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A defining, unique aspect of distributed systems lies in interprocess communication (IPC) through which distributed components
interact and collaborate toward the holistic system behaviors. This highly decoupled construction intuitively contributes to the
scalability, performance, and resiliency advantages of distributed software, but also adds largely to their greater complexity, compared
to centralized software. Yet despite the importance of IPC in distributed systems, little is known about how to quantify IPC-induced
behaviors in these systems through IPC measurement and how such behaviors may be related to the quality of distributed software. To
answer these questions, in this paper, we present DISTMEASURE, a framework for measuring distributed software systems via the lens
of IPC hence enabling the study of its correlation with distributed system quality. Underlying DISTMEASURE is a novel set of IPC
metrics that focus on gauging the coupling and cohesion of distributed processes. Through these metrics, DISTMEASURE quantifies
relevant run-time characteristics of distributed systems and their quality relevance, covering a range of quality aspects each via
respective direct quality metrics. Further, DIsTMEASURE enables predictive assessment of distributed system quality in those aspects
via learning-based anomaly detection with respect to the corresponding quality metrics based on their significant correlations with
related IPC metrics. Using DISTMEASURE, we demonstrated the practicality and usefulness of IPC measurement against 11 real-world
distributed systems and their diverse execution scenarios. Among other findings, our results revealed that IPC has a strong correlation
with distributed system complexity, performance efficiency, and security. Higher IPC coupling between distributed processes tended to
be negatively indicative of distributed software quality, while more cohesive processes have positive quality implications. Yet overall
IPC-induced behaviors are largely independent of the system scale, and higher (lower) process coupling does not necessarily come with
lower (higher) process cohesion. We also show promising merits (with 98% precision/recall/F1) of IPC measurement (e.g., class-level
coupling and process-level cohesion) for predictive anomaly assessment of various aspects (e.g., attack surface and performance

efficiency) of distributed system quality.
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1 INTRODUCTION

In response to growing societal and scientific demands on various data storage and computation tasks, modern software
systems are increasingly distributed by design. These systems (e.g., financial management software, supply chain
coordination services, and web search engines) are meritorious in exploiting decentralized and scalable computing
infrastructures and resources [34] for high performance-efficiency, resiliency, and scalability. Due to their critical roles,
assuring the quality of these systems is of paramount importance. And one common pathway to that end is through
software measurement. Indeed, measuring a software system, especially in relation to its quality, plays an essential role
in quality assurance of the system because it enables quality assessment and hence guides quality improvement [54, 74].

In particular, in the most common type of distributed systems [34], the constituent components! are located at
separate machines hence communicate only through network-based interprocess communication (IPC). From an
architectural perspective, IPC is a primary trait that differentiates distributed systems from centralized software, hence a
defining, unique aspect of the behaviors of distributed software. Intuitively, while this trait contributes to the scalability,
performance efficiency, and resiliency advantages of distributed systems, IPC also largely adds to the complexity hence
potential quality assurance challenges for such systems. Thus, given the recognized role that software measurement
plays in quality assurance [86], it is natural to assess distributed system quality with respect to IPC-induced behaviors—
via IPC measurement. Yet despite the rich literature on software measurement in general, most existing works only
address centralized software [9, 31, 41, 60, 61, 72]. A few addressed distributed systems, yet with a scope other than the
software itself (e.g., monitoring system environments [142] or user dynamics [140]). As a result, very little has been
studied [71] or known about “what are the characteristics of IPC-induced behaviors in distributed systems and how are
these characteristics related to the quality of those systems?"

To answer these overarching questions, we present DisTMEASUREZ, a framework for characterizing IPC-induced
behaviors of distributed systems via IPC measurement hence enabling our exploratory study on the relevance of such
characteristics to distributed system quality. Underlying the framework is a set of six IPC metrics aiming to measure
the run-time communication structure, complexity, and reusability of common distributed systems [34]. Specifically,
Di1sTMEASURE measures the coupling between concurrent, distributed processes, as well as the cohesion of individual
processes, at method, class, component/process, and whole-system levels, in terms of message passing and method-level
dynamic dependencies across process boundaries. Using these measurement/characterization capabilities, DISTMEASURE
then allows for examining the quality relevance of IPC via statistical analyses, revealing correlations between the (six)
IPC metrics and (eight) existing quality metrics that directly measure nine quality sub-characteristics/sub-factors in four
quality characteristics/factors in the ISO/IEC 25010 software quality model. Finally, based on significant correlations,
D1sTMEASURE further enables quality anomaly detection with respect to those direct quality metrics via both supervised
and unsupervised learning to meet diverse use-scenario needs.

We have implemented Di1sSTMEASURE for Java and applied it to 11 real-world distributed software applications, mostly
enterprise-scale systems, in varied operation scenarios (with respect to a large number of run-time inputs that drive
distinct executions). Our results revealed, among other findings, that (1) the six IPC metrics are generally independent
of each other—no metric subsumes or consistently tells about another; (2) IPC characteristics of a distributed system, in
terms of any of the IPC metrics, are not tied to the scale (code size) of the system; (3) higher (lower) process coupling
does not necessarily imply lower (higher) process cohesion; (4) IPC-induced behaviors have strong relevance to the

security, complexity, and performance efficiency of distributed systems; and (5) high IPC coupling generally has negative

1We define a distributed system component as the code entities that run in a process that is separate (decoupled) from others.
2Short for Distributed software system Measurement via IPC.
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correlations with quality while high IPC cohesion has positive correlations. In addition, the statistical quality anomaly
detection models in DISTMEASURE achieved 88.2% precision, 66.7% recall, and 74.5% F1 accuracy on average when using
IPC metrics to detect anomalous quality status via unsupervised learning. With supervised learning, those models
achieved on average 98% precision, recall, and F1. Some of the IPC metrics contributed more to the anomaly detection for
certain quality metrics than others, as generally justified by the varying correlation strengths between the two metric
classes. Further association studies revealed that (1) low class-level interprocess coupling is strongly associated with
normal performance efficiency and (2) low cross-process communication loads is strongly associated with abnormal
attack surface, so is low process cohesion.

Notably, since each process is the run-time instance of its corresponding component and components in distributed
software are decoupled, by measuring the IPC coupling/cohesion we essentially reveal the hidden/implicit coupling/co-
hesion of corresponding distributed components. While coupling and cohesion have been extensively studied among
various types of software metrics [135], static or dynamic, they have not yet been addressed as regards IPC during
the execution of distributed systems. Our technical approaches enable practical measurement of IPC characteristics
in real-world, industry-scale distributed systems, as well as predictive assessment of their quality with respect to
a wide range of concerns (quality metrics)—which may not be always readily practical or even feasible to measure
directly. Our empirical results, and the insights distilled from those results as presented in our extension discussions,
provide new knowledge and understanding about the characteristics of IPC-induced behaviors in distributed systems
and the relationships between IPC characteristics and distributed software quality. Since DISTMEASURE is based on
the statistical analyses and learning-based predictive assessment, it only addresses associations and correlations, not
causation. Thus, we never claim that distributed system quality, with respect to any of the considered direct quality

metrics, is caused by any of the proposed IPC metrics taking certain values.
Contributions. In summary, we make the following contributions:

e We proposed a novel set of six metrics for measuring IPC at varied (from method through system) levels in
distributed system executions, based on message-passing semantics and method-level dynamic dependencies.

e We developed DISTMEASURE, a framework that computes the proposed IPC metrics and their correlation with
various quality metrics, so as to enable in-depth understandings of IPC characteristics and IPC-induced run-time
system behaviors in terms of the predictive relationships between the quality metrics and IPC measurements.

e We implemented DISTMEASURE to work with industry-scale distributed systems and extensively characterized
the IPC-induced behaviors and their quality relevance via predictive assessment of various quality aspects via
IPC metrics against 11 diverse real-world systems against 16,880 execution scenarios, which demonstrated
the merits of our framework and generated new knowledge about the implications of IPC characteristics to
distributed system quality.

o We made our framework implementation open source and all datasets publicly accessible [48] to facilitate future

research on distributed systems measurement and quality assessment.

This paper is an extended version of our preliminary work presented in [47], which to the best of our knowledge is
the first study of dynamic coupling measurement in distributed systems in relation to their quality. Technically, the
extension includes (1) one more coupling metric and a new cohesion metric and (2) the development of learning-based
classification models for understanding IPCs, using the coupling/cohesion metrics significantly related to quality metrics
as features. Experimentally, we expanded the study on the association between these IPC metrics and distributed
system quality by (1) considering the two new IPC metrics introduced and two more quality metrics and (2) using
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two additional real-world distributed systems as study subjects,in addition to (3) evaluating the newly developed
unsupervised and supervised quality classification models. Notably, we manually augmented the run-time inputs based
on original test cases for each subject at an extensive scale, increasing the executions considered per subject from 1~3
to 26~2,000 and total subject executions from 11 to 16,880. The large-scale input augmentation provides a much more
solid data basis for the statistical analyses; it also effectively enables valid learning-based classifications and associated
performance evaluations. Moreover, we substantially enhanced both the technical and empirical presentations, with
expanded and more in-depth discussions on relevant background, related work, metrics definitions, experimental
results, and insights based on the empirical findings. Overall, we reformulated the work as a framework that tightly
connects three parts, where the first two parts subsume the previous work as a whole and the third part demonstrates
the practical usefulness of IPC measurement in distributed software, hence significantly more extensively answering

the newly clarified overarching questions.

