of different
Android apps and that of the code changes themselves, it is almost impossible or even misleading to assume or discover
a rigorous quantitative relation between the code change ratio and efficiency of our approach (e.g., through a mathe-

matical function). After all, the change ratio only measures the portion of methods changed, rather than that of the
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statements changed, let alone the complexity of the changes (at either the method or statement level). In fact, results
of our correlation analysis show the Spearman correlation coefficient is slightly higher than 0.6, i.e., to the extent of
moderately strong but not yet to the extent of very strong. In other words, there is no guarantee that when the app
change ratio gets lower, incremental taint analysis will definitely save more in the time cost of static taint analysis. For
instance, in some cases, the change ratio was only modest (below 50%), yet the incremental taint analysis achieved no
or even negative efficiency gains. In fact, there were a couple of cases in which the cost reduction was negative even
though the change ratio was less than 25%. Moreover, the time saving was not always reversely proportional to the
change ratio: when the ratio was lower (higher), the cost reduction was not necessarily proportionally higher (lower).

This is why, to more thoroughly understand the relationship between the change ratios and time savings, we went
further to look into the underlying factor that actually causes the impact of change ratio on the efficiency of our
incremental taint analysis. Recall that the key insight that enables EVOTAINT’s cost reduction in analyzing the evolved
version of an app lies in the reduced analysis cost due to the reduced number of sources and sinks to be considered by
the analysis—we do not directly improve/optimize the statement-level data flow analysis algorithm itself at the core of
the static taint analysis. Thus, intuitively, underneath the ratio of code changes, what really matters for EVOTAINT is
how many sources and sinks can be reduced. Furthermore, considering that the source/sink reduction results from the
change impact analysis and impact-guided taint checking steps of EvOTAINT, what ultimately matters is the numbers
of sources/sinks impacted by the code changes. For instance, in the scenarios where the change ratio is high, EvoTAINT
may still achieve great cost reductions if the change only impacts very few sources/sinks; while the cost reduction may

be little even when the change ratio is not that high but the change impacts many sources/sinks.

7.3 Robustness to Android Platform Evolution

The core challenge raised by Android evolution primarily affects source/sink identification, which is orthogonal to our
incremental analysis approach. EvOTAINT’s methodology focuses on solving the fundamental problem of incremental
taint analysis—how to efficiently analyze information flows between any given set of sources and sinks. The actual
identification of these sources and sinks is handled separately through a tool like SuSi [5], as mentioned in Section 4.

When Android introduces new APIs or security features that generally affect information flow analysis, EVOTAINT
can be adapted to them without specific modification in itself. Here we discuss four aspects related to Android evolution:
(1) changes in sources, sinks, and sanitization, (2) permission updates, (3) new inter-component communication (ICC)
mechanisms, and (4) changes in reflection and native code handling.

For new/outdated sources and sinks (e.g., from new APIs, sensors, or storage mechanisms), only the source/sink lists
need updating. We automatically retrieve the appropriate list based on the app’s target Android version, as detailed in
Section 4. This mechanism allows EVOTAINT to remain effective as new platform versions introduce additional APIs.

When Android evolves its permission model (e.g., introducing scoped storage or background location restrictions),
these changes primarily affect which APIs are considered sensitive sources or protected sinks, rather than changing
how information flows are tracked between them. Our approach separates the definition of what constitutes sensitive
information from the core analysis of how it flows. Thus, this evolution will be again adopted via source/sink updating.

For changes in inter-component communication (ICC) mechanisms, EVOTAINT inherits the ICC modeling capabilities
of its underlying analyzer (e.g., FlowDroid). When that analyzer is updated to handle new ICC mechanisms, EvOTAINT
automatically adapts through these updates without requiring changes to its incremental analysis algorithm.

Changes in reflection handling, native code execution paths, or security enforcement mechanisms may require

updates to the underlying taint analyzer. However, EvOTAINT’s incremental methodology remains valid—it would
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continue to efficiently identify which portions of an app need reanalysis based on code changes, regardless of how the
underlying analyzer models these advanced/evolved language features.

The key insight is that EVOTAINT operates at a higher abstraction level than the specific Android security model
details. It focuses on determining what parts of this app need to be reanalyzed due to changes, rather than how to model
specific Android security features. This design allows EVOTAINT to adapt to Android evolution with minimal maintenance,
simply by updating the underlying analyzer (e.g., by replacing underlying tools like the conventional analyzer such as
FlowDroid to consider the new platform features, an ICC analyzer to resolve ICC induced data/control flow to augment
the data flow analysis in FlowDroid, a reflection analysis tool such as DroidRA [50] to resolve reflective control/data
flow., a source/sink mapping tool such as PScout [9] to map source/sink APIs per their associated permissions, etc.) and

source/sink definitions while keeping its core incremental analysis algorithm unchanged.

