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With the emergence of smartphones, Android has become a widely used mobile operating system. However,

it is vulnerable when encountering various types of attacks. Every day, new malware threatens the secu-

rity of users’ devices and private data. Many methods have been proposed to classify malicious applications,

utilizing static or dynamic analysis for classification. However, previous methods still suffer from unsatisfac-

tory performance due to two challenges. First, they are unable to address the imbalanced data distribution

problem, leading to poor performance for malware families with few members. Second, they are unable to

address the zero-day malware (zero-day malware refers to malicious applications that exploit unknown vul-

nerabilities) classification problem. In this article, we introduce an innovative meta-learning approach for

multi-family Android malware classification named Meta-MAMC, which uses meta-learning technology to

learn meta-knowledge (i.e., the similarities and differences among different malware families) of few-family

samples and combines new sampling algorithms to solve the above challenges. Meta-MAMC integrates (i) the

meta-knowledge contained within the dataset to guide models in learning to identify unknown malware; and

(ii) more accurate and diverse tasks based on novel sampling strategies, as well as directly adapting meta-

learning to a new few-sample and zero-sample task to classify families. We have evaluated Meta-MAMC on

two popular datasets and a corpus of real-world Android applications. The results demonstrate its efficacy
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in accurately classifying malicious applications belonging to certain malware families, even achieving 100%

classification in some families.

CCS Concepts: • Computing methodologies→Machine learning; • Software and its engineering→

Software notations and tools;
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1 INTRODUCTION

The Android operating system has become the world’s most widely used mobile platform. As of
January 2021, Android held over 70 percent of the smartphone market share, with projections
indicating that it will maintain a leading market share of over 87% by 2023 [53]. However, this
widespread usage has made Android a target for malicious attacks. According to recent findings
by G DATA CyberDefense, cyber criminals released an Android malicious application every eight
seconds in the first half of 2020 [8]. Additionally, Kaspersky discovered over 5 million mobile ma-
licious installation packages in 2020 [12]. With the popularity and open-source nature of Android,
the operating system is vulnerable to various types of attacks, such as credential theft, privacy
disclosure, bank fraud, ransomware, adware, SMS fraud, and more. The risk of Android malware
is a significant threat to users, and the situation is escalating as malware becomes increasingly
contagious. Therefore, it is crucial to classify malware applications to ensure system security and
safeguard user privacy [82].

Many proposals have attempted to classify Android malware families [29, 47, 62, 75, 78] (Android
malware families refer to a group of malicious applications that targets the Android operating sys-
tem and are designed to perform various malicious activities such as violating user privacy and
property security) and Android zero-day malware (Android zero-day malware refers to malicious
applications that exploit unknown vulnerabilities to perform malicious activities on Android de-
vices) by discovering new attack pattern risks, designing new signatures, or identifying malicious
code. For example, Xu et al. [78] classify the malware using Deep Learning (DL) techniques.
Martín et al. [47] classify malware into families using classical machine learning such as Support

Vector Machine (SVM) and DL algorithms. Suarez-Tangil et al. [62] use a Nearest Neighbor clas-

sifier (NN) to classify malware into families. Despite using advanced algorithms like deep learning
for malware classification, they fail to address the issues of imbalanced samples within malicious
families and incomplete families within the dataset. Additionally, some studies [20, 21, 49, 51] en-
deavor to leverage malware family information, as zero-day Android malware typically exhibits
similar characteristics to existing Android malware. For instance, researchers have employed the
approach of constructing an integrated classification framework based on malware family infor-
mation to classify new malicious software [37]. Although they aim to classify zero-day malware
by learning family characteristics, the incomplete datasets they used could not provide a reliable
training environment. Meanwhile, since they do not take into account the knowledge from the
few-sample families, the classification performance on new and previously unknown families is
not optimal. Therefore, two challenges need to be addressed.

Challenge 1: Sample imbalance between families and missing malware families. Pre-
vious research endeavors in malware family classification have primarily focused on feature ex-
traction techniques. However, these studies have often overlooked two critical aspects. First, there
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Fig. 1. The sample size of Drebin’s top 20 families.

exists a substantial discrepancy between the number of malicious families available in the dataset
and the actual count of known malicious families. As mentioned earlier, the number of Android
malware families exceeded 1,000 in 2018 [61], and it continues to rise without any signs of decline.
Consequently, the dataset’s representation of malware families remains considerably smaller than
the total population, leading to limited coverage and a significant absence of a large portion of
malware families.

Second, the distribution of family samples within the dataset exhibits a high degree of imbal-
ance, primarily attributed to the scarcity of available samples for the majority of Android malware
families. To exemplify this observation, consider the renowned Drebin dataset [4], which encom-
passes 179 malware families. Figure 1 illustrates the substantial variation in sample sizes among
the top 20 families. Specifically, the sample sizes within the Drebin dataset exhibit a notable range,
spanning from tens to hundreds of samples for the top 20 families alone. Furthermore, our survey
reveals that nearly 58% of Android malware families within the Drebin dataset contain fewer than
five samples. This severe scarcity of malicious families, coupled with the imbalanced distribution
of samples, poses a significant challenge for models to establish a realistic and reliable training
environment.

Consequently, the scarcity of certain malicious families and the disproportionate representation
of samples across families present substantial hurdles for models seeking to achieve robust and
accurate performance in the domain of malware family classification.

Challenge 2: Difficulty in classifying zero-day malware. Android zero-day malware refers
to malicious applications that exploit unknown vulnerabilities in the Android operating system or
third-party applications to perform malicious activities on Android devices [56]. These vulnerabil-
ities are unknown to the public and therefore have not been patched by application developers or
security researchers. Zero-day malware applications are highly difficult to be classified, because
they use new and unknown attack methods. Although previous studies [26, 59, 73] classify zero-
day malware by using features and information of malware families, it is difficult to achieve good
results due to the lack of some malware family samples. Additionally, they do not consider the
meta-knowledge in the samples, which leads to the low generalization ability of the models and
difficulty in classifying zero-day malware. With the industrialization of Android malware creation,
numerous Android malware applications are generated using dozens of commercial tools. How-
ever, it is inefficient to classify zero-day malware samples by finding their similarity to known
malware samples. For example, VirusTotal [55] assigns known family attributes to zero-day mal-
ware samples based on the results of built-in antivirus tools. Therefore, it is difficult for them to
classify zero-day malware, and it always takes a long time to learn unknown malware in the latest
malware families.
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Some scholars propose to use meta-learning and few-shot learning to solve the problems en-
countered in Android malware detection. Zhu et al. [88] proposed a task-adaptive meta-learning
approach to address the problem of obfuscated malware classification. But it does not work well
against new and unknown malware families. Wang et al. [72] proposed a dynamic analysis-based
few-shot learning method for unknown malware classification. Although it can better classify un-
known samples, it greatly increases the time of early sample processing. Our solution is based
on static analysis, which reduces the processing cost in the early stage and at the same time can
classify new malware and unknown malware families well.

Therefore, the above analysis motivates us to investigate: To what extent can we classify mal-

ware under limited imbalanced datasets (sample imbalance between families and missing

some malware families)?

To resolve the aforementioned problems, we propose a multi-family classification.1 scheme for
Android malware based on meta-learning (meta-learning refers to a machine learning technique
that involves creating algorithms or models capable of learning how to learn) called Meta-MAMC.
First, reverse-engineering is used to decompile the APK files and extract features from the Android-

Manifest.xml file and class.dex file. Then, we design two new sampling strategies, an application-
based sampling strategy (sample an equal number of instances from the training dataset and split
them into two distinct sets: a support set and a query set) and a family-based sampling strategy
(uniformly sample a family each time, then randomly select a sample containing that family and
add it to the task instance set; repeat this process several times), to alleviate the sample imbalance.
In this way, the model can be utilized to analyze few-sample families, which solves Challenge

1. Next, we design an improved meta-learning algorithm, Meta-MAMC algorithm. Meanwhile, we
utilize the dual sampling strategies to construct the training tasks and regulate the proportion of
the two sampling strategies by setting the hyperparameter p. This can control the model to focus
on few-sample and zero-sample families while not ignoring other malicious families. Then, a ran-
domly initialized model performs meta-learning on a few samples and multi-family learning tasks
sampled from a specific sampling strategy to optimize parameters. The meta-learning model is
fine-tuned using traditional supervised learning on the training set of the final task. This process
allows the model to learn from multiple low-sample tasks and generalize better to new tasks, mak-
ing it address Challenge 2. Finally, following improved meta-learning training and fine-tuning, a
meta-classifier is obtained and subsequently used for classification.