Paper organization. In the rest of this paper, we first provide the necessary technical background of our approach
along with an illustrating/motivating example (§2). Then, we give an overview of DISTMEASURE (§3), including its
design rationale and implementation. Next, we present the first part of the framework (§4), which defines and justifies
the proposed IPC metrics, including how each metric is computed with illustrating examples. In the second part (§5), we
characterize the IPC in a set of distributed system executions hence examine the quality relevance of IPC, discovering
correlations between IPC and various direct quality metrics. These correlations establish the underpinnings of the third
part (§6), where we further investigate the quality relevance of IPC-induced behaviors of distributed systems in terms
of the predictive relationships of IPC to significantly correlated direct quality metrics. Finally, we discuss the threats to

validity of our results (§7) and related work (§8) before making concluding remarks and outlining future work (§9).

2 BACKGROUND AND MOTIVATION

This section gives a brief background on IPC (§2.1) and information flow (§2.2) in distributed systems, and general/soft-
ware measurement fundamentals (§2.3). It then introduces a code example (§2.4) used for motivating our work, which

is also used as a working example for illustrating our approach.

2.1 IPC in Distributed Systems

Interprocess communication (IPC) is a fundamental mechanism commonly used by distributed systems whose commu-
nications often depend on IPC primitives. In this paper, we focus on the common type of distributed systems in which
communications among processes are realized via message passing [34]. With message passing, two or more processes
exchange messages using at least two types of basic IPC primitives: sending messages and receiving messages.

Based on the concept of IPC and following the general notions of cohesion and coupling [41], a unique aspect of such
notions in distributed systems is the cohesion/coupling in relation to IPC (i.e., at process level). Intuitively, process-level
coupling is the degree to which different processes in a distributed system execution are connected to each other, while
process-level cohesion is the degree to which different parts of a distributed system that execute in a single process are

connected to each other at runtime.

2.2 Dynamic Information Flow

A dynamic information flow path, or called a dynamic taint flow path, is a program path from a source to a sink that
is exercised during a concrete execution of the program. A (taint) source is a program point where sensitive data is
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retrieved, and a sink is a program point where sensitive data leaves the program [79]. The program point as a source
or a sink may be a method or statement, depending on the granularity level of the underlying dynamic information
flow analysis algorithm with respect to the user interest. Particularly in a distributed system execution, a dynamic
information flow path may be across different processes [46]. For those taint flow paths, IPC means through which the

taint flow within individual processes propagates across process boundaries.

2.3 Measurement Fundamentals

For software engineering, measurement is a key step in quality assurance [54], for which appropriate metrics must be
defined and applied. Before software implementation, the metrics provide a means for specifying quality requirements.
After the implementation, the metrics serve as crucial guidance for evaluating the software product with respect to the
quality requirements.

There are two categories of software metrics: static and dynamic. Static metrics are generally easier to compute
relative to dynamic counterparts. Additionally, static metrics are not subject to limited code coverage or generalizability
as are dynamic metrics. On the other hand, static metrics are not sufficient for measuring and interpreting actual
(i-e., dynamic) behaviors of software, for which dynamic metrics offer more precise indicators. In fact, concerning
quality metrics that are ultimately attested at runtime (e.g., performance and reliability), dynamic metrics are much
more preferable. Meanwhile, understanding software behaviors does not always need complete code coverage [116].
Therefore, the fact that dynamic metrics only address particular executions does not necessarily compromise the
usefulness of dynamic measurement.

Importantly, a metric should be validated with respect to its representation condition before applying it in empirical
assessments. The representation condition for a metric holds if and only if a measurement mapping maps the entity being
measured into a number in terms of the metric, and its empirical relation into a numerical relation in the measurement,
in such a way that the empirical relation is preserved by the numerical relation [41]. This means that (1) if we have an
intuitive understanding that an object A is physically higher than an object B, then also the measurement mapping
M must give that M(A) > M(B); and (2) if M(A) > M(B) then it must be that the object A is intuitively understood to
be higher than B. (1) and (2) here are the representation condition. For example, consider the metric for measuring
human height. Suppose the measurement mapping here is height, which maps a person being measured into a number
(e.g., the person’s height in centimeters). If we intuitively understand (e.g., via visual observations) that a person A
(of height 175cm) is taller than another person B (of height 172cm), this mapping will give us height(A) > height(B)
(i-e., 175cm > 172cm) according to the measurement results. Meanwhile, if we have height(A) > height(B) based on our
measurements (e.g., height(A)=175cm and height(B)=172cm), we will intuitively understand that A is taller than B [40]

via visual observations. Then, we can conclude that the height metric is validated.

2.4 Motivating/Working Example

By design, a distributed system consists of multiple collaborating components each running in a process typically located
at a separate computing node. Since these components interact primarily through IPC [123], measuring/characterizing
hence examining quality relevance of IPC is essential for studying the quality implications of the behaviors of distributed
systems. To illustrate, consider the simple example of Figure 1, where the system includes two components. The Server
component, implemented in class SC, provides the service for querying a data store ds (line 7) according to the dataid
sent by the client (lines 10-11).The Client component, implemented in classes CC1 (for data querying) and CC2 (for

managing connections), prepares a query from user inputs (line 25), and then looks up the database server (line 26)
Manuscript submitted to ACM
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// The Server component 20 // The Client component
public class SC { 21 public class CC1 {
private Datastore ds; 22 public static void main(String[] args) {
private ServerSocket ssock; 23 CC2 conn = new CC2();
void setup (int port) { 24 CC1 ¢ = new CC1();
ssock = new ServerSocket(port); 25 long dataid = Long.valueOf(args[1]);
ds = new Datastore(); 26 System.out.println( c.lookup(conn,dataid) );
} 27 }
int serve() { 28 String lookup(CC2 conn,Jong id) {
long dataid = Long.valueOf ( ssock.readLine() ); 29 return conn.getD(id);
return ssock.write ( ds.retrieve(dataid) ); 30 }
} 31}
public static void main(String[] args) { 32 public class CC2 {
SC s = new SC(); 33 private Socket csock = connectServer(authenticatelnfo);
s.setup( Long.valueOf(args[1]) ); 34 String getD(long id) {
s.serve(); 35 csock.write(id);
} 36 return csock.read();
} 37 }
38}

Fig. 1. A distributed system as an illustrating/working example.

through IPC (lines 35-36). Apparently, IPC dominates the high-level functionalities of this system, excluding which
each component alone would be largely trivial. Thus, the complexity of this system’s execution essentially lies in that
of the IPC. Notably, the client runs in a low-security area as it is interfaced with public access (e.g., to low-security data
such as dataid), while the data records managed by the server (via Datastore) are high-security information.

Suppose the developer now wants to understand the communication security issues of this system reported by users
who also provided the inputs that can reproduce the issues. A rewarding first step would be to understand how the
communication currently works in terms of the IPC with respect to the user inputs. Measuring IPC would help in this
scenario. For example, based on the security policy given above, the data record associated with the dataid originated
in the client process (at line 25) is considered private or sensitive. Then, there is a potential data leak—at line 11, the
record is retrieved in the server process due to the call to ds.retrieve and then sent to the network due to the call
to ssock.write, which can send the sensitive data record to a untrustworthy party if the party exists to intercept
the network communication here. Understanding attack surface anomaly due to this possible leak can be facilitated
by measuring the class-level coupling between the server and client processes and process-level cohesion of each of
these two processes, as we demonstrate later (Section 6), because the data leak is induced by the IPC between the two
processes. Of course, an accurate determination of the data leak here would need a further, more precise analysis such
as information flow tracking/control. Yet, knowing the presence of the anomaly as informed by the IPC measurement
constitutes an alert as a necessary first step and helps narrow down the scope (i.e., to the two particular communicating
processes here) of the precise (typically more expensive) analysis.

Moreover, the IPC measurements may also help the developer assess (in a predictive manner) some quality aspects
other than security. For instance, if the message coupling is relatively low while class-level coupling is relatively high
between the communicating processes, intuitively the system may have abnormal complexity (in terms of cyclomatic
complexity measures) as we demonstrate later in Section 6; as a result, the system might be difficult to update and test.

Thus, we can anticipate that its testing and maintenance cost may be abnormally high also. Consider the example of
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Figure 1 again, the system-level (class) coupling between the server and client processes is relatively low (0.45 as we
later computed in Section 4.3), suggesting updating one of the two components is potentially easier (because of not
having to update much of the other component)—an important aspect of the system maintainability.

Furthermore, it may be difficult to immediately understand or assess distributed system quality through direct quality
metrics. For instance, as a performance efficiency metric, execution time can be hard to measure directly because it is
hard to simulate the real-world use scenarios of the system in order to compute the metric. In addition, the execution
environments of end users can be quite diverse and complex, and there could be many factors affecting the execution
time, making a reliable execution time measurement difficult in practice. Another example is attack surface, a direct
metric of security, which may be difficult to measure directly also. To compute the attack surface with an existing
approach [87] as we followed, we would need to obtain the number of network ports possibly used and the number of
files possibly read/written by the program, for which we would need to perform static analysis of the whole distributed
system. Yet that may not be quite feasible because there is no accurate and scalable (to large-scale software) static
analysis of whole distributed systems available yet. Indeed, for study purposes in this paper, we had to compute these
direct quality metrics largely manually, which is laborious and clearly undesirable and not scalable. Again, characterizing
IPC-induced behaviors of distributed systems could help address these difficulties.

Unfortunately, there is a lack of knowledge, and support for gaining such knowledge, regarding the characteristics of
distributed systems executions hence their run-time behaviors with respect to IPC, and it is unknown what quality
relevance and implications certain kinds of IPC characteristics may have. In this paper, we address these questions by
developing new IPC metrics and applying them to study the correlation of IPC with the quality, concerning various

quality aspects, of distributed systems. We also apply the correlations found to distributed software quality assessment.