8 Threats To Validity

This section addresses potential issues that could impact the validity of our experimental results.

Internal validity threats. The main threat to the internal validity of our results lies in the potential errors in our
tool implementation of EvOTAINT. To mitigate this threat, we have conducted careful code review of the source code
of EvoTaINT, followed by unit and integration tests of the tool against relatively small and simpler cases of apps and
between-version code changes. Another such threat comes from the inaccuracy of our deobfuscation steps, due to the
limited accuracy and capabilities of the deobfuscators used. We chose to use popular and strong ones of their kind, but
it is well-known that accurate deobfuscation is an NP problem [4]. Thus, when EVOTAINT is used in the presence of
obfuscation, its performance and empirical results are both subject to the inaccuracy of deobfuscation.

Another internal validity threat has to do with the nondeterministic nature of FlowDroid, a key component of
EvoTAINT’s tool implementation. Previous studies ([11]) have noted that FlowDroid can produce nondeterministic
results. Specifically, running the same analysis on the same app with identical settings can yield different outcomes.
This issue with FlowDroid, unresolved at the time of our study, poses a challenge for ensuring absolute consistency
between the taint flow paths synthesized by our approach and those obtained through conventional analysis. The
potential variability in FlowDroid’s output could introduce inconsistencies in our results, affecting the reliability of the
comparisons made between incremental taint analysis and conventional methods. To deal with this issue, we had to
run FlowDroid multiple times when necessary (i.e., in the cases in which the inconsistencies were found) during our

accuracy validation (for answering RQ6).

External validity threats. The main threat in this class concerns our benchmark selection. Our experiment involved a
set of 100 Android apps, each with 2, 3, or 5 versions. This selection was based on the average number of versions per
app, as reported in [3], to ensure reproducibility and relevance. However, this choice may also introduce limitations.
Firstly, there is an implicit assumption that the app with three evolved versions are representative of the broader
range of Android apps. While this average is statistically reasonable, it may not account for the diversity and complexity
found in families with more than three versions. Apps with a higher number of versions could inherently differ in their
structural and functional complexity, potentially affecting the efficiency of incremental taint analysis. For example, if
such apps are inherently less costly to analyze using our approach compared to those with fewer versions, the observed
average cost savings might not accurately reflect the potential savings across a more diverse application set. This
limitation suggests that our results might be skewed towards a specific subset of Android apps, potentially impacting

the generalizability of our findings.
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In short, while our dataset selection was informed by statistical averages, the potential variability in app complexity
across different families with varying numbers of versions remains a factor that could influence the outcomes of our
study. This discussion highlights the need for caution in interpreting our results and suggests avenues for further
research to explore the applicability of incremental taint analysis across a more diverse range of Android apps.

Second, in our study, apps with two or three versions were selected based on their adjacency in release version
numbers available on F-Droid. However, this selection does not guarantee that these versions are the closest in terms of
actual commit history or even in release history. This limitation is particularly relevant for our methodology, which
ideally expects to analyze consecutive versions for best efficiency gains. The exception was the subset of apps with five
versions, where we manually constructed the dataset by cloning source code repositories and building consecutive app
versions (APKs) based on the actual commit history. While this approach is more accurate, it is also more time-consuming
and labor-intensive. Therefore, the dataset’s composition, especially for apps with two and three versions, represents a
compromise between experimental quality and feasibility.

Also, the fact that our benchmarks are garnered from F-Droid limits the diversity of the study dataset. We chose to
do so because F-Droid provides apps of evolved versions and source code of Android apps which allows us to build
continuous versions from the respective version histories (as we explained earlier in §5.2). While this choice is justifiable,
we cannot rule out the possibility that our empirical results and conclusions based on the results may shift to some

extent should we use benchmarks obtained from other data sources.

Construct validity threats. The main threat in this class concerns how well our measurements represent the concepts
we aim to study. Our metrics for cost reduction may be affected by FlowDroid’s nondeterministic nature, as mentioned
in our current internal validity section. This nondeterminism means running the same analysis multiple times could
produce slightly different execution times and results, potentially affecting our measurement of efficiency gains.
Additionally, our measurement of change impact through statement-level analysis, while practical, may yield false
positive changes due to refactoring. Even though the final taint paths result will not be affected thanks to taint synthesis,

the change ratio we obtained might not be always accurate when apps have refactoring during evolution.