We conduct extensive experiments to evaluate the new Meta-MAMC method from several as-
pects, such as identification accuracy and effectiveness in handling zero-day family malware. We
compare our method, Meta-MAMC, with several state-of-the-art baselines, such as Drebin [4], Ma-
MaDroid [46], N-opcode [32], and EC2 [10]. We evaluate both large and small families (with a
family size greater than 9 considered as large and less than 10 considered as small [10, 17]), and
the results show that the classification effect of Meta-MAMC exceeds that of advanced methods in
both large and small families. Significantly, our proposed approach exhibits exceptional perfor-
mance in classifying small malware families, surpassing that of state-of-the-art methods. Some
families achieve a remarkable 100% detection rate, underscoring the efficacy of our approach. The
main contributions of this article are as follows:

— We propose a meta-learning algorithm Meta-MAMC for multi-family Android malware clas-
sification tasks. The Meta-MAMC consists of two phases: the meta-learning phase and the
fine-tuning phase. To our best knowledge, we are the first study to address these challenges
in multi-family Android malware classification tasks from the meta-learning point of view.

1Multi-family classification is to classify Android malware into multiple families.
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— Considering the imbalance among malware families and missing malware families, we inno-
vatively use zero-sample scenarios to represent missing and unknown malware families and
design two new sampling strategies as well as control the number of families to alleviate the
imbalance between different families.

— We conduct extensive experiments to assess the effectiveness of Meta-MAMC. The experimen-
tal results demonstrate that Meta-MAMC outperforms the state-of-the-art schemes. We have
made the datasets, code, and collected unknown malware publicly available at the following
repository.2

The remainder of this article is structured as follows: Section 2 introduces the relevant infor-
mation on meta-learning and Android malware families. The proposed approach is presented in
Section 3. Section 4 describes the research question, experimental setup, and evaluation metrics.
Experimental results are shown in Section 5. The proof of zero-day malware classification is
presented in Section 6. The further analysis of the proposed approach is discussed in Section 7.
Section 8 presents the related work. Finally, Section 9 provides a summary of the proposed
approach in this article.

2 BACKGROUND

2.1 Meta-learning and Model-agnostic Meta-learning

Meta-learning, also known as “learning to learn,” is a subset of machine learning in computer
science [27, 66]. It is used to improve the results and performance of a learning algorithm by
changing some aspects of the learning algorithm based on experiment results. Meta-learning
helps researchers understand which algorithm(s) generate the best/better predictions from
datasets. Meta-learning consists of two layers, a base learner and a meta-learner. The base learner,
the model in the base layer, considers the data set on a single task each time the base learner is
trained. The Meta-learner, a model in the meta-layer, summarizes the training experience on all
tasks. Each time the base learner is trained, the meta-learners synthesize new experiences and
update the parameters in the meta-learners.

Model-Agnostic Meta-Learning (MAML) [22] is an algorithm in meta-learning. MAML is a
technique for few-shot learning, which is the ability to learn new concepts from a small number
of examples. Its core idea is to leverage a set of auxiliary tasks to search for a good parameter
initialization from which learning a target task would require only a handful of training samples.
In the MAML algorithm, the data is organized into tasks, and each task is further divided into
a support set and a query set. These divisions play a crucial role in enabling meta-learning and
few-shot learning capabilities.

Task Division. In the case of Android malware families classification, the task division involves
dividing the dataset into distinct tasks, with each task representing a specific malware family. Each
malware family is considered as an individual classification task.

Support Set. Within each malware family task, the support set consists of labeled malware
samples used for model adaptation. The support set includes a limited number of labeled exam-
ples from each malware family. These labeled samples serve as the training data for the model
to update its parameters during the adaptation process. The model learns to adapt to the specific
characteristics and behavior of each malware family through the support set.

Query Set. In each malware family task, the query set is a subset of examples used for evaluating
the model’s performance. The query set consists of both labeled and unlabeled malware samples. It
is used to assess the model’s ability to generalize and accurately classify unseen malware samples.

2https://figshare.com/articles/dataset/meta_learning_for_malware_classification/25036160
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The model’s adaptation to the support set helps improve its performance on the query set by
capturing the specific patterns and characteristics of each malware family.

Formally, MAML first meta-learns the initialization of model parameters θ0 with auxiliary tasks
{T1, . . . ,Ti } and continues to learn the optimized parameters θ ∗ for the target task:

θ ∗ = Learn (Tt ; MetaLearn (T1, . . . ,Ti ;θ0)) . (1)

Once the initialization is learned, the model can be quickly adapted to new tasks by performing
a few additional gradient updates on the task-specific data. By fine-tuning the model in this way, it
can achieve high performance on new tasks with only a small number of training examples. MAML
has been successfully applied to a variety of tasks, including image classification [28] and object
detection [39]. Its ability to learn quickly from a few examples makes it a promising technique for
applications where labeled data is scarce, such as in Android malware family classification.

Android Malware and Malware Family. Android malware is malicious software that tar-
gets smartphone devices running the Android operating system. It is like other malware samples
that run on desktops or laptop computers. Android malware is alternatively called mobile mal-
ware, which is any piece of malicious software intended to harm the mobile device by performing
some illegitimate activities. It can be classified into different malware categories such as adware,
backdoor, file infector, potentially unwanted application (PUA), ransomware, riskware, scare-
ware, spyware, trojan, and so on. Each malware category has some unique characteristics that
differentiate it from the other malware categories. Every malware category has several malware
families associated with it. The prominent Android malware categories include adware, backdoor,
file infector, PUA, ransomware, riskware, scareware, spyware, trojan, trojan-sms, TrojanSMS.Denofow,
TrojanSMS.Stealer, and TrojanSMS.Hippo.

3 METHODOLOGY

3.1 Overview

As shown in Figure 2, the proposed approach for Android malware family classification in this ar-
ticle involves four steps. (1) Feature Extraction. Reverse-engineering is used to decompile the
APK files and extract features from the AndroidManifest.xml file and class.dex file. Eight categories
of features are extracted from these files; (2) Sampling Strategy. To address the issue of sample
imbalance in the training dataset, we have devised two novel sampling strategies: the application-
based sampling strategy and the family-based sampling strategy. In the application-based sam-
pling strategy, we randomly select an equal number of instances from the training dataset. These
instances are then divided into two distinct sets: the support set and the query set. This approach
ensures that both sets contain a balanced representation of instances from different applications.
However, the family-based sampling strategy aims to achieve a more balanced representation at
the family level. In this strategy, we uniformly sample a family from the available families in the
training dataset. Subsequently, we randomly select a sample that belongs to the chosen family and
add it to the task instance set. This process is repeated multiple times to ensure the inclusion of
various samples from different families; (3) Improved Meta-learning. Meta-MAMC adopts a dual
sampling strategy to generate training tasks that encompass both few-sample family tasks and
zero-sample family tasks, thereby increasing the realism of the training environment. We utilize
the dual sampling strategies to construct the training tasks and regulate the proportion of the
two sampling strategies by setting the hyperparameter p. This can control the model to focus on
few-sample and zero-sample families while not ignoring other malicious families. A randomly ini-
tialized model performs meta-learning on few-sample and multi-family learning tasks sampled
from a specific sampling strategy to optimize parameters. Then, the model is fine-tuned using
traditional supervised learning on the training set of the final task; (4) Classification. After
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Fig. 2. Main flowchart of our proposed Meta-MAMC for Android malware family classification.

improved meta-learning training and fine-tuning, a meta-classifier is obtained and subsequently
used for classification.

3.2 Feature Extraction

The APK file is the installation package of the Android application, which contains the program
code and resources, which is necessary for program execution. We decompile the APK file with the
reverse-engineering tools Apktool [67] and Androguard [15] to obtain an AndroidManifest.xml file
and Class.dex files, and we convert the Class.dex files into readable Dalvik bytecode files (i.e., .smali).
The AndroidManifest.xml file is a configuration file that contains information, such as permissions
and communication components required for program execution. Each .smali file is equivalent to
a Java .class file. Referring to the existing studies [34, 38], eight categories of features are extracted
from these files, as listed in Table 1.