Application scope. While our focus in this paper is on the common distributed systems [18] defined in the classical
textbook on this subject [34], the proposed metrics apply to other systems that are similar to distributed systems in terms
of the decoupled structure [31]. For example, systems adopting microservice architectures or IPC-based inter-component
communication [69, 72] can also be measured using our IPC metrics. In particular, for those systems, looking into IPC
coupling and cohesion against microservice systems with our respective metrics would help better understand or even
validate some of the architectural merits and advantages of the common design practices for those systems. For instance,
our measurement framework can be adapted to quantify location and temporal coupling in microservices through IPC
coupling measurement since those coupling measures are closely related to interactions among distributed processes
(running at physically separate locations). Moreover, integrating open specifications such as OpenTelemetry [59] in

DisTMEASURE would facilitate distributed tracing to support the underlying IPC measurements.

3 DISTMEASURE OVERVIEW

We first justify the overall design of our framework and give an overview of its architecture and high-level workflow.
We also discuss key implementation issues with DISTMEASURE, stressing the challenges encountered and summarizing

our solutions to those implementation challenges. with real-world distributed systems.

3.1 Design Rationale

Figure 2 depicts the overarching composition of DiIsTMEASURE, highlighting its three integral, closely connected parts:
IPC Metrics Definition and Computation (Part 1), Characterizing IPC and its Quality Relevance (Part 2), and Predictive
Quality Assessment (Part 3). The rationale behind the framework design is two-fold.
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First, IPC is a key aspect of the behaviors of distributed software systems. It is also a defining aspect that differentiates
distributed software from single-process and centralized programs. Thus, with respect to our overarching questions,
it is essential to be able to measure IPC, for which the metrics must be clearly defined including how each should be
computed. In fact, Parts 2 and 3 both immediately rely on the definition/computation of IPC metrics because studying
the quality relevance and assessing quality status predictively both require quantifying IPC characteristics, for which
having the IPC metrics defined is key. Thus, in Part 1, we propose a set of intuitive and justifiable IPC metrics, offering
the basis capabilities underlying the rest of DISTMEASURE.

Second, an essential part of our overarching questions (and the main goal) of this work is to investigate how IPC-
induced distributed system behaviors are related to the quality of these software systems. By statistically characterizing
the correlations between IPC metrics and direct metrics of various quality factors/sub-factors, Part 2 aims to reveal
how IPC measurements, in terms of individual metrics, may inform about diverse facets of distributed software quality,
discovering significant relationships between the two that become the basis (features of learning-based prediction
models) of Part 3.

Third, it might be difficult or even impossible to directly measure some quality factors/sub-factors with respect to
certain quality metrics. For example, it is common to use the quality metric code churn size to quantify the modifiability
sub-factor (in the maintainability factor). Yet computing this quality metric typically needs data on historical software
releases; thus, it is not directly measurable for the first release of a software project. Other examples include those
mentioned earlier (§2.4). Therefore, Part 3 explicitly models the predictive relationships between IPC metrics and
direct quality metrics, hence illuminating how the IPC metrics holistically relate to distributed system quality. This
predictive assessment also demonstrates a way in which the studied quality correlations and statistical relationships

can be practically useful in potentially assisting with distributed system quality assurance.

f Distributed system D & its run-time input r)

| [ty o) V Part 1: IPC Metrics Definition and Computation )
IPC metric values

Correlation Analysis

| ( Distributed system D2 Execution IPC Metric Computation
|\ &its run-time input T2 Generating run-time for RMC/RCC/CC/IPR/
Computing correlations

1 information CCL/PLC
between IPC metrics

( Distributed system Dn ) i Part 2: Characterizing IPC and its Quality Relevance
& its run-time input Tn
and quality metrics

T ~ Quality Metric Computation

for execution time, code churn size, cyclomatic
complexity, defect density, information flow path
count/length, attack surface, and vulnerableness

Quality Level
Characterization/training workflow ~Predictive assessment (testing) workflow Empirical findings & recommendations (normal versus anomalous)

Fig. 2. An overview of the DiIsTMEASURE workflow, including its inputs, outputs, and 3 integral parts.

Part 3: Predictive Quality Assessment
Training Testing

Unsupervised “ -
& Supervised A
f Classification
’_> Learning

Correlation
results

Quality metric values

3.2 Overall Workflow

As shown in Figure 2, DISTMEASURE consists of three parts that are connected in a way we just described and justified
(§3.1). Overall, the framework works in two modes hence has two different workflows: characterizing/training and
predictive assessment/testing, as summarized as follows.

In the characterizing/training mode, DISTMEASURE leverages its capabilities of measuring IPC in distributed systems

in Part 1 to characterize IPC-induced behaviors in a sample set of distributed software and their executions, hence
identifying the statistical relationships (i.e., correlations) between IPC metrics and a range of direct quality metrics
in Part 2. These correlations are then utilized to train unsupervised and supervised anomaly detectors for strongly
correlated direct quality metrics in Part 3.

In particular, Part 1: IPC Metrics Definition and Computation serves as the foundation of DISTMEASURE, which

provides definitions of underlying IPC metrics and specifies how each metric is computed. These capabilities then
Manuscript submitted to ACM
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enable DiIsSTMEASURE to measure IPC for one distributed system D; against its one run-time input set 7; at a time: first,
it executes D; against T; to generate the run-time system information needed for the metrics computations—all of
our IPC metrics are dynamic, thus they require run-time system information; then, DISTMEASURE computes six IPC
metrics (i.e., RMC (Runtime Message Coupling), RCC (Runtime Class Coupling), CCC (Class Central Coupling), IPR
(InterProcess Reuse), CCL (Class Communication Load), and PLC (Process-Level Cohesion)) from that information.

Next, in Part 2: Characterizing IPC and its Quality Relevance, DiIsTMEASURE takes two kinds of inputs: multiple
(N) distributed systems D1, Dj, ..., Dy (in an executable format such as Java bytecode) and run-time input sets T3, T, ...,
T,, where T; is the input set (e.g., text messages, system commands, or SQL statements) driving the executions of D;.
For system D; and its corresponding input set T;, DISTMEASURE invokes Part 1 to obtain the IPC measurement results
in terms of the six IPC metrics. Meanwhile, eight direct quality metrics (i.e., execution time, code churn size, cyclomatic
complexity, defect density, information flow path count, information flow path length, attack surface, and vulnerableness)
of these systems are measured directly. After obtaining all values of these IPC metrics and those of the direct quality
metrics, DISTMEASURE analyzes the correlations between them. These statistical analysis results lead to empirical
findings and recommendations about distributed software quality.

In Part 3: Predictive Quality Assessment, DIsTMEASURE takes the IPC and direct quality metric values, from
Part 1 and Part 2, respectively, to train unsupervised and supervised learning based quality anomaly detection models.
Both kinds of models are built in order to accommodate diverse use scenarios and to enable our study on the trade-offs
between effectiveness and usability, as discussed later. Also, one unique model is trained for each of the quality metrics
with which at least one of the IPC metrics has a significant (negative or positive) correlation.

As such, the three parts are related and differentiated as follows. Part 1 offers the capabilities of IPC measurement
needed by Part 2 for actual characterization of real-world distributed systems—the general computation methods/formu-
lae are given in Part 1, while Part 2 applies those capabilities (methods/formulae) to specific systems. Meanwhile, Part
2 offers the correlation results as the statistical basis of the machine learning-based quality assessment classifications
designed/evaluated in Part 3.

In the predictive assessment/testing mode, DISTMEASURE takes as inputs a distributed systems D and its run-

time input set T, for which the same eight direct quality metrics are checked against anomalies. Feeding the trained
supervised/unsupervised models with the IPC measurement results obtained by invoking Part 1 on D against T, (Part
3 of) DisTMEASURE predicts each of the direct quality metrics as anomalous, indicating a warning of low (lower-than-
average-case) quality, or normal indicating no such a warning. These quality level (normal versus anomalous) results

are the output of DISTMEASURE.

3.3 Framework Implementation

We have implemented the entire DiISTMEASURE framework as a toolkit that works with real-world distributed systems
of diverse domains and architectures, offering immediate tooling support for the measurement and understanding
of IPCs in their executions. Measuring interprocess coupling and cohesion in distributed systems faces a practical
challenge [26] as follows. Such metrics are often defined on the basis of certain relationships (e.g., dependency and
inheritance) [135]. However, deriving the interprocess dependencies, from which our metrics are computed, is not
trivial in the context of distributed system executions [37, 52]. The main reason lies in the lack of global timing across
the system together with the lack of explicit references/invocations across distributed components [49]. To overcome
this challenge, we leverage our dynamic dependence [51] and taint analyzers [46] for distributed programs. Using

these analyzers, we reason about interprocess dependencies through the happens-before relations between executing
Manuscript submitted to ACM
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methods across processes, derived from a global partial ordering of method execution events. We further exploit the
semantics of message passing to improve the precision of such derived dependencies, so as to enhance the validity of
our IPC metrics.

Part of the D1ISTMEASURE implementation can be found in our tool demo, DistFax [53]. On top of the artifact [48]
of DISTMEASURE, the tool demo and its documentation provide an additional reference for replicating our studies
presented in this paper. Yet we note that the tool demo is not a research paper and is solely focused on the demonstration
(e.g., installation/configuration and usage) of the tool. More importantly, our DIsTMEASURE implementation has shifted
considerably from what is in the tool demo even just from a tool perspective: a key component of the tool is how
to train the learning-based prediction models, which involves constructing the training data and labeling them. In
DistFax [53], we simply used mean feature values to differentiate positive and negative samples—samples with feature
values below the means are considered normal and otherwise anomalous. This simple approach may suffer from poor
robustness as the feature value distributions may be skewed. To address this issue, for DiISTMEASURE (Part 3), we adopt
a rigorous statistical approach, identifying feature-vector outliers among the training samples and labeling a sample as
anomalous if it is an outlier and normal otherwise. As a result, the performance evaluation of DiIsTMEASURE (Part 3) led

to different findings/conclusions from that of DistFax.