Conclusion validity threats. For our primary comparison between EVOTAINT and conventional analysis, we employed
Wilcoxon signed-rank tests due to the non-normal distribution of time measurements, obtaining strongly significant
results (p = 4.56 X 10™13 for 2-version, p = 1.82 x 10712 for 3- and 5-version groups) with large effect sizes (r > 0.72
across all groups). In our correlation analyses (Section 6.2—6.4), we used Spearman’s rank correlation coefficient to
evaluate relationships between various factors (like change ratio and time savings) because it doesn’t assume normal
distribution and is robust to outliers.

However, while our 2-version benchmark group with 100 apps provides strong statistical power, the relatively small
sample sizes in our 3-version (10 apps) and 5-version (5 apps) benchmark groups may limit the generalizability of our
statistical conclusions about cumulative efficiency benefits. We chose p < 0.05 as our significance threshold, which is
standard in software engineering research. The strong statistical significance we observed (p-values orders of magnitude
smaller than this threshold) and large effect sizes provide confidence in our conclusions despite these limitations, though
future work with larger samples of multi-version apps would further strengthen these findings.

Our app version selection methodology prioritized adjacency in the app’s release/commit history, which may not
represent all evolution patterns. Different sampling strategies (e.g., selecting versions spanning longer development
periods or focusing on major releases) might yield different patterns of efficiency improvement by our technique,

particularly regarding the correlation between app change ratios and efficiency benefits.

39



9 Related Work

There are mainly two lines of works in the literature that are related to EvOTAINT: approaches for improving the

performance of static taint analysis and more general-purpose incremental static analysis.

9.1 Improving Taint Analysis Performance

He et al. [42] presented an optimization of the IFDS algorithm, commonly used in tools like FlowDroid. It introduces
a sparse propagation method in the IFDS algorithm, significantly reducing time and memory requirements for taint
analysis. Their tool, SparseDroid, achieved an average speedup of 22.0x compared to FlowDroid, efficiently completing
analysis on all tested Android apps within set resource limits. In contrast, our approach targets the evolving nature
of Android apps, selectively reanalyzing altered or affected code segments, thereby offering substantial savings in
analysis time and resources for apps with frequent updates. While both methods aim to enhance taint analysis efficiency,
they address different aspects: SparseDroid optimizes the IFDS algorithm’s internal workings, whereas our method
streamlines the analysis process for evolved app versions. On the other hand, integrating insights from SparseDroid’s
sparsification technique with our incremental approach (especially in the part corresponding to the use of FlowDroid)
could potentially yield a more comprehensive and efficient taint analysis framework, particularly beneficial in scenarios
necessitating quick reanalysis due to frequent app version changes.

FastDroid [67] deviates from traditional data flow analysis and focuses on the propagation of taint values, thereby
improving analysis efficiency. It uses a preliminary flow-insensitive taint analysis to construct Taint Value Graphs
(TVGs) and then checks the feasibility of Potential Taint Flows (PTFs) on the control flow graph (CFG) of the given
app. Their experiments demonstrated FastDroid’s superior performance in terms of precision, recall, and efficiency
compared to earlier versions of FlowDroid. FastDroid achieved up to 93.3% precision and 85.8% recall, with significant
reductions in analysis time. In contrast, our incremental taint analysis specifically exploits the evolving nature of
evolving Android apps to reduce the analysis time on evolved versions of apps. While FastDroid improves the overall
efficiency and accuracy of taint analysis, our approach focuses on reducing redundancy in successive app version
analyses by selectively reanalyzing changed or impacted code segments. This selective reanalysis is particularly suited
for apps undergoing frequent updates, allowing for significant savings in time and computational resources. On the
other hand, the integration of FastDroid’s methodology could potentially augment our incremental approach, especially
for initial analyses of base versions, creating a comprehensive framework that combines the benefits of both methods
in analyzing Android apps.