3.3 Sampling Strategy

As mentioned earlier, the extension of meta-learning algorithms for multi-family classification
problems needs to consider two challenges: (1) Sample imbalance between families and missing
malware families; (2) Difficulty in classifying zero-day malware. However, meta-learning algo-

rithms do not take into account specific data distributions. The tasks constructed through

their naive task sampling strategy only consider a limited number of frequent labels, re-

ducing task diversity. Meanwhile, there are too many Android malware families to collect all
samples for each family, and new malware is added every day. This leads to zero-sample scenarios
not considered by existing algorithms, providing less faithful training conditions. Therefore, we
design two sampling strategies, an application-based sampling strategy and a family-based sam-
pling strategy. These two sampling strategies can uniformly extract each sample and take into
account families with fewer samples and zero samples. We utilize the dual sampling strategies

to construct the training tasks and regulate the proportion of the two sampling strate-

gies by setting the hyperparameter p (for details about the hyperparameter p, please refer to
Section 5.3). We incorporate both sampling strategies, because using only one strategy can result
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Table 1. Features of Eight Categories

Source Category Description

Manifest.xml

Hardware & software resources
Application requirements for system resources,

including hardware and software resources

Requested permission
If an application must execute some specified operations,

then it must request corresponding permissions
in the manifest.xml

Application components
Application components are essential building blocks of

an application; the four components are activities,
services, providers, and receivers

Intent filter
An intent filter declares the capabilities of its parent

component—what an activity or service can do and what
types of broadcasts a receiver can handle

Dalvik bytecode files (.smali)

Restricted API call Some key API calls are restricted by system permissions

Used permission
Access to restricted API calls requires some appropriate

permissions to be granted

Sensitive API call
Some API calls can access sensitive data and resources

on mobile devices

Sensitive shell command
Some shell commands can gain administrative privileges

and execute dangerous operations

in the model ignoring certain families during training. For instance, when only the application-
based sampling strategy is adopted, it becomes challenging to select few-sample families, leading
to inadequate learning of these families by the model. Thus, we use both strategies simultaneously.

Application-based sampling strategy: A handful of samples are uniformly sampled from the
original Android malware dataset D. Each sample x has a corresponding label y. This strategy can
make the sampling results more consistent with the final task, that is, include both few-sample
and zero-sample families. Then, D is partitioned into two disjoint sets, i.e., the support set DS

Ti
and

the query set D
Q

Ti
, as shown in Equations (2) and (3):

DS
Ti
=
{
(xn , yn) | yn ⊂ F

S
Ti

}N

n=1
, (2)

D
Q

Ti
=
{
(xk , yk ) | yk ⊂ F

Q

Ti

}K

k=1
, (3)

where Ti represents multi-family classification tasks, N and K are the number of instances in

the support set and query set, respectively. Then, F S
Ti
=

⋃N
n=1 yn and F

Q

Ti
=

⋃K
k=1 yk are the

corresponding labels of support set and query set in Ti .
We have found empirically that this strategy can construct more faithful tasks in which few-

and zero-shot scenarios coexist, i.e., F
Q

Ti
∩ F S

Ti
� ∅ and F

Q

Ti
− F S

Ti
� ∅, with a high probability.

However, this strategy is still affected by the long-tailed label distribution of Android malware
families, as shown in the upper part of the Figure 3: The few-sample families in the training set
have fewer chances to appear in the tasks, and models are more susceptible to overfitting to a
handful of frequent families.

Family-based sampling strategy: A family is first sampled from the family space Fspace , and
then an instance annotated with this label is selected. We repeat this process N + K times to
construct τi = (Dtr

Ti
,Dval
Ti
). The left part of Figure 3 shows that the family-based one is fairer than

the application-based one from the family dimension. However, the right part of Figure 3 reveals
that the application-based one shows no biases to samples, while the family-based one pays too
much attention to those samples mostly annotated with few-sample families.

The sampling ratiop allows us to balance between the application-based and family-based strate-
gies and provides a way to control the diversity of the tasks. If p is set to 0, then all tasks will be
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Fig. 3. The number of times each family and sample occurring in the tasks sampled from Drebin according

to the application-based or family-based sampling strategy.

constructed using the family-based strategy, which can lead to less diversity in the tasks. However,
if p is set to 1, then all tasks will be constructed using the application-based strategy, which can
also lead to less diversity in the tasks. By setting an appropriate value for p, we can strike a balance
between the two strategies and generate tasks that are both diverse and faithful to the real-world
scenario of Android malware family classification. To ensure comprehensive model training with-
out sacrificing efficiency, we initially set a relatively elevated threshold, ϵ , at 0.01, because, when
ϵ is less than 0.01, the performance improvement of the model is not obvious after each iteration
and the convergence is very slow. Therefore, we decided to set ϵ to 0.01 to train the model more
thoroughly. During the training process, we find that models converge quite quickly, and the loss
could converge in a relatively few epochs, and when the number of iterations exceeded 20, the
model performance no longer improved significantly. Therefore, to avoid wasting resources, we
set Nmax to 20, which helps prevent ineffective repeated training.

ALGORITHM 1: Meta-MAMC

Input: Dataset D, learning rates α , β and sampling strategy S
1: Initialization: θ ← θ0

2: // Meta-learning

3: while the difference in θ over iterations is greater than a threshold ϵ or the number of iterations is less

than Nmax do

4: Simulate a batch of few-sample multi-family Android malware classification tasks from D using

strategy S
5: for each task Ti , with Support Set Si and Query Set Qi drawn from D do

6: Compute local parameters θi
′ using learning rate α and a specified update rule

7: end for

8: Update model parameters θ using learning rate β and a global update rule

9: end while

10: // Fine-Tuning

11: Fine-tune the model with θi
′ on D

Output: Model Mmeta

The Meta-MAMC Algorithm 1 is a sophisticated meta-learning framework tailored for
classifying Android malware across various families. It commences with the initialization of
model parameters and progresses through an iterative meta-learning phase. This phase involves
simulating classification tasks with few samples, updating model parameters locally for each
task and then globally to capture overarching patterns. The algorithm uniquely adapts to new
malware types with minimal data, balancing between task-specific learning and generalization.
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Finally, it fine-tunes the model on a given dataset, culminating in a robust, adaptable model for
Android malware classification.

3.4 Improved Meta-learning and Classification

The original meta-learning algorithm, MAML, does not consider both few-sample and zero-sample
families. Therefore, we design an improved MAML algorithm (Meta-MAMC) for meta-learning (by
combining a designed sampling strategy) to address this issue. Algorithm 1 shows an overall proce-
dure of Meta-MAMC, which consists of a meta-learning phase and a fine-tuning phase. We describe
the meta-learning stage in detail here. Suppose there is a model Fθ with parameters θ and a task

sampling strategy S that generates tasksTi . For each taskTi = (D
S
Ti
,D

Q

Ti
), we first update the model

parameters using one-step gradient descent as

θ ′i = θ − α∇θLθ

(
DS
Ti

)
, (4)

where α is the local learning rate and L is the loss function. After that, the loss of local parame-

ters on the corresponding query set is computed, i.e., Lθ ′
i
(D

Q

Ti
). Finally, the global parameters are

obtained using the loss across multiple tasks, i.e.,

θ ← θ − β∇θ

∑

D
Q
Ti

Lθ ′
i

(
D

Q

Ti

)
, (5)

where β is the global learning rate. In short, Meta-MAMC explicitly simulates the few-sample multi-
family Android malware classification tasks and directly incorporates the objective of adapting
to these tasks into the meta-learning optimization phases. This encourages models to learn meta-
knowledge, i.e., how to obtain maximal performance on these rare/unseen families with little train-
ing data. Therefore, our enhanced MAML algorithm can effectively address this issue. By integrat-
ing the two sampling strategies, we generate tasks that include both few-sample and zero-sample
samples, thereby creating a more realistic training environment.

Finally, with the improved meta-learning algorithm Meta-MAMC, we obtain a meta-classifier and
classify malware families and classify zero-day malware.

4 EXPERIMENT SETUP

This section encompasses the introduction of the state-of-the-art (SOTA) method, the formula-
tion of the research question, the description of the experimental setup, and the delineation of the
evaluation metrics utilized in this study.

4.1 SOTA Method

To conduct a comprehensive evaluation of our proposed scheme, we have carefully selected four
popular methods, namely, Drebin [4], MaMaDroid [46], N-opcode [32], and EC2 [10]. These models
have been chosen due to their shared focus on security and privacy-related features for classifying
malware samples. The primary objective of our evaluation is to assess the effectiveness of our
approach in accurately assigning malware samples to their respective families.