4 PART 1: IPC METRICS DEFINITION AND COMPUTATION

This section presents the basis of our framework—the metrics in which IPC-induced behaviors are measured, concerning
their definitions and computation formulations. We first give the necessary preliminaries of our work by summarizing
the main ideas of our method-level dynamic dependence approximation, which commonly underlies the definitions
of the IPC metrics proposed. Then, we elaborate on the definition and computation of each of the metrics. As an
overview, Table 1 lists for each (IPC metric) the definition (Definition), underlying rationale (Rationale), the most
similar existing metric (Reference metric) from which the proposed IPC metric is drawn, and the corresponding
previous evaluations of that reference metric—including the evaluation tool (Tool) and the granularity level (Level) of
the evaluation results.

In what follows the preliminaries, for each metric, we elaborate in a respective subsection the rationale/justification
behind the definition, motivating the metric by discussing its potential use for evaluating relevant quality metrics. Then,
we illustrate each metric using our example system of Figure 1. Following the guideline in [41], we also provide the
theoretical and empirical validations (explanations) with respect to the representation condition (scientific foundation)
and one example of the condition, for our IPC metrics. Lastly, we summarize the metric definitions and computations,

explicitly mapping these individual IPC metrics to various groups (e.g., cohesion and coupling).

4.1 Preliminaries

All of our proposed metrics are (explicitly for all but RMC) based on dynamic dependencies at the method level [21]
across processes. Understanding how we compute such dependencies is hence essential for understanding our IPC
metrics and measures. Thus, this section provides preliminaries of dependence computation for distributed programs.

Given a method mp, in one process P;, all methods in any another process Pj, j#i in the system’s execution that
depend on mp, form a set, referred to as the dependence set of mp,. Below, we outline the two core steps of our approach

for determining the dynamic dependence between two methods across processes. Further details can be found in [27].
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Table 1. An overview of the proposed IPC metrics in DISTMEASURE

IPC . . . |Previous evaluation
Metric Definition Rationale Reference metric Tool Level
Interprocess message coupling The Extent of run-time interactivity| MPC (Message CCMETRICS

RMC . . Class
at both process and system levels |[among system components Passing Coupling)[85]|[67]
Class coupling between How methods from a class in DCC (Distinet GMN tool
RCC  |two processes hence further the  |one process access methods . Class
. . Class Coupling)[119] |[57]
system-level class coupling from a class in another process
Aggr‘egate coupl}ng of a class The 1mp(?rta'nce of a class in CBO (Coupling QScope
CCC |that is executed in a local process |terms of its influence on . Class
. . . Between Objects)[32] |[39]
with classes in all remote processes|all classes in remote processes
PR Interprocess reuse (coupling) The size of functionalities shared MI"C (Met}'lod [108] Method
at method/system levels between system components Pair Coupling)[43]
Communication loads of a class ~ [How much a class contributes to
L . . I RFC (Response QScope
CCL |communicating with others in communication loads between .. - Class
. For a Class)[32] [39]
all remote processes its process and other processes
PLC Internal connections within The degree to which the methods |ISCI (Inter-Service  |SSP tool Servi
an individual process of a process belong together Coupling Index)[126] |[126] ervice

(1) partial ordering of method execution events. The basis of our dynamic method-level dependence approxima-

tion is the happens-before relations between method entry (i.e., program control enters the method that is called)
and returned-into (i.e., program control returns back to the calling method) events [24]. These events are partially
ordered using the Lamport timestamps (LTS) algorithm [18, 82], realized in dedicated runtime monitors for those
method execution events. In addition, two types of communication events, message sending and message receiving,
are monitored to update the per-process logic clocks in the LTS algorithm. This is done in order to synchronize
the logic clocks throughout distributed processes in the system execution so that all the method entry and
returned-into events are timestamped consistently (i.e., with the synchronized logic clock for each process). Then,
a method m2 is considered dependent on m1 if the first execution event of m1 happens before the last execution
event of m2, according to the global partial ordering. Essentially, method-level dependencies between m1 and
m2 are derived from their execute-after relation [25], which is further deduced from the happens-before relation
between their associated method-execution events. Apparently, this is a rough approximation of dependency

(only capturing temporal relationships). Thus, it will be refined via pruning next.

(2) pruning based on message-passing semantics. For a more precise dynamic dependence approximation, we

further leverage the semantics of message-passing events across processes. Suppose methods m1 and m2 are
executed in two processes P; and P; respectively, and m2 is considered dependent on m1 according to the purely
control-flow-based approximation described above (i.e., Step 1). From a data-flow perspective, m1 would not
affect m2 if during the system’s execution (1) P; never sends any messages to Pj, or (2) the event that P; receives
the first message from P; never happens before the last execution event of m2. The rationale is intuitive: for a
method in one process to influence (i.e., causing dependence to) a method in another process, the two processes
must have actually communicated (by passing messages from one to the other), and the possible dependence
between the two methods again relies on their happens-before relation. In other words, two methods have
dependencies between them only if both they have execute-after relations and message passing has occurred
between their respective processes, since message passing is the only communication channel between processes
in the common type of distributed systems we address [22]. Spurious dependencies as a result of Step 1 are
pruned using these two intuitive rules. Then, with this more precise [27] dependence computation, we compute
the dependence set underlying our IPC coupling metrics, as detailed next.
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Against six distributed systems and ten system executions, the average precision of this dynamic dependence analysis,
with both Steps (1) and (2) above applied, was 71% and the recall was 100% (i.e., 83% F1 accuracy) [27].

4.2 RMC (Runtime Message Coupling)

At a high level, processes in distributed systems executions interact through passing messages. Thus, this metric may
capture the coupling between processes at a high (i.e., messaging) level.

Definition/computation. We define interprocess message coupling at both process and system levels. First, given two
different processes P; and Pj, their message coupling RMC(P;, P;) is intuitively defined as the number of messages sent
from P; to Pj, counting all instance of each unique message. This process-level metric can be computed according to the
communication events monitored in our framework (Section 2.1). Then, the system-level RMC is defined as the average
of such process-level measures overall all communicating pairs of processes as (hereafter, we suppose the system runs
in N processes in total)

S, SN, RMC(P;, Pj)

N(N-1)

Rationale/justification. The value of the RMC metric indicates the extent of run-time interactivity among system

RMC =

i # 1, j € [1,N] 1

components [12]. A higher RMC implies greater reliance of a component on (i.e., sending more messages to) others
in the execution considered. Since these components are distributed over separate locations, larger RMC values also
indicate higher communication costs (e.g., for greater network bandwidth use) at the granularity of message passing.
Finally, a higher RMC suggests greater effort for systems understanding (even at a very high level) [69] if the messages
counted in the RMC computation are all unique. Thus, RMC can be used as an understandability/ cost-of-quality [54]
metric. In essence, RMC measures the implicit coupling between (statically) decoupled components because the two
processes involved in the definition correspond to two components of the system.
Iustration. Consider the example system of Figure 1. Suppose during the system execution under analysis the client
process (Pgjjen:) sends the server process (Pserver) two messages—the first for authentication (line 23, eventually realized
in connectServer() at line 33) and the second for querying (line 35),and the server then sends back to the client the
querying result in three messages. Thus,

RMC(Pservers Pelient) = 3 and

RMC(Pcrient, Pserver) = 2.
With two processes (N = 2), the system-level message coupling is

2+3)/(2%2-1))=25.
For another example, consider Apache ZooKeeper [5], an enterprise-scale distributed system that consists of three
major components each running in one or multiple processes. Further, consider its built-in integration test for an
example execution, during which only one server and one client process are involved and they exchanged 13 messages
during the test. Thus, both process-level RMC measures are 13, and the system-level

RMC=(13+13)/(27(2-1))=13.

Note that, as for other IPC metrics as follows, the metric definition/computation does not rely on the functionality
role (e.g., server versus client) of a process to be identified. We mention these roles with respect to the illustrating

example of Figure 1 only for ease of presentation.

4.3 RCC (Runtime Class Coupling)
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The coupling between two processes is ultimately due to their coupling at a lower, code level. When considering
distributed systems developed in an object-oriented language, a lower-level unit of code is class, hence this class-level
coupling metric.