FlowTwist [49] introduces an innovative context-sensitive inside-out taint analysis approach, primarily focusing on
large Java codebases. This method, unlike traditional taint analyses that track flows from sources to sinks, begins at inner
layers of an API and operates outwards, effectively reversing the usual analysis direction. FlowTwist implements two
separate sub-analyses: one for integrity and one for confidentiality, both of which operate inside-out. The approach is
notable for its extension of the IFDS algorithm, which aids in maintaining context sensitivity and efficiently constructing
paths for identified data flows. This method scales better and performs faster compared to pure forward analysis, as
confirmed by experiments comparing it against conventional approaches. In comparison, while FlowTwist’s inside-out
methodology is adept at handling large Java codebases and efficiently tracking integrity and confidentiality issues, our
approach focuses on optimizing taint analysis by concentrating on changes between successive Android app versions.
This results in significant savings in analysis time and resources, especially for apps with frequent updates. On the

other hand, the integration of FlowTwist’s inside-out approach and our incremental analysis could potentially yield a
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robust system for handling both large-scale Java apps and rapidly evolving Android apps, leveraging the strengths of
both methods to provide comprehensive and efficient taint analysis.

Cheetah [27] shares our goal of reducing the time needed for Android app taint analysis. It employs a just-in-time
static analysis approach, prioritizing different complexity results based on the development context. While Cheetah
is designed for interactive use during coding, our approach is more suited for analyzing completed apps during their

production evolution.

9.2 Incremental Static Analysis

Mudduluru et al. [54] presents a novel approach to incremental static analysis, aiming to leverage path abstraction to
optimize static analysis across versions. This approach involves analyzing changes in source code versions and the
semantically affected code regions, using a path abstraction method. The path abstraction encodes program paths as
a set of constraints in boolean formulas, which are then input to a SAT solver. The novelty of this approach lies in
its focus on reducing redundant computations that arise from poor abstraction in existing tools. Notably, the method
achieved up to a 32% performance gain in analysis time for large codebases (up to 87 KLoC).

Krishnan et al. [45] proposes an innovative technique for analyzing changes in large codebases at the time of commit.
This method utilizes forward summaries, in addition to standard backward summaries, to focus the analysis solely on
the changed code. Forward summaries encapsulate the effects of callers on a method, thereby reducing the need to
reanalyze unchanged callers. This technique demonstrates significant efficiency, especially when only a fraction of the
codebase is altered.

Reviser [7] focuses on updating interprocedural data-flow facts for incremental code changes. However, its application
in accelerating taint analysis for evolving Android apps remains unclear. Incorporating Reviser’s incremental data-flow
analysis into our approach could potentially enhance its efficiency while retaining accuracy.

Incremental information-flow analysis has been applied in various software engineering tasks, such as data flow
computation [56], program testing [10], and change-impact analysis [40, 48]. However, its application in security
defense, particularly in code-based security analysis like taint checking, has been less explored.

In comparison, our method focuses on Android app versions and streamlines the taint analysis process by selectively
reanalyzing change-impacted code behaviors. Our approach does not directly improve the efficiency of the underlying
fine-grained static (data-flow) analysis itself with incremental code changes. We still delegate the process of that
underlying analysis to FlowDroid without tampering it. However, the core idea of incremental static analysis, which is

to narrow the analysis scope, is explicitly reflected in our design of EvOTAINT.

9.3 App Evolution Analysis for Android

Studies on Android app evolution have characterized significant changes in app structure, behavior [16, 19], compatibility
over time [37], and code-level regional variations [38], all highlighting the challenges posed to traditional app analysis.
To mitigate the high cost of re-analyzing entire apps after incremental updates, the field of app evolution analysis
has explored various strategies as noted earlier [42, 49, 67]. Other research within the broader scope of Android
evolution analysis has investigated the sustainability of machine learning-based malware detectors against evolving
app features [15] and the use of code change semantics to improve software maintenance tasks like release note
generation [39]. These diverse efforts underscore the need for techniques that adapt to the dynamic Android landscape,

with incremental methods like EvoTAINT offering targeted efficiency gains for complex analyses.
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10 Conclusion

In this paper, we introduced incremental taint analysis for Android apps, a novel approach designed to enhance the
cost-effectiveness of static taint analysis for evolving Android apps. Our method capitalizes on the version history of
apps, utilizing previous taint analysis results (for earlier app versions) to minimize re-computation for unchanged or
unaffected code segments in evolved app versions. By applying our technique to a dataset of 100 real-world Android
apps, we demonstrated a significant reduction in analysis costs brought by the incremental analysis—averaging a
51.8—68.9% decrease compared to conventional taint analysis and exceeding 99% reduction in many cases——while
maintaining accuracy. This underscores the potential of incremental taint analysis as a valuable tool for developers in
the continuous vetting process of app evolution. We have made our open-source tool, EvOTAINT, publicly available,

providing a practical resource for conducting incremental taint analysis for Android apps.
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