In our evaluation, each malware sample is assigned a family label based on its closest resem-
blance to the capability vectors associated with the various malware families. Subsequently, the
predicted family labels are compared against their corresponding capability labels, and the perfor-
mance is quantified by evaluating the concordance between the ground truth capability and the
predicted capability.

This evaluation framework enables us to gauge the efficacy of our proposed scheme in accu-
rately classifying malware samples and associating them with their corresponding capability labels,
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thereby providing a robust assessment of its performance in comparison to the selected state-of-
the-art methods. The following are the details of these methods:

— Drebin [4] is a lightweight method proposed to address the security threat posed by mali-
cious applications on the Android platform. As the proliferation of such applications ham-
pers conventional defense mechanisms, Android smartphones often lack adequate protec-
tion against emerging malware. To address this issue, Drebin performs an extensive static
analysis by gathering a wide range of application features. These features are then embed-
ded in a unified vector space, allowing for the identification of typical patterns indicative of
malware.

— MaMaDroid [46] is a static analysis-based system designed to detect malware targeting the
Android platform. MaMaDroid takes a behavioral approach to malware detection by focus-
ing on the sequence of abstracted API calls performed by an app. The system abstracts the
API calls into their corresponding class, package, or family, and constructs a model using
the sequences obtained from the call graph of an app, treating them as Markov chains. This
approach enhances the resilience of the model to changes in the underlying APIs and results
in a manageable feature set.

— N-opcode [32] is a method developed for the detection and classification of Android malware,
addressing the increasing problem of malware on the popular Android mobile platform. With
the accessibility of numerous third-party app markets and the adoption of sophisticated
detection avoidance techniques by emerging malware families, more effective techniques
are needed. The approach utilizes automated feature discovery, eliminating the need for
manual expert or domain knowledge to define the required features.

— EC2 [10] is a novel algorithm developed for the discovery of Android malware families of
varying sizes, ranging from large to small families, including previously unseen ones. With
the increasing number of Android malware variants, the detection of malware families plays
a crucial role in enabling security analysts to identify situations where signatures of a known
malware family can be adapted instead of manually inspecting the behavior of all samples.
Experimental results demonstrate that EC2 accurately detects both small and large malware
families, surpassing several comparative baselines.

4.2 Research Questions

We conduct a comprehensive evaluation of our program by answering three research questions

(RQ). The RQs are as follows:

— RQ 1: How does Meta-MAMC perform on Android malware classification?

— RQ 2: How does the performance of Meta-MAMC compare to that of the original MAML? And

how does it compare to state-of-the-art methods?

— RQ 3: Can Meta-MAMC be effective in combating the evolution of malware and classifying zero-

day malware?

For RQ 1, we want to evaluate whether an improved meta-learning algorithm, Meta-MAMC, can
effectively classify Android malware. It not only includes multiple categories of Android malware
families but also includes two categories of malware and benign applications to comprehensively
evaluate the classification effect of Meta-MAMC. Section 5.1 describes the detailed evaluation pro-
cess and results. Regarding RQ 2, we compare the performance of Meta-MAMC and the original
MAML algorithm in family classification. Furthermore, we select several state-of-the-art methods
to compare with Meta-MAMC to evaluate its performance. For details, please refer to Section 5.2. Fi-
nally, for RQ 3, we collect unknown malware for testing. We then evaluate whether the improved
Meta-MAMC can generalize effectively to new unknown malware. Section 6 describes the details.
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Table 2. Summary of Android Malware Datasets

Dataset Malware Families Malware Samples Benign Samples

Drebin 179 5,560 123,456

AMD 71 24,553 N/A

PlayDrone (Benign) N/A N/A 10,000

4.3 Experimental Setting

To evaluate the effectiveness of our proposed method, we conduct experiments on two publicly
available Android malware datasets, which are shown in Table 2. We follow the previous
studies [35, 42, 81] and use the public malware dataset: Drebin dataset [4] and AMD dataset [73].
The Drebin dataset contains a total of 5,560 malware samples from 179 families and 123,456
benign samples. The AMD dataset contains 71 families with a total of 24,553 malware samples.
The benign samples are collected from the PlayDrone [69]. The PlayDrone is a measurement
study of the Google Play Store. It indexes and analyzes over 1,100,000 applications in the Google
Play Store on a daily basis and is the largest such index of Android applications. We conduct a
random download of 10,000 popular benign applications from the platform, which represents a
significantly larger sample size compared to previous studies [10, 46]. This diverse collection of
applications spans across multiple categories, such as news, finance, education, games, sports,
music, shopping, weather, and more.

We follow the previous studies [19, 44] and randomly split the data into training and testing
sets with a ratio of 7:3. We use 70% of the training data to construct tasks for the meta-learning
phase and fine-tune the model on the remaining 30%. We employ a five-fold cross-validation ap-
proach [25], where the experiments are repeated five times to ensure robustness, and the average
results are reported. We compare our method, Meta-MAMC, with several state-of-the-art baselines,
including Drebin [4], MaMaDroid [46], N-opcode [32], and EC2 [10].

Moreover, we utilize a text-based Convolutional Neural Network (TextCNN) for classifica-
tion [14]. The model features 3 × 3 convolutional layers with 64 filters, batch normalization, and
ReLU non-linearity. It employs 2 × 2 max-pooling and has a last hidden layer dimension of 64.
The output layer is a softmax layer for classification purposes. Additionally, the model includes
a non-convolutional variant with four hidden layers of sizes 256, 128, 64, and 64. The chosen
loss function is cross-entropy, and the model is fine-tuned with additional hyperparameters for
optimal performance.

The subsequent experiments are conducted on a personal computer integrated with 13th Gen
Intel(R) Core(TM) i9-13900K 3.00 GHz and NVIDIA GeForce RTX 4090. The computer has 32 GB
of memory and 2 TB of storage. The deep neural networks are implemented using Scikit-learn and
PyTorch.

4.4 Evaluation Metrics

There are four common metrics adopted to evaluate the performance of classification: accuracy,
precision, recall rate, and F-score. The malicious sample is denoted as the positive (P) class and
the benign sample is denoted as the negative (N) class. Then, four numbers are obtained:

— True Positive (TP): the number of positive samples that are correctly predicted as positive.
— False Negative (FN): the number of positive samples that are incorrectly predicted as

negative.
— False Positive (FP): the number of negative samples that are incorrectly predicted as

positive.
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— True Negative (TN): the number of negative samples that are correctly predicted as
negative.

Based on these designations, the following equations calculate four common metrics:

Accuracy =
TP + TN

TP + FN + FP + TN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F -Score =
2 × Precision × Recall

Precision + Recall
. (9)

5 EXPERIMENTAL RESULTS

5.1 Performance of Android Malware Classification

To answer RQ 1, we evaluate the effectiveness of Meta-MAMC on malware instances from Drebin
[4] and AMD [73] containing real malware collected from various sources. All these malicious
applications belong to known malware families such as DroidKungFu, Geinimi, and GoldDream,
among others. To perform this experiment, we extract the eight categories of features in Table 1
to model the training process on these malware applications. The results of our experiment are
presented in Tables 3 and 4. The first column lists the malware families, and the second column
displays the number of analyzed instances belonging to each family. Tables 3 and 4 show the classi-
fication results of large and small families. To conduct a comprehensive evaluation of Meta-MAMC,
we conduct a random selection of 20 families, encompassing both large and small families. For the
purpose of this evaluation, a family size greater than 9 is considered as a large family, while a family
size smaller than 10 is categorized as a small family [10, 17]. For instance, as shown in Table 3, the
performance of Meta-MAMC in classifying malware instances across large families demonstrates an
average accuracy of 0.945 and an average F-score of 0.948. These results highlight the effective clas-
sification ability of Meta-MAMC for large families of malware. Similarly, when dealing with small
families, Meta-MAMC achieves an average accuracy of 0.898 and an average F-score of 0.943.

Moreover, on the AMD dataset, Meta-MAMC exhibits promising performance. For large families,
the average accuracy is reported as 0.953, along with an average F-score of 0.952. In the case
of small families, the average accuracy is 0.975, and the average F-score is 0.905. These results
further validate the effectiveness of Meta-MAMC in accurately classifying both large-family and
small-family malicious samples across both datasets.

However, a closer look at the results reveals that Meta-MAMC performs poorly on the BaseBridge
malware family. Specifically, out of the 237 samples analyzed, only 223 are classified as instances
of BaseBridge. Further inspection of this family reveals that many instances dynamically load code
to perform malicious functionality, which is not detectable by static analysis and results in many
false negatives. Excluding BaseBridge from the results of our sample achieves an average accuracy
of 96.9%.