Definition/computation. We measure finer-grained interprocess coupling at the class level, from which we define the
class coupling between two processes hence further the system-level class coupling. Specifically, the coupling metric for
two classes, Ap, in process P; and Bp, in process Pj, is defined as the ratio of the total number of methods in Bp, that
are dependent on any method in Ap,, to the total number of methods in any process other than P; that are dependent

on any method in Ap,. Let DS(m) denotes the dependence set of method m, the class-level RCC metric is defined as

|Umeap, (f1f € DS(m) A f € Bp}]
[Umear, DS(m)]

Given a query m (i.e., an exercised method), the entire dependence set DS(m) includes all methods that dynamically

RCC(Ap,, Bp)) = (2

depend on m for the execution being analyzed [19], regardless of the dependant methods being executed in the same
process as the query m (i.e., local process) or in other processes (i.e., remote processes). Accordingly, the dependant
methods in the local and remote processes form the local dependence set and remote dependence set, respectively. The
denominator in Equation 2 is the size of the union set of entire dependence sets of all methods in Ap,, while the
numerator is the size of the union set of remote dependence sets of those methods.
Next, the process-level RCC metric is defined as
RCC(P;,Pj) = > " RCC(Ap,, Bp)),
A€P; BEP; (3)
where RCC(Ap,,Bp;) # 0

While the constraint RCC(Ap,, Bp].);é() is trivial for computation, it is not for the definition which only considers the
pairs of classes that are actually coupled—a zero RCC would indicate that they are not coupled.
Finally, the system-level RCC metric is defined as
Z_]j\il Zi\il RCC(Pi; P])
N(N-1)

Rationale/justification. The rationale for RCC is that its value indicates how methods from a class in one process

RCC =

Ji# jij€[1LN] 4

access methods from a class in another process. In contrast to RMC which is a message coupling metric, RCC measures
functionality coupling. A higher RCC implies greater functional interdependency among system components in the
execution considered. From a change management perspective, this higher RCC suggests that making changes for the
associated system use case would be more difficult and costlier. Also, the denser interprocess dependence associated
with a greater RCC makes it harder to test and debug the system with respect to the use case. Thus, RCC may inform

about the maintainability of the system being measured [54].

Table 2. Illustrating dependence sets of the system of Figure 1

Method m  |Dependence set DS(m)

SC::main {SC: :main, SC: : setup, SC: : serve, CC1::main, CC1::lookup, CC2::getD}
SC::setup [{SC::setup,SC:serve, CC2::getD}

SC::serve |{SC::serve, CC2::getD}

CC1::main |{CC1::main,CC1::1lookup,CC2::getD, SC::setup,SC::serve}
CC1::1lookup|{CC1: :1ookup,CC2: :getD, SC::serve}

CC2::getD [{CC2::getD}
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Ilustration. For example, consider an operation profile of the system of Figure 1, in which the method-level depen-
dencies? are listed in Table 2. For each query (first column), the entire dependence set is given in the second column,
including methods executed in remote processes as marked in boldface. Based on these local/remote dependencies, for
class SCp_,, .., the union set of all its methods’ entire dependence sets is

{SC: :main, SC: :setup, SC: :serve, CC1: :main, CC1::lookup, CC2: :getD}
while the union set of all the methods’ remote dependence sets that belong to CC1p,,, . is

{CC1::main, CC1::1lookup}.

Thus,
RCC(SCp,,, per» CC1p, ;) =2/ 6 =0.33.
Similarly,
RCC(SCp,,,,.,» CC2p,,...) =1/6=0.17,
RCC(CC1p,;;,,,» SCP,yrper) =2/ 5= 0.4, and
RCC(CC2p,,;,,,»SCP,pyper) =0/ 1=0.

Then, the process-level RCC measures are
RCC(Pserver, Pejient) = 0.33 + 0.17 = 0.5,
RCC(Pclienb Pserver) = 0.4.

Finally, the system-level RCC is computed as
(0.5 +0.4) / (2 *(2 - 1)) = 0.45.

4.4 CCC (Class Central Coupling)

Based on the previous metric of class-level coupling, it is intuitively useful to assess how an individual class in one
process would influence (through that class-level coupling) the classes in other processes. This assessment helps capture
classes that are more influential than others.

Definition/computation. On the basis of the RCC metric, we further measure the aggregate coupling as regards an
individual class executed in a local process with respect to classes in all remote processes. Specifically, given a class Ap,

in process P;, the CCC metric is defined as
N

CCC(Ap,) = Z Z RCC(Ap,. Bp,),
j=1BeP; (5)

where RCC(Ap,,Bp;) # 0,i # j,i,j € [LN]

The constraint RCC(Ap,, Bp;)#0 is given for the rigor of the definition despite its triviality in the metric computation.
The system-level CCC is then defined as the mean of class-level CCC measures over all classes executed (in any process).
Rationale/justification. Intuitively, the CCC metric of a class ¢ characterizes the importance of ¢ in terms of its
influence (coupling strength) on all classes in remote processes by being coupled with them. If we construct a coupling
graph where each node is a class and each edge represents RCC between two classes, the CCC metric is akin to the
centrality metric in network measurement [88]. Our definition of CCC was originally motivated by the centrality metric
indeed, which has been widely used in network analysis to identify the most important vertices in a graph (network).
Thus, the CCC metric can be used to understand key classes in IPC, which could potentially inform about localizing
quality issues (e.g., identifying faulty classes). Further, this metric may be utilized to assess functional correctness and

other quality metrics of the distributed system under measurement at class level.

3For the simplicity of our illustrations, we dismissed methods d1DB and connectServer, which are both library routines.
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Ilustration. Let us consider the same example system (Figure 1) and execution scenario as used for illustrating the

RCC metric. Given all those class-level RCC measures, we can readily compute the CCC measures for the three classes:

CCCSC,1pp0r) = ROCSCh, ey CC1p ) +
RCC(SCp,,,.,-CC2p,,,.,.,) = 0.33 + 0.17 = 0.5,
cce(eep,,,,,) = RCC(CC1p,,,,..-SCP,,,0e,) = 0.4, and
cceeeap,,,,) = 0.

The system-level CCC measure is thus computed as
(0.5+0.4+0)/3=03.

4.5 IPR (InterProcess Reuse)

Given that we have process- and class-level coupling metrics, we may measure coupling between two processes at an
even finer-grained level: method level. At this level, the coupling measures functionality overlapping and code reuse
across the processes in the system execution under analysis.

Definition/computation. Complementing the previous three forms of coupling metric, we further propose a metric
of interprocess coupling at method level. And the system-level metric is derived from the method-level measures.

Specifically, given a method mp, in any process P;, let LDS(mp,) and RDS(mp,) denote the local dependence set
(set of methods in P;, which depend on mp,) and remote dependence set (set of methods that depend on mp, but
are in any process other than P;) of mp,, respectively. Also, we denote as M the entire set of methods covered in
the system execution under analysis—M is the union set of methods executed in any process during the execution:
M = Ujei,ny{mp;Imp, € Pi}.

First, the method-level IPR metric with respect to an individual method mp, in a process P; is defined as

|LDS(mp,) (\RDS (mp,)|

IPR(mp,) = ©
|M|
Then, the system-level IPR metric is defined as
Ymp, em IPR(mp,)
IPR=———— i€ [1,N] (7)

|M]

Rationale/justification. The key rationale for this metric is that its value indicates the size of functionalities shared
between system components. Real-world distributed systems are usually found to have common code modules used
by two or more distributed components. As a typical example, the process-level common functionalities exercised
reflect the fact that multiple components of the distributed system use the same third-party libraries. Therefore, IPR
can serve as an intuitive metric measuring component-level code reusability [26]. On the other hand, despite the name
of this metric suggesting code reuse, IPR is essentially still an (albeit derivative/variant) metric of interprocess coupling.
Intuitively, a higher IPR metric value of a system indicates more dynamically coupled processes of the system.
Ilustration. For the same example system and execution as used for illustrating other metrics and in reference to the
dependence sets of Table 2, the method-level IPR for any of the six methods covered by the execution is zero. Thus, the
system-level IPR is also zero. (Note that the methods in boldface form the remote dependence set of each query.) For an
alternative example, let us consider the library functions d1DB and connectServer. Now suppose these two functions
both invoked another library function 1ibHttpConn (for managing HTTP connections). Then,

LDS(SC: :main) = {SC: :main, SC: : setup, libHttpConn, SC: : serve}
and
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RDS(SC: :main) = {CC1::main, CC1: :lookup, libHttpConn, CC2: :getD}.
Thus,
IPR(SC: :main) = 1/7.
Similarly,
IPR(SC: : setup) = 1/7,
IPR(CC1::main) = 1/7,
and the IPR of other methods remains zero. Accordingly, the system-level IPR would be
(1/7+1/7+1/7) | 7 = 3/49.

4.6 CCL (Class Communication Load)

The intuitive core concept underlying IPC is communication. Thus, it is natural choice to have a metric capturing the
communication load. More specifically, we may attribute such load to individual classes.

Definition/computation. We measure the communication loads of an individual class communicating with others in
all remote processes. Specifically, given a method m in a given class Ap, in a process P;, let RDS(mp,) denotes the remote
dependence set (set of methods that depends on m but are in any process other than P;) of mp,. Also, we denote as
My

class Ap, in a process P; is defined as

P the entire set of executed methods in the class Ap,. First, the class-level CCL metric with respect to an individual

Zmeap, [RDS(m)|
[Map, |

The system-level CCL is then the mean of class-level CCL measures over all classes executed (across all processes).

CCL(Ap,) = ®)

Rationale/justification. Intuitively, the CCL metric measures how much a class contributes to loads of communications
between the process that executes the class and any other process. A higher CCL means that a class contributes more to
the communications among system components. Thus, the CCL metric could be used to identify high-throughput classes
which may need to be particularly attended in diagnosing communication performance issues of the distributed system
under measurement. Accordingly, a high system-level CCL would inform about the system’s overall communication
performance. Also, since such high-throughput classes have the densest external dependencies across process boundaries,
they may be prioritized when debugging interprocess faults; thus, a high system-level CCL would also inform about the
correctness of the system with respect to process interfaces. It might seem that CCL is very similar to the previous four
metrics (RMC/CCC/RCC/IPR), yet there are actually key differences, as discussed below.

Compared to RMC informing about the communication costs between two processes directly at a coarse (i.e., process)
and high (i.e., in terms of messages passed) level, CCL measures the communication loads between two processes in
terms of interprocess dependencies at a finer (class) and lower (in terms of code dependencies between methods) level.
Accordingly, CCL and RMC have different measurement granularity and scopes. While the message passing directly
measured by RMC are underlaid by the interprocess dependencies measured by CCL—after all, the dependencies are
induced by the message passing, RMC simply considers the number of messages but not the amount of information
underneath, whereas CCL captures how many dependencies are involved underlying the messages sent and received.

Different from the CCL of a class measuring how much the class contributes to loads of the communications
between relevant processes, RCC measures functionality coupling among components in the execution considered.
Compared to CCC, which characterizes the importance of a class by summarizing RCC measurements, CCL focuses

on the communication load contributions of classes. Finally, complementary to IPR measuring component-level code
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reusability among system components in terms of common dependencies between processes, the CCL measurement is
based on how heavily one process communicates with others in terms of dependencies across processes.
Ilustration. Consider the same example system of Figure 1 with the dependence sets shown in Table 2 for the same
execution scenario used to demonstrate the RCC metric. We have

RDS(SC: :main)={CC1: :main, CC1: :lookup, CC2: :getD},

RDS(SC: : setup) = {CC2: :getD}, and

RDS(SC: :serve) = {CC2: :getD}.
Thus,

CCL(SCp,,,,.,) = (3+1+1) / 3 = 1.67.
Similarly, we can compute
CCL(CC1p,,,,,,)=(2+1)/2=15.

Therefore, the system-level CCL is calculated as
(1.67+1.5) / 2 = 1.585.

4.7 PLC (Process Level Cohesion)

All of the previous five metrics are concerned with coupling (albeit at various granularity levels). Traditionally, cohesion
is studied as opposed to coupling. With respect to IPC, the cohesion of individual processes may also have quality
implications similar to those of the cohesion of components in centralized software.

Definition/computation. Complementary to the previous metrics which are all about coupling, we define a process-
level cohesion metric, to measure internal connections within an individual process. Specifically, for a given method
mp, executed in a process P;, let LDS(mp,) be the local dependence set of the method (i.e., the set of methods executed
in P; that depend on m). Also, we denote as M the entire set of methods covered in P; in the system execution under
analysis. First, the process-level PLC metric with respect to an individual process P; is defined as
Zmep, [LDS(m)|

PLC(P;) = i

©

Then, the system-level PLC is the mean of process-level PLC measures over all processes.

Rationale/justification. The cohesion measures the degree to which the methods of a process belong together [38, 132].
A higher PLC implies methods in a given process rely more on each other. Accordingly, PLC can also serve as an
intuitive metric measuring the component-level code cohesion in distributed systems. A component/process of a higher
PLC is easier to be identified for reuse and easier to change.

Comparatively, PLC measures cohesion while the other five metrics (i.e., RMC, RCC, CCC, IPR, and CCL) measure the
coupling of a distributed system. Accordingly, compared to these other metrics measuring process pairs, PLC measures
an individual process.

Iustration. For the same example system and execution as used for the demonstration of other metrics, as shown in
Table 2, we can calculate process-level PLC firstly.

LDS(SC: :main) = {SC: :main, SC: : setup, SC: : serve},

LDS(SC: :setup) = {SC: :setup, SC: : serve}, and

LDS(SC: :serve) = {SC: :serve}.

Thus,
PLC(Pserver) =(3+2+1)/3 = 2.
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Similarly, we can compute
PLC(Pgjient) =(3+2+1)/3=2.

Lastly, the system-level
PLCis(2+2)/2=2.

4.8 Theoretical and empirical validations

In software measurement, there are two ways to validate a metric: theoretical and empirical validations. The theoretical
validation assures that the measurement using the metric does not violate the necessary properties of what is being
measured, while an empirical validation confirms that the metric values are consistent with the values predicted by
the model that involves what is being measured [130]. Moreover, the representation condition is a prerequisite for a
valid measure [17]. This condition asserts that a measurement mapping maps measured entities into numbers. And the
mapping also maps empirical relations into numerical relations for preserving the empirical relations.

As mathematical properties, our IPC metrics map coupling/cohesion (in distributed systems) into numbers and
coupling/cohesion relations into numerical relations [41]. We suppose that a mapping function RMC(D) indicates
the RMC value of a distributed system D. If a system D; intuitively exchanges more messages among its distributed
processes than another system D; does during their executions, then the function RMC() ensures that RMC(D;) >
RMC(Dz). Meanwhile, if RMC(D;) > RMC(D3), we should be able to empirically observe that D; has more messages
exchanged than D; does during the executions. Any of our other five IPC metrics was theoretically and empirically
validated in a similar manner. For example, Voldemort exchanges more (241 in total) messages among its processes
than Netty did (only 2 messages) during one of their executions, as we understood through observing these execution
behaviors via the run-time logs of these two systems. In our IPC measurements, we obtained RMC(Voldemort)=40.17,
greater than RMC(Netty)=1.00. Meanwhile, whenever we had RMC(Voldemort)>RMC(Netty) per our measurement
results, we did observe more messages being passed among the system components in Voldemort during its executions

than in Netty according to their logs.

5 PART 2: CHARACTERIZING IPC AND ITS QUALITY RELEVANCE

In this section, we apply DISTMEASURE’s capabilities of measuring IPC as described in Part 1 to characterize the
IPC-induced behaviors of diverse real-world distributed systems using the proposed IPC (coupling and cohesion)
metrics. Such measurements will then enable us to study the quality relevance of IPC. Accordingly, the goal of Part 2
of our framework subsumes two aims: (1) it characterizes real-world distributed system executions to reveal the traits
of their IPC-induced behaviors in terms of cohesion and coupling using the proposed metrics and (2) it examines the
quality relevance of IPC through statistical (correlation) analyses between those IPC metrics and various aspects of
distributed software quality in terms of respective direct quality metrics. These two aims can be fulfilled by answering
two questions:
¢ RQ1: How coupled and cohesive are the processes in distributed systems in terms of the proposed IPC met-
rics? The goal of answering this question is to demonstrate the practicality of IPC measurement with DISTMEASURE
for distributed systems hence its usefulness in quantifying their IPC characteristics (i.e., component/process-level

coupling and cohesion) as a way of measuring their IPC-induced behaviors.

e RQ2: What are the quality relevance of the proposed IPC metrics in terms of their correlations with the
eight direct quality metrics? The goal of answering this question is to show the merits of IPC measurement in
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terms of its statistical relationship with distributed software quality and demonstrate the capabilities of DISTMEASURE
in offering the merits by enabling in-depth characterization of IPC-induced behaviors of distributed software systems.
We first describe our methodology for the IPC measurement and statistical analyses (§5.1), including the direct quality
metrics considered, underlying datasets used, and our procedure for answering each of the two research questions. We
then present the results for each question (§5.2) in accordance with the respective aim above. Lastly, we discuss the

lessons learned from the empirical results and recommendations made based on the results and lessons (§5.3).

5.1 Methodology

This section clarifies our measurement design, including the measured subject distributed systems and run-time test
inputs used for exercising these subjects to generate systems executions needed for computing the IPC metrics. We also

describe our reference-quality model and quality metrics in our framework, followed by measurement procedures.

Table 3. Statistics of measured subject systems

Logical Test Execution |#Augmented

Subject (version) SLOC Type Scenario | Test Inputs
XNIO (2.0.0) 3,963 |Integration | Client/Server 247
OpenChord (1.0.5) 6,391 |Integration | Peer-to-Peer 1,999
xSocket (2.8.15) 11,628 | Integration | Peer-to-Peer 1,698
QuickServer (1.4.6)|| 13,369 |Integration | Client/Server 34
Thrift (0.11.0) 13,543 | Integration | Client/Server 525
Grizzly (2.4.0) 22,725 | Integration | Client/Server 2,000
Karaf (2.4.4) 46,810 | Integration | Three-tier 26
Integration | Client/Server 2,000

ZooKeeper (3.4.11) || 5, 577 |L0ad N-tier 1,409
’ System N-tier 2,000

Voldemort (1.9.6) 66,754 | Integration | Client/Server 1,631
Netty (4.1.19) 109,450 |Integration | N-tier 1,919
Derby (13.1.1) 423,662 |Integration | Peer-to-Peer 1,392

5.1.1  Subjects and Test Inputs. Table 3 lists the 11 Java subjects used in our study (the first column), the logical Source
Lines Of Code (noted as logical SLOC, as shown in the second column), and the original types (i.e., integration, load,
system) of test inputs (the third column). For all the subjects but ZooKeeper, only one type of test inputs was available.
We report logical SLOC (and use it for normalizing various other metrics in DISTMEASURE) as opposed to physical SLOC
because the former is less sensitive to programming styles and format [99]. The fourth column shows the execution
scenarios of each system execution, covering all the major types of distributed system architecture: Client/Server (C/S),
Peer-to-Peer (P2P), Three-tier, and N-tier. The last column shows the size of input set we eventually used for each
subject. Such test inputs were built through manual test augmentation as detailed below.

For IPC characterization against one system execution, a single test input suffices. However, for measuring IPCs in
relation to various quality metrics by computing statistical correlations, we need a substantial number of executions
by executing the chosen subjects against a large number of test inputs. Yet for each subject, only one test case was
originally available for each test type. For ZooKeeper, the load and system tests came with the project package. For any
subject, the single integration test was created by ourselves putting together the steps in the quick start guide of the
respective subject found from its official project website. This led to a total of 13 subject executions, far from being
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adequate for statistical analyses and learning-based classifications in DiISTMEASURE. Thus, we manually augmented the

test inputs for each subject. We now elaborate on each subject and how we expanded its original run-time inputs.