For other malware families with false negatives, several factors contribute to classification errors.
First, our signatures may not capture the essential characteristics of all instances of a family, as they
are based on a small number of samples. Second, the malware family may have key features that
are not expressible in our specification language. Last, missing models may cause false negatives,
as our static analysis relies on method stubs that do not cover all relevant behavior of the Android
SDK.
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Table 3. Evaluation of Meta-MAMC on Malware from Drebin

Malware Family Family Size Accuracy Precision Recall F-score

FakeInstaller 648 0.976 0.964 0.968 0.966
DroidKungFu 467 0.992 0.979 0.980 0.979
Plankton 438 0.963 0.961 0.961 0.961
Opfake 429 0.971 0.968 0.965 0.966
BaseBridge 237 0.945 0.941 0.946 0.943
GinMaster 231 0.966 0.963 0.959 0.961
Kmin 106 0.972 0.968 0.970 0.969
Iconosys 103 0.959 0.955 0.958 0.957
FakeDoc 92 0.978 0.973 0.976 0.975
Adrd 64 0.991 0.982 0.985 0.983
Imlog 30 0.966 0.953 0.962 0.983
Jifake 20 0.909 0.913 0.921 0.954
Fakelogo 13 0.876 0.866 0.884 0.923
FakePlayer 11 0.769 0.833 0.901 0.870
Zitmo 9 0.700 0.875 0.778 0.824
DroidSheep 7 0.857 0.846 0.853 0.923
AccuTrack 7 1 1 1 1
Stiniter 6 0.833 1 0.831 0.910
Maistealer 1 1 1 1 1
SmsSpy 1 1 1 1 1

Table 4. Evaluation of Meta-MAMC on Malware from AMD

Malware Family Family Size Accuracy Precision Recall F-score

Airpush 2,744 0.963 0.958 0.962 0.960
Dowgin 1,724 0.965 0.961 0.956 0.959
FakeInst 1,520 0.959 0.953 0.954 0.953
Mecor 1,274 0.964 0.958 0.962 0.960
Youmi 910 0.953 0.949 0.953 0.951
Fusob 893 0.966 0.964 0.966 0.965
Kuguo 839 0.972 0.968 0.964 0.966
BankBot 453 0.976 0.973 0.974 0.973
Jisut 392 0.981 0.980 0.976 0.978
Mseg 164 0.987 0.984 0.985 0.985
Leech 89 0.976 0.982 0.989 0.988
Koler 48 0.959 0.979 0.979 0.979
Ksapp 25 0.880 0.917 0.957 0.937
Zitmo 16 0.765 0.813 0.929 0.867
Cova 11 0.909 1 0.909 0.952
FakeTimer 8 0.636 0.700 0.875 0.778
Opfake 7 0.875 0.875 1 0.933
Ogel 4 1 1 1 1
Tesbo 2 1 1 1 1
Fobus 1 1 1 1 1
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Tables 3 and 4 show that Meta-MAMC reports very few false positives. In the 30 malicious families
of the two datasets, Meta-MAMC achieves an accuracy rate of over 94% for each family, with some
families reaching over 99%. This indicates that the static analysis of Meta-MAMC is precise enough,
and meta-learning can effectively learn meta-knowledge from the dataset.

From the results presented in Tables 3 and 4, it is evident that the performance of Meta-MAMC
on multi-family classification is outstanding. This observation confirms the effectiveness of our
proposed sampling strategy and Meta-MAMC in addressing the issue of imbalance in Android mal-
ware families. Moreover, the family-based sampling strategy enhances the generalization ability
of Meta-MAMC, making it more suitable for classifying unknown malware and their families. More-
over, the decent F-scores of BaseBridge and the low scores of FakeTimer are largely attributed to
the quantity of samples and the distinctness of their features. Specifically, the FakeTimer dataset is
characterized by high feature noise and poor differentiation, resulting in lower F-scores. In contrast,
BaseBridge, with its clearer features and less noise, demonstrates better performance. The analy-
sis encompasses various aspects, including sample quantity, uniqueness and diversity of features,
representativeness of training data, overfitting issues, and challenges related to class imbalance.

Answer to RQ 1: The Meta-MAMC approach demonstrates efficient classification capabili-
ties for Android malware families, irrespective of their size. Notably, on the Drebin dataset,
the average accuracy achieved by Meta-MAMC was 0.898, accompanied by an average F-
score of 0.943. Similarly, on the AMD dataset, the approach achieved an impressive average
accuracy of 0.975, with an average F-score of 0.905. These results highlight the strong per-
formance and effectiveness of the Meta-MAMC approach in accurately classifying Android
malware families on both datasets.

5.2 Meta-MAMC versus Original MAML and SOTA Methods

To answer RQ 2, we further verify the effect of Meta-MAMC in multi-family classification. While
Meta-MAMC is based on meta-learning, it still diverges from other Android malware family clas-
sifiers. One of the notable improvements in Meta-MAMC is its employment of the new sampling
techniques we developed to balance the distribution of diverse families and early samples. More-
over, it takes a more innovative approach by considering the zero-sample scenario, which makes
it more effective in classifying unknown malware.

To demonstrate the effectiveness of our proposed approach, we conduct a comparison with the
original MAML algorithm, and the results are presented in Figures 4 and 5.

Figures 4 and 5 depict the performance comparison between the original MAML algorithm
(shown in light blue) and our proposed Meta-MAMC algorithm (shown in dark blue) for the top five
malware families (top five by number). It is evident from the figure that our improved Meta-MAMC
algorithm outperforms the primitive MAML algorithm, particularly in the context of classifying
the Android malware family. This is primarily attributed to our enhanced multi-class categoriza-
tion of the Android malware family and our ability to effectively handle both few-sample and
zero-sample scenarios. Our novel sampling strategy also plays a crucial role in achieving supe-
rior performance by balancing diverse families and samples. In addition to its incorporation of
two sampling strategies, namely, application-based sampling strategy, and family-based sampling
strategy, Meta-MAMC outperforms the MAML algorithm, which uses a native task sampling strat-
egy. By incorporating a new sampling strategy, Meta-MAMC can consider both few-sample families
and zero-sample families, thereby improving its generalization capabilities.

Previously, we validated the effectiveness of Meta-MAMC on multiple malware families. Now, we
aim to conduct a comparison with several state-of-the-art Android malware classification schemes
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Fig. 4. Performance of Meta-MAMC and MAML in the top five families (top five by number) in the Drebin

dataset.

Fig. 5. Performance of Meta-MAMC and MAML on top five families (top five by number) in AMD dataset.

further to validate the effectiveness of Meta-MAMC. We have selected four baseline models that can
classify malware families: Drebin [4], MaMaDroid [46], N-opcode [32], and EC2 [10].

The superiority of the proposed Meta-MAMC scheme over other methods is demonstrated in
Tables 5 and 6. A total of 10 families, comprising both large and small families, were randomly
selected for evaluation. The results indicate that Meta-MAMC outperforms state-of-the-art methods
on both the Drebin dataset and the AMD dataset. Significantly, our scheme exhibits exceptional
performance in classifying small-scale household samples. As evidenced in Table 5, Meta-MAMC
achieves a remarkable 100% detection rate for the SmsSpy family, surpassing the detection capabil-
ities of other schemes. Similarly, for the Opfake family presented in Table 6, while other schemes
struggle to surpass a 60% detection rate, Meta-MAMC achieves an impressive rate of 87.5%. These
results can be attributed to the utilization of meta-knowledge encoded within the dataset, allowing
Meta-MAMC to surpass the limitations of solely relying on the presence of features.

In addition, we introduce two innovative sampling strategies, namely, application-based sam-
pling strategy and family-based sampling strategy, to facilitate meta-learning training. These
strategies ensure a balanced representation of both few-shot and many-shot families during train-
ing, thus providing a realistic and reliable training scenario. By considering the unique charac-
teristics of different families, our approach achieves improved performance compared to existing
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Table 5. Meta-MAMC versus State-of-the-art Methods on Drebin

Family
Drebin MaMaDroid N-opcode EC2 Meta-MAMC

ACC F-score ACC F-score ACC F-score ACC F-score ACC F-score

FakeInstaller 0.786 0.773 0.874 0.875 0.864 0.875 0.827 0.819 0.976 0.966

DroidKungFu 0.769 0.781 0.861 0.849 0.852 0.867 0.843 0.826 0.992 0.979

Plankton 0.753 0.734 0.844 0.853 0.835 0.854 0.798 0.785 0.963 0.961

Opfake 0.765 0.769 0.851 0.836 0.847 0.864 0.811 0.805 0.971 0.966

BaseBridge 0.725 0.732 0.832 0.824 0.816 0.827 0.775 0.792 0.945 0.943

Imlog 0.700 0.695 0.813 0.806 0.800 0.780 0.787 0.769 0.966 0.983

Jifake 0.4 0.571 0.577 0.732 0.242 0.391 0.700 0.701 0.909 0.954

Zitmo 0.231 0.377 0.546 0.706 0.143 0.252 0.417 0.589 0.700 0.824

Stiniter 0.167 0.154 0.5 0.429 0.166 0.153 0.5 0.356 0.833 0.910

SmsSpy 0 0 0 0 0 0 0 0 1 1

We show the F-scores of 10 random families in the Drebin dataset.

Table 6. Meta-MAMC versus State-of-the-art Methods on AMD

Family
Drebin MaMaDroid N-opcode EC2 Meta-MAMC

ACC F-score ACC F-score ACC F-score ACC F-score ACC F-score

Airpush 0.769 0.758 0.851 0.838 0.781 0.775 0.836 0.841 0.960 0.960

Dowgin 0.784 0.776 0.861 0.847 0.783 0.792 0.840 0.837 0.965 0.959

Youmi 0.751 0.737 0.836 0.824 0.765 0.773 0.827 0.818 0.953 0.951

Kuguo 0.803 0.794 0.786 0.791 0.738 0.751 0.875 0.886 0.972 0.966

BankBot 0.763 0.745 0.802 0.807 0.814 0.807 0.824 0.836 0.976 0.973

Mseg 0.719 0.774 0.843 0.826 0.634 0.647 0.917 0.913 0.987 0.985

Koler 0.791 0.787 0.836 0.848 0.708 0.703 0.786 0.785 0.959 0.979

Cova 0.364 0.286 0.818 0.789 0.456 0.462 0.727 0.706 0.909 0.952

Opfake 0.286 0.316 0.571 0.522 0.143 0.182 0.571 0.571 0.875 0.933

Ogel 0 0 0.550 0.190 0 0 0 0 1 1

We show the F-score of the 10 random families in the AMD dataset.

schemes. The distinction between traditional machine learning and meta-learning is significant
in the context of malware classification. Traditional methods require extensive data to effectively
train models, especially when encountering new or rare samples. Meta-learning, however, trains
across various tasks, allowing models to swiftly adapt to new scenarios, even with limited data.
Moreover, we apply data augmentation techniques [74] to solve the limited samples, particularly
aimed at addressing the challenges posed by datasets with limited samples. These techniques are
vital for enhancing the robustness and generalizability of machine learning models through the
artificial expansion of the dataset, which can improve the performance of the sampling strategies.
This adaptability is particularly beneficial for identifying novel and unknown malware types, such
as zero-day attacks. Meta-learning’s ability to discern subtle differences and unique patterns makes
it more effective in distinguishing between new and existing malware. Our method employs meta-
learning not bound to any specific model. It is proven superior to traditional methods in scenarios
with limited data. We have developed application-level and family-based sampling strategies for
mobile malware classification. If these strategies are applied in conjunction with meta-learning
in other methods, then it could enhance their performance. Our research demonstrates, through
Figures 4 and 5, that combining meta-learning with our sampling strategies improves performance
over traditional methods. We have compared the effectiveness of our sampling strategies against
conventional methods, revealing significant improvements in malware detection.
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Table 7. SVM for Our (SS: Sampling Strategies) and (B: Benign, S: Malware) and Comparison with

Random Sampling

SS (ratio) B Class (Benign) S Class (Malware) Macro Avg Accuracy

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0.05 0.95 0.9896 0.9694 0.9811 0.9123 0.9455 0.9656 0.9509 0.9574 0.9608
0.10 0.9333 0.9949 0.9631 0.9896 0.8716 0.9268 0.9615 0.9332 0.9449 0.9510
0.15 0.9404 0.9930 0.9660 0.9873 0.8960 0.9394 0.9638 0.9445 0.9527 0.9564
0.20 0.9711 0.9762 0.9736 0.9614 0.9532 0.9573 0.9662 0.9647 0.9654 0.9674
0.25 0.9735 0.9917 0.9825 0.9855 0.9544 0.9697 0.9795 0.9730 0.9761 0.9778
0.30 0.9492 0.9912 0.9697 0.9848 0.9153 0.9488 0.9670 0.9532 0.9592 0.9619
0.35 0.9713 0.9908 0.9810 0.9853 0.9550 0.9699 0.9783 0.9729 0.9754 0.9767
0.40 0.9795 0.9961 0.9877 0.9933 0.9651 0.9790 0.9864 0.9806 0.9834 0.9845

0.45 0.9729 0.9942 0.9835 0.9898 0.9530 0.9711 0.9814 0.9736 0.9773 0.9790
0.50 0.9719 0.9883 0.9800 0.9807 0.9540 0.9672 0.9763 0.9712 0.9736 0.9752

SVM 0.9768 0.9930 0.9848 0.9883 0.9616 0.9748 0.9825 0.9773 0.9798 0.9811

Table 8. XGBoost for Our (SS: Sampling Strategies) and (B: Benign, S: Malware) and Comparison with

Random Sampling

SS (ratio) B Class (Benign) S Class (Malware) Macro Avg Accuracy

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0.05 0.9635 0.9764 0.9699 0.9607 0.9397 0.9501 0.9621 0.9581 0.9600 0.9624
0.10 0.9724 0.9850 0.9787 0.9750 0.9546 0.9647 0.9737 0.9698 0.9717 0.9734
0.15 0.9781 0.9823 0.9802 0.9710 0.9642 0.9676 0.9745 0.9732 0.9739 0.9754
0.20 0.9808 0.9893 0.9850 0.9823 0.9686 0.9754 0.9816 0.9789 0.9802 0.9814
0.25 0.9830 0.9914 0.9872 0.9858 0.9721 0.9789 0.9844 0.9817 0.9830 0.9840
0.30 0.9829 0.9871 0.9850 0.9789 0.9721 0.9755 0.9809 0.9796 0.9802 0.9814
0.35 0.9883 0.9936 0.9909 0.9894 0.9808 0.9851 0.9888 0.9872 0.9880 0.9887

0.40 0.9835 0.9919 0.9877 0.9867 0.9729 0.9798 0.9851 0.9824 0.9837 0.9847
0.45 0.9941 0.9925 0.9933 0.9878 0.9904 0.9891 0.9909 0.9914 0.9912 0.9917

0.50 0.9925 0.9952 0.9938 0.9921 0.9878 0.9899 0.9923 0.9915 0.9919 0.9924

XGBoost 0.9872 0.9925 0.9898 0.9877 0.9790 0.9833 0.9874 0.9858 0.9866 0.9874

Table 7 showcases our unique sampling strategy applied to the SVM method. Contrasting tra-
ditional SVM that employs random sampling without accounting for the distribution of malware
family samples, our approach, with a mere 0.4 sampling ratio, outperformed the standard SVM
on validation tests. Moreover, we extended our methodology to the XGBoost model, where a 0.35
sampling ratio sufficed to surpass XGBoost’s results with random sampling, as detailed in Table 8.
To further underscore our strategy’s effectiveness, we compare it against diverse XGBoost [13]
sampling strategies (random, over- and under-sampling, editing distance-based) in Table 9.
Moreover, XGBoost is a type of boosting algorithm, which integrates many weak classifiers to
form a strong classifier. Since XGBoost is a tree boosting model, it integrates many tree models to
create a robust classifier. Afterwards, we employ the SVM classifier [79], renowned for its binary
classification capability, which not only distinguishes between categories but also optimizes
the margin between them, enabling a more precise and dependable classification for in-depth
analysis. Additionally, the Edited Nearest Neighbors (ENN) [2] sampling technique is an under-
sampling method based on the nearest neighbor rule. Its basic idea is to remove samples that
are misclassified by their nearest neighbors, thus reducing the number of majority class samples
and balancing the dataset. Over-sampling and under-sampling [31] adjust the number of samples
in each class in the dataset to address class imbalance. Meanwhile, we employ the Synthetic