XNIO is a non-blocking I/O layer and library used to build efficient networking applications [143]. In its original
integration test, we started one server and one client and then sent arbitrary text messages from the client to the
server. To augment the test suite, we created 2,000 files each of which includes different text contents randomly

generated. During each execution, the XNIO client read one file and sent the full content to the server.

OpenChord is a peer-to-peer network service using a distributed hash table [103]. In its original integration test, after
we started three nodes (e.g., A, B, and C), the following operations were performed: create an overlay network on
a machine (node) A; join the network on other nodes B and C; insert a new data entry to the network on node
C; search and then remove the data entry on node A; finally, list all data entries on node B. To augment the test
suite, we created 2,000 files each of which includes various a different set of OpenChord commands (e.g., retrieveN
-key test). In some of these files, we purposely included invalid commands or command combinations to construct

malformed inputs. During each execution, the nodes read the commands from one file and performed them in order.

xSocket is an NIO-based library for the development of high-performance network applications [144]. In its original
integration test, after one server and one client were started, the client sent a sequence of manually composed text

messages to the server. We expanded the test suite using the same way that we used for XNIO.

QuickServer is an open-source library for users to quickly develop multi-client TCP applications [111]. In its original
integration test, after its server was started, the client connected to it and then sent a set of text messages to the

server. We expanded the original test suite as for XNIO.

Thrift is a scalable framework for developing cross-language services [136]. In its original integration test, we used
its libraries to develop a calculator consisting of a server and a client component. (The Thrift file was transferred
to Java programs firstly). We ran the calculator (from its client) against basic arithmetic operations (i.e., addition,
subtraction, multiplication, and division). To expand the test suite, we created 2,000 files each of which includes a
distinct arithmetic expression (e.g., 43 minus 27 multi 39 add 11), with some invalid ones to represent malformed
inputs. During each execution, the Thrift client read the expression from one file, sent it to the server, and then took

the computation result back from the server.

Grizzly is an NIO-based server framework from the GlassFish community [62]. In its original integration test, we
started a server and a client, and then sent random text messages from the client to the server, and finally waited for
the echo of each message. We expanded the original test inputs almost like for XNIO, except for the addition of a

command for awaiting each message’s echo sent by the client.

Karaf is a modular container as an open-source runtime environment supporting the standard OSGi [75]. In its original
integration test, we created a container hosted by the server and then executed two commands: list all packages (1a)
and list OSGi bundles (1ist). To expand the original input set, we created 2,000 files each of which includes various
Karaf commands (e.g., config:proplist). We purposely included invalid ones in some cases to construct abnormal
inputs. During each execution, the Karaf client read the commands from one file and performed them in order.

ZooKeeper is a widely used distributed coordination service for consistency and synchronization [155]. In its original
integration test, after we started two instances of the server and one instance of the client, the sequence of our
operations was: create two nodes; search the two nodes just created; look for their attributes; update the data
association between the two nodes; and remove the two nodes. In the original load test, after the server was started,
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we started a container instance and then generated workloads. In the original system test, we started a server instance
and a system test container, and then launched the system test.

To expand the integration test inputs, we created 2,000 files each of which includes various ZooKeeper commands
(e.g., 1s /zk-temp), including invalid ones. During each execution, the Zookeeper client read the commands from
one file and then performed them in order. To expand the load test suite, we generated the workloads with 2,000
different sets of configuration parameters (e.g., the number of clients involved in the load, the request
size). During each execution, we ran the load test with one of the parameter sets. To expand the system test
suite, we created 2,000 configuration files each with different configuration parameters (e.g., tickTime, initLimit,

syncLimit). During each execution, we ran the original system test code but with one of the configuration files.

Voldemort is a distributed key-value storage system used at LinkedIn [134]. In its original integration test, we first
started a server and a client, and then our operations were: add a key-value pair, find the key for its value, remove
the key, and retrieve the pair. To expand the original test suite, we created 2,000 files each of which includes various
Voldemort commands (e.g., getmetadata). Invalid commands or command sequences were included for invalid
inputs. During each execution, the Voldemort client read the commands from one file and then performed each of

the commands.

Netty is a non-blocking I/O event-driven framework used for the rapid development of Java network protocol servers
and clients [98]. In its original integration test, after starting a server and a client, we sent a series of text messages

from the client to the server. We expanded the original input set using the same way as for XINO.

Derby is an open-source relational database [35]. In its original integration test, we searched all the data records
(SELECT #*) from a relational database (including one table) created beforehand. To expand the original test, we
created 2,000 files each of which includes a distinct set of SQL statements that are compatible with Derby (e.g., show
settable_roles). Invalid SQL statements or invalid statement sequences were included to construct invalid inputs.

For each execution, the Derby client read all of the SQL statements from one file and then executed them in sequence.

We aimed at 2,000 tests per subject as it will give us a substantial number of sample subject executions and IPC
measurements to enable meaningful statistical analysis. In augmenting each type of test inputs for a subject, for
each candidate new test, we ran the subject against the test twice each to record a sequence of method entry and
returned-into events. If the two sequences differ, which indicates the execution was non-deterministic against the test,
we discarded it. Otherwise, if the sequence is unique relative to all previously collected sequences, the candidate test
was added to the suite. As a result, we had 26 to 2,000 test inputs for each subject and test type, for a total of 16,880 test
inputs for the 11 subjects. These 16,880 subject executions formed the basis of all the experiments presented in the
rest of this paper. Depending on the nature of different systems, creating additional inputs while enforcing each to
cover different program paths turned out to be quite difficult for some subjects. For instance, for QuickServer and Karaf,
although we followed the same strategy (e.g., creating 2000 different inputs) as for other subjects, we ended up with
much less inputs with unique coverage because these two systems execute highly similar program paths against the
different inputs we created. Importantly, the generation of each of these additional tests was achieved via mutation
as in mutation-based fuzz testing, using different mutation operators we manually carefully chose for each project
according to its input format and functionality domain. While such added tests may not always represent real-world
operational profiles of respective subjects, these tests do help exercise interesting run-time behaviors of the systems
just like what fuzzing and other test generation/augmentation methods typically aim to. Thus, the exercised behaviors
do fit DISTMEASURE’s run-time characterization purposes. Also, the randomness in our test-input augmentation is

Manuscript submitted to ACM



22 Xiaoqin Fu et al.

justified by the exploratory/discovering nature of our study that aims to reveal statistical relationships between our IPC
metrics and relevant direct quality metrics. Ideally, input generation strategies tailored for different quality metrics
would be more desirable. Furthermore, for some of the metrics (e.g., security focused ones), random generation may not
guarantee accurate analysis that is preferred. However, prior to our study, we did not know about those relationships.
And the random part in our generation strategies may suffice for statistical (albeit not for accurate) analysis.

Note that our subject selection is justified by two principles we follow. First, with DISTMEASURE we aim to address
common distributed systems for general-purpose distributed computations, as defined in the classical textbook on
distributed systems [34], rather than specialized/domain-specific ones such as distributed event-based systems which
are built on specialized/customized communication frameworks/protocols (e.g., CORBA). While analyzing the later
would be less challenging as those special/customized framework/protocols make it easier to reason about inter-
process/component dependencies, we focus on common types of distributed systems because they are more widely
deployed in real-world environments. Second, we chose common distributed systems and executions in different
application domains and of varying scales (code sizes) and architectures, including Client/Server (e.g., Thrift and
ZooKeeper against their integration tests), Peer-to-Peer (e.g., xSocket and OpenChord against their integration tests),
Three-tier (ie., Karaf against its integration tests), and N-tier (e.g., Netty against its integration test and ZooKeeper
against their system and load tests). The selection was done before we developed DisTMEASURE—we have used them

for prior works [22, 26, 50], rather than cherry-picking them after developing DISTMEASURE.

5.1.2  Reference-Quality Model. In order to systematically measure the relationships between IPC and distributed
software quality—to fulfill the second aim of Part 2 (§5), we need a reference-quality model for distributed software
to ensure the direct quality metrics we considered in DISTMEASURE are well-grounded on relevant software quality
standards. To that end, we adopted the standard quality model ISO/IEC 25010 [68] with necessary customization applied,
as depicted in Figure 3. The original model defines three layers: quality characteristics (i.e., factors), sub-characteristics
(i.e., sub-factors) under each characteristic, and quality metrics for each sub-characteristic. The first two layers are
standardized in terms of the specific quality characteristic/sub-characteristic names, yet the bottom layer is not specified
by the standard (in terms of the concrete metrics for each sub-characteristic).

For DIsSTMEASURE, we only considered the characteristics and sub-characteristics that are intuitively related to
distributed system behaviors that are likely induced by IPCs. Similarly, for each sub-characteristic, we considered
some quality metrics that are potentially related to our IPC metrics. As shown, we defined our reference-quality model
with four quality characteristics (i.e., performance efficiency, maintainability, functional suitability, and security), nine
sub-characteristics, and eight quality metrics. Some quality metrics are used to measure multiple sub-characteristics.

Next, we elaborate on each of the quality metrics within the corresponding sub-characteristic/characteristic in

reference to the model, including how it is defined, why we included it, and how the associated metrics were computed.

Performance Efficiency. According to the ISO/IEC 25010 standard, performance efficiency concerns the system
performance relative to the number of resources used under stated conditions. As its sub-characteristic, time behavior
is the degree to which the response/processing times and throughput rates of a system meet requirements [68]. The
IPC characteristics of a distributed system account, at least in part, for the system’s performance efficiency in terms
of time behavior, since IPCs immediately incur time costs due to the networking activities underlying the IPCs.