Minority Oversampling Technique (SMOTE) [45], a widely recognized oversampling method,
to generate synthetic instances of minority class samples, thereby augmenting the dataset with
an increased number of samples. We do not show results such as TextCNN, because TextCNN
is sensitive to data quality and structure, which may lead to unstable performance of various
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Table 9. Comparison of Sampling Strategies in XGBoost

Method
Precision Recall F1-score

M Avg Prc M Avg Rcl M Avg F1
Benign Malware Benign Malware Benign Malware

RS 0.9802 0.9762 0.9855 0.9677 0.9829 0.9719 0.9782 0.9766 0.9774
ODS 0.9876 0.9914 0.9917 0.9871 0.9896 0.9893 0.9895 0.9894 0.9894
ENN 0.9878 0.9981 0.9989 0.9789 0.9933 0.9884 0.9930 0.9889 0.9909

OS (0.5) 0.9925 0.9921 0.9952 0.9878 0.9938 0.9899 0.9923 0.9915 0.9919

M: Macro, RS: Random Sampling, ODS: Over and under Sampling, ENN: Edited Nearest Neighbors, OS: Our Sampling

(fraction 0.5).

sampling techniques. In contrast, XGBoost and SVM show greater robustness to data changes.
Furthermore, the design of Meta-MAMC may tend to overfit certain families of malicious families,
whereas XGBoost and SVM show superior generalization capabilities on the dataset. Therefore,
XGBoost and SVM perform better on some families. While our method showcased superior recall
in malware detection, it slightly lagged in precision but was more effective in predicting potential
malware compared to other sampling techniques. The random sampling strategy, in particular,
performed poorly due to its neglect in addressing sample size disparities across categories. Our
method’s balanced approach is crucial for capturing features from both minority and majority
samples, enhancing the model’s overall capability to identify malware accurately.

Answer to RQ 2: In comparison to the MAML algorithm, the proposed Meta-MAMCmethod
exhibits superior performance. Furthermore, when compared to the current state-of-the-
art methods, our approach outperforms them on both the Drebin dataset and the AMD
dataset. These findings highlight the effectiveness of the Meta-MAMC method and its ability
to achieve improved performance in the field of malware detection.

5.3 Analysis of Hyperparameter

In the previous section, we fully evaluate the classification ability of Meta-MAMC. However, a hy-
perparameter is set in our scheme to control the two sampling strategies. We delve deeper into
how the choice of hyperparameters affects the performance of the Meta-MAMC model. Specifically,
we examine the impact of the hyperparameter p on the distribution of meta-learning tasks and the
resulting diversity, which in turn affects the generalization ability of the models.

The impact of the hyperparameter p on the performance of Meta-MAMC is shown in Figure 6. We
construct the training tasks by setting the different p values. The hyperparameter p is used to con-
trol the participation ratio of the sampling strategy. p is chosen from the set [0.00, 0.25, 0.50, 0.75,
1.00]. It is important to note that p = 0.00 represents the pure family-based task sampling strategy,
while p = 1.00 represents the pure application-based strategy. The results show the value of p has
a significant impact on the performance of Meta-MAMC. As can be seen from Figure 6, Meta-MAMC
works better when p = 0.25. Generally, the performance first improves and then decreases as
the value of p increases. Pure application-based sampling strategies are inferior, because they do
not consider the long-tailed distribution of label frequency in datasets and reduce the diversity of
sampled tasks. Meanwhile, pure family-based sampling strategies were less effective, as they disre-
garded samples from other families. Thus, we use a combination of both strategies simultaneously
and regulate the parameter p to adapt to various situations.

6 EFFECTIVENESS AGAINST ANDROID NEW MALWARE

To answer RQ 3, we further validate Meta-MAMC’s ability to resist malware evolution and zero-day
malware.
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Fig. 6. Performance with different hyperparameter p.

Table 10. Performance of Schemes against Android Evolution

Method
Accuracy & F-score

Scenario A Scenario B Scenario C Scenario D Scenario E

EFIMDetector 0.889 0.890 0.886 0.902 0.905 0.911 0.884 0.879 0.860 0.856
MaMaDroid 0.823 0.818 0.864 0.883 0.854 0.863 0.875 0.867 0.854 0.861
Drebin 0.838 0.846 0.913 0.921 0.903 0.918 0.646 0.668 0.650 0.655
SEDMDroid 0.854 0.861 0.863 0.871 0.868 0.890 0.877 0.858 0.843 0.838
MMN 0.867 0.868 0.866 0.875 0.873 0.889 0.874 0.872 0.863 0.857
Meta-MAMC 0.945 0.939 0.933 0.938 0.946 0.952 0.951 0.960 0.946 0.951

6.1 Performance of Robustness against Android Evolution

As the Android operating system and its ecosystem continue to evolve, the corresponding Android
malware is also constantly evolving and becoming more sophisticated. The Android malware fam-
ily is expanding, and new malware variants are emerging every day. Based on this fact, the classi-
fication of Android malware should not only focus on the existing datasets but also consider the
continuous evolution of Android malware and new unknown malware that may arise in the fu-
ture. Therefore, we simulate five evaluation scenarios to verify the ability of Meta-MAMC to resist
malware evolution. The five scenarios, namely, A, B, C, D, and E, are created, and experiments
are conducted on each of them. The F-score and accuracy of EFIMDetector [37], MaMaDroid [46],
Drebin [4], SEDMDroid [86], MMN [33], and Meta-MAMC are presented in Table 10. In scenario
A, each scheme is trained using the 2012 and 2013 datasets, and the samples from 2014 to 2022
are classified. For scenario B, samples randomly selected from datasets before 2015 are used as
the training data, and the samples from 2015 to 2022 are tested. Similarly, the training samples in
scenario C are randomly selected from datasets before 2017, and the testing samples are from 2017
to 2022. Scenario D included randomly chosen training samples from datasets before 2019, and
classification is carried out on the samples from 2019 to 2022. Scenario E randomly selects training
samples from the dataset before 2021 to classify samples from 2021–2022. To conduct these five
experiments, we crawl malicious samples from 2012 to 2019 in VirusShare [23] and collect benign
samples from AndroZoo [3]. Malware datasets from 2020 to 2022 are collected from GitHub [33, 60].
We ensure that the malicious families in the testing and training sets do not overlap.

Table 10 presents the F-score and accuracy values of Meta-MAMC, MaMaDroid, Drebin, SEDM-
Droid, and MMN in classifying zero-day malware. Overall, Meta-MAMC performs slightly better
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Table 11. Performance of Schemes against Zero-day Malware

Method EFIMDetector Drebin MaMaDroid N-opcode EC2 SEDMDroid MMN Meta-MAMC

Number 23 6 34 11 28 22 26 65
Detection Rate 0.323 0.084 0.478 0.154 0.394 0.309 0.366 0.915

than the others in the five scenarios. This is mainly because of the meta-knowledge of the dataset,
which is more resilient to the zero-day samples and Android evolution. Compared with the four
state-of-the-art schemes, Meta-MAMC can obtain a good effect in classifying newer samples using
an old dataset.

6.2 Performance of Zero-day Evaluation

We obtain a new set of malware samples to evaluate the effectiveness of our scheme. We collect
new malware from January 1 to March 22, 2023, and have collected a total of 71 so far. These mal-
ware are not included in the dataset we are currently using. These samples are gathered from the
MalwareBazaar website. Furthermore, to verify the accuracy of our experiment, we submit these
71 samples to multiple detection tools, such as VirusTotal [55]. These tools also identify these
applications as malicious. Therefore, we add these 71 samples to the testing set for classification.
Table 11 showcases the extensive detection results attained by each scheme, shedding light on the
number of malicious samples identified and the corresponding detection rates achieved by each
respective method. Notably, Meta-MAMC exhibits exceptional accuracy, successfully classifying 65
of these samples as malicious. In contrast, alternative state-of-the-art methods such as EFIMDe-
tector [37], MaMaDroid [46], Drebin [4], SEDMDroid [86], EC2 [10], N-opcode [32], and MMN
[33] fall short, exhibiting detection rates below 50%. After analyzing the remaining 6 samples, we
find that the feature sets extracted by these malware are empty. This is because the feature se-
lection algorithm we designed is relatively strict, resulting in an insufficient number of features
extracted from these samples to support the classifier classification (only two or three features are
retained). To address this issue, it is suggested to relax the degree of feature selection during actual
deployment. Meta-MAMC controls the two sampling strategies through the hyperparameter p so it
can learn the knowledge of few-sample families and zero-sample families to effectively deal with
zero-day malware.

Answer to RQ 3: Meta-MAMC can help alleviate the issues caused by Android version iter-
ations and technology updates. Additionally, by combining new sampling algorithms and
zero-sample scenarios based on meta-learning, Meta-MAMC can effectively classify zero-day
malware.

7 DISCUSSION

7.1 Analysis of Meta-MAMC

Meta-MAMC improves the original MAML algorithm, making it more suitable for multi-family clas-
sification of Android malware. One challenge we address is dealing with family sample imbalance
and malicious family identities. We utilize the dual sampling strategies to construct the training
tasks and regulate the proportion of the two sampling strategies by setting the hyperparameter p.
We incorporate both sampling strategies, because using only one strategy can result in the model
ignoring certain families during training. For instance, when only the application-based sampling
strategy is adopted, it becomes challenging to select few-sample families, leading to inadequate
learning of these families by the model. Thus, we use both strategies simultaneously. It is the
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simultaneous adoption of two sampling strategies that enable Meta-MAMC to take into account
few-sample families, zero-sample families, and other families (non-few-sample families and non-
zero-sample families). In this way, Meta-MAMC can better learn the characteristics of few-sample
families and improve the generalization of the final meta-classifier, thereby improving the ability
to classify zero-day malware.

In our research, we tackle another important challenge of enhancing the resilience of malware
detection systems against zero-day malware while considering the dynamic nature of malware
evolution. Consequently, sustainability emerges as a highly relevant performance indicator, reflect-
ing the ability of a classifier to maintain its effectiveness over time. A pertinent problem concept
associated with this challenge is concept drift, which denotes the occurrence of changes in the
underlying data distribution.

To address concept drift and its impact on unknown software detection, previous studies have
proposed various techniques. For instance, Barbero et al. [30] introduced a fully parametric statis-
tical framework that evaluates classifier decisions to identify instances of concept drift. Similarly,
Xu et al. [76] presented DroidEvolver, an approach that detects drift and utilizes online techniques
to adaptively update the detection model. These approaches leverage the detection of drift to ef-
fectively identify unknown software instances.

However, it is important to note that our focus is not on recognizing drift itself. Instead, we im-
prove the meta-learning algorithm by incorporating labeled data representing unknown malware
families during the training process. This enhancement aims to enhance the classification perfor-
mance of the model on unknown families and, consequently, reinforce its capability to accurately
identify new instances of malware. By addressing the challenge of zero-day malware and leverag-
ing the power of meta-learning, our proposed approach, named Meta-MAMC, effectively leverages
the meta-knowledge extracted from limited malware samples. This allows us to mitigate the is-
sues associated with imbalanced data distribution and improve the classification effectiveness for
unknown malware families. As a result, our method demonstrates enhanced resilience against
zero-day malware and improves the overall effectiveness of malware identification.

Moreover, our sampling method is particularly proposed for malware detection in Android
software. Strategies such as Stratified Sampling [54], SMOTE [11], and Over/Under-sampling tech-
niques [50] are integrated to address the challenges of small sample sizes prevalent in this domain.
Our approach, which uniquely merges application-specific and family-related features, harmo-
nized through a “P value” strategy, ensures a balanced consideration of both domain-specific and
common family features. This dual focus represents an advantage of our method, as it emphasizes
application layer features while also capturing broader familial characteristics. Additionally, in
the context of malware detection, the primary challenge is dealing with small sample sizes. Our
goal is to retain pertinent features from various categories while extracting features from limited
samples, thereby maintaining a comprehensive dataset for effective malware identification.

7.2 Threats to Validity

Internal threats to validity. Like other static solutions, the features we use inevitably encounter
code confusion. This makes it difficult for us to guarantee the authenticity of the extracted features,
which in turn affects the training and classification of subsequent models. To overcome this issue,
we use some unpacking systems [80, 83] to recover the actual files and then apply static analysis to
extract features. In contrast, Meta-MAMC is a classification solution based on meta-learning, which
can learn unique metaknowledge from the dataset to alleviate this problem.

External threats to validity. Authoritative datasets such as Drebin and AMD do not include
all malware families and are subject to a long-tailed distribution of family sample sizes, which
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can affect model training due to class imbalance. To mitigate this issue, for example, we have
collected unknown malware from MalwareBazaar and submitted them to VirusTotal to provide a
more comprehensive analysis that can assign family tags to samples.

8 RELATED WORK

Static analysis and dynamic analysis: Android malware classification techniques can be cat-
egorized into two distinct forms: static analysis and dynamic analysis. Static analysis involves
decompiling the APK file to obtain the source code and metadata files, followed by extraction of
significant features for malware classification and analysis such as the application programming

interface (API) [41, 65], permissions [1, 16, 34, 84], intent [64], function call graph [18, 24, 40],
control flow [43], and grayscale [7]. Dynamic analysis [6, 48, 58, 63, 71, 85] involves the extraction
of features by monitoring the application’s execution in real time. Dynamic monitoring is time-
consuming and labor-intensive, and there is a risk of losing genuine malicious code segments.
However, our method is based on static analysis, extracting eight categories of features from APK
files for classification.

ML-based: Machine learning-based malware classification relies on classifiers to distinguish
malicious from benign applications and to classify malware families. Many relevant studies focus
on common classifiers, such as SVM [40, 57, 68], k-nearest neighbors (KNN) [84], and decision

tree (DT) [52], RF [34, 87] to classify malware. In addition, even deep learning methods [5, 86] and
meta-learning methods [36, 89] are directly used for classification. Cai et al. [9] develop DroidSpan,
a novel classification system based on a new behavioral profile for Android apps that captures
sensitive access distribution from lightweight profiling. But DroidSpan is not as comparable, be-
cause it is a dynamic technique (using features extracted from runtime app execution traces). CDG-
Droid [77] is proposed to classify and characterize Android malware families automatically [78].
GRAMMC, a novel graph signature-based malware classification mechanism is proposed. The pro-
posed graph signature uses sensitive API calls to capture the flow of control, which helps to find
a caller–callee relationship between the sensitive API and the nodes incident on them [75]. In ad-
dition, another interesting work [70] explores the key features that can classify and describe the
behaviors of Android malware families to enable fingerprinting the malware families with these
features. Unlike these approaches, our Meta-MAMC scheme does not simply classify malware fami-
lies based on extracted features. Instead, it utilizes meta-learning to acquire meta-knowledge from
the data, which can be used to improve the accuracy of the classification task.

9 CONCLUSION AND FUTURE WORK

In this article, we propose a novel meta-learning-based approach for multi-family Android mal-
ware classification called Meta-MAMC. We introduce two new sampling strategies, namely, the
application-based and family-based sampling strategies. The former can effectively mitigate the is-
sue of imbalanced family sample distributions, while the latter addresses the problem of incomplete
family datasets by leveraging zero-sample learning scenarios to aid the model’s understanding of
novel families and new malware samples. We control the two sampling algorithms by adjusting
the hyperparameters, specifically selecting the family-based sampling and application-based sam-
pling methods for task sampling purposes. Finally, we conduct several experiments and compare
our approach to state-of-the-art solutions, showing that Meta-MAMC achieves better results.

In the field of Few-Shot Learning (FSL) applied to malware classification, there are several
existing challenges. One primary issue is the difficulty in distinguishing malware samples with
similar features, especially when these samples belong to different families. This similarity can
confound classifiers. Furthermore, there is a notable gap in testing scenarios, particularly those
involving test sets that include basic malware families, which has not been adequately explored.
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Addressing this gap is crucial for advancing the field. A key area for future research is dataset scale
augmentation. Currently, datasets in this domain often contain only a few samples per malware
family, which significantly hampers the model’s ability to generalize. Expanding these datasets
will be vital in overcoming this limitation. Another promising direction involves employing more
advanced embedding architectures. For example, if the dataset scale is sufficiently large, then us-
ing robust structures like BERT and its variants could be beneficial. These models are adept at
extracting contextual information and providing improved sequence embeddings, which can en-
hance classification accuracy. Moreover, existing few-shot learning methods often show limited
transferability when the task domain changes, leading to subpar performance in new domains.
Future research should focus on improving the generalization capacity of these models. This in-
cludes adapting models trained in other fields to effectively address few-shot malware detection
challenges. It is well known that detecting unknown malware in real-time is essential for real-
world applications. A malware detection system must be capable of identifying not only known
malware but also unknown variants as they emerge. Future research should therefore explore
the implementation of incremental few-shot malware detection methods to meet real-life require-
ments. This approach would enable systems to continually adapt and recognize new malware types
effectively.
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