We measure the time behavior of a system through a straightforward metric execution time, normalized by the
subject size in terms of logical SLOC. Different systems can be quite different in terms of their size/scale. To make
the value of a metric comparable between two systems of different sizes, it is common to normalize the value of such
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(Distributed Software Quality ) Quality Model

Quality Metrics

Fig. 3. The reference-quality model underlying DiIsTMEASURE, adopted from and compliant with the ISO/IEC 25010 [68] standard.

metrics by a size measure [74]. A common size measure is logical SLOC [56]. Thus, as for a few other quality metrics,

we normalize the metric values of execution time by logical SLOC.

Maintainability. In ISO/IEC 25010, maintainability is defined as the degree of effectiveness and efficiency with which
a system can be modified by the intended maintainers. As a maintainability sub-characteristic, modifiability is the
degree to which a system can be effectively and efficiently modified without introducing defects or degrading existing
product quality; testability is another sub-characteristic, defined as the degree of effectiveness and efficiency with
which test criteria can be established for a system or component and tests can be performed to determine whether
those criteria have been met [68]. As IPCs represent run-time interactions among components in a distributed
system, IPC characteristics of the system are clearly relevant to its modifiability and testability. Due to the (implicit)
interdependencies of one component on another underlying an instance of IPC, changing one component will impact
the other and even imply the other having to be changed too. Similarly, such interdependencies also necessitate
isolation in testing, thus testability is also clearly related to IPCs.

We measure the modifiability of a system using a direct metric code churn size—the number of source lines of code
changed (i.e., added, deleted, or updated), between consecutive versions of the system [149]. It is then normalized
by the code size (logical SLOC) of the later version. The system-level code churn size is computed as the mean
code churn size across all pairs of consecutive versions in the system’s release history. We collected the entire
release history accessible to us through respective online resources, including the release date and source code of
each version. Specifically, the history of XNIO [143], xSocket [144], Grizzly [62], Karaf [75], and Netty [98] was all
from respective Maven repository; the history of OpenChord was obtained from SourceForge [103]; the history of
QuickServer [111] was from its project site; the history of Thrift [136] and Derby [35] was from Apache Projects,
and the history of ZooKeeper [155] and Voldemort [139] from their GitHub repositories.

To illustrate our direct measure of code churn size, Table 4 shows the change history of one of our subject systems
Thrift, including the version (the first row), size (logical SLOC) of each version (the second row), number of changed
lines of code in each version relative to the previous version (i.e., code churn size, as shown in the third row), and the
normalized code churn size (the last row). For example, from version 0.3.0 to 0.4.0, 909 lines of code were changed;
thus, the changed code size for this pair of versions was 909, the logical SLOC of the later version (0.4.0) was 6,302,
and thus the normalized code churn size is 909 / 6,302 = 0.1442. The system code churn is the average of the per-pair
code churn sizes, which is 0.0657 in this example.
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Table 4. Direct measures of the sub-characteristic modifiability using the quality metric code churn sizes of Thrift
Version 03.0/ 0.4.0| 0.5.0{ 06.0/{ 0.6.1f 0.7.0{ 0.8.0/ 09.0/ 09.1| 0.9.2| 0.9.3|0.10.0| 0.11.0
Logical SLOC 5,499| 6,302| 8,064| 9,302| 9,302| 9,427| 9,983|10,384|11,092|12,554|12,844 (13,264 13,543
Code churn size 984 909 296| 1828 126 179 650 189 543 596 179 749 209
Normalized code churn size||0.1789]0.1442|0.0367|0.1965|0.0135{0.0190 | 0.0651|0.0182|0.0490{0.0475|0.0139|0.0565 | 0.0154

In addition, we quantify both maintainability sub-characteristics (modifiability and testability) of a distributed
system using the run-time cyclomatic complexity as a direct quality metric [94], normalized by the size (logical SLOC)
of the system. We computed this direct metric, from each of the executions used for computing the IPC metrics for
the respective subject, as the number of independent paths exercised during the execution. For each subject, these

executions were all obtained by executing its single version as listed in Table 3 (first column).

Functional Suitability. As per ISO/IEC 25010, functionality suitability is the degree to which a system provides

Se

functions that meet stated and implied needs when used under specified conditions. As its sub-characteristic,
functional correctness is the degree to which a system provides the correct results with the needed degree of
precision [68]. Functional correctness is obviously related to the IPC characteristics of a system: after all, IPCs are
integral building blocks of the system’s functionalities; the system as a whole would not provide correct results
without having the IPC-induced behaviors conforming to the system’s holistic functional requirements.

We quantify the functional correctness of a system via the defect density of the system—the number of defects
normalized by the system’s size in terms of logical SLOC. This is an intuitive, reverse measure of functional correctness:
the higher the defect density, the lower the functional correctness of the system considered. To compute the defect
density for each of the 11 subjects, we targeted the versions shown in Table 3 and collected the data on defects
available to us from relevant resources (e.g., project repositories, bug databases). Specifically, we gathered the defect
data for XNIO [115] from its Maven repository. For OpenChord [128] and xSocket [91], the defects were collected
from SourceForge [129]. For Thrift [6], ZooKeeper [109], Derby [7], and Karaf [92], we found their defects in the Jira
database. The defects of Volemort [110], Netty [93], and Grizzly [58] were obtained from respective GitHub issue
collections. For QuickServer [8], we searched issues from the Google Code Archive storage [120].

For each subject, the total number of defects was then divided by the logical SLOC to obtain the defense density.
For example, we found 33 defects for Voldemort (1.9.6) whose logical SLOC is 66,754; thus, its defect density was
33/66,754 = 0.000493, meaning that there were 0.000493 bugs per line of source code in this system.

curity. In ISO/IEC 25010, security is defined as the degree to which a system protects information and data so that
persons or other systems have the degree of data access appropriate to their types and levels of authorization. It is
composed of five sub-characteristics: confidentiality, the degree to which a system ensures that data are accessible
only to those authorized to have access; integrity, the degree to which a system prevents unauthorized access to, or
modification of, computer programs or data; non-repudiation, the degree to which actions or events can be proven to
have taken place so that the events or actions cannot be repudiated later; accountability, the degree to which the
actions of an entity can be traced uniquely to the entity; and authenticity, the degree to which the identity of a subject
or resource can be proved to be the one claimed [68]. IPCs are the links connecting distributed components hence
constitute a major attack source and source of vulnerabilities. For instance, it essentially enables a remote attacker to
intrude a local component of the entire distributed system. For another example, these links are the channels for

data leaks. Thus, IPC-induced behaviors are highly relevant to all the five aspects (sub-characteristics) of security.
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We measure the sub-characteristic confidentiality with two direct quality metrics in terms of dynamic information
flow in the analyzed execution: Information flow path count, computed as the total number of dynamic information
flow paths, and information flow path length, computed as the average length of the paths. The length of an information
flow path is the number of statements on the path. As for quantifying other dynamic quality metrics, we computed
these two security metrics for a single version of each of the 11 subjects (as listed in Table 3). We also normalized
both metrics by the subject size in terms of logic SLOC. Table 5 gives our confidentiality measures of all subjects
with respect to the executions generated using the chosen test inputs (Table 3). For some subjects (i.e., Derby, Karaf,
Grizzly, OpenChord, QuickServer, and XNIO) and test types (i.e., integration test and system test of ZooKeeper), we
did not find any information flow path. Thus, they are absent in Table 5.

Table 5. Measurement results for the sub-characteristic confidentiality using two direct quality metrics information flow path count
and information flow path length

Subject Execution Thrift xSocket | Voldemort | ZooKeeper_Load Netty

Raw information flow path count 3 2 42 64 2
Logical SLOC 13,543 11,628 66,754 50,577 109,450
Normalized information flow path count 2.22E-04 | 1.72E-04 6.28E-04 1.27E-03 | 1.83E-05
Raw information flow path length 171 55 362 466 2,477
Normalized information flow path length 1.26E-02 | 4.69E-03 5.43E-03 9.22E-03 | 2.26E-05

For all the five security sub-characteristics, we consider attack surface as a common, direct quality metric,
which characterizes the system security in three dimensions: methods, channels, and data. In prior works, such
measurements of attack surface have been used to determine whether one system is more secure than others [87].
We quantify the attack surface of a subject system via a triple <M, C, D>, where M is the number of executed
methods including entry/exit points (sources/sinks), C is the number of channels (network ports) used across all the
distributed processes of the subject, and D measures untrusted data (the number of files which are read or written by
the subject during the execution considered). Then, we treated the triple as a coordinate and calculated the Euclidean

distance between it and the origin (0,0,0) as a direct measure of the whole-system attack surface:
VM2 +C% + D? (10)

We then normalized the distance by the subject’s source code size (logical SLOC).

In addition, we consider another direct quality metric, vulnerableness, as a common measure of the five sub-
characteristics of security. We qualify the vulnerableness of a subject via its Common Vulnerability Scoring System—
CVSS (Version 2.0) [102] score, a vulnerability metric based on public security databases (e.g, the National Vulnerability
Database (NVD) [100]) as used in prior works [4, 147]. We also consider the timeliness of a vulnerability’s CVSS
score. If some vulnerabilities were found in recent years, they should be more concerning than those discovered long
ago. Some subjects (i.e., OpenChord, xSocket, Voldemort, XNIO, and Grizzly) do not have Common Vulnerabilities
and Exposures (CVE) [101] vulnerabilities documented in the NVD. For those subjects, we considered the numbers of
security vulnerabilities (as explicitly documented so) in the same online defect sources as used for directly measuring
functional correctness. Also, a vulnerability documented as a CVE in the NVD generally carries a higher weight than
a vulnerability in a defect database in the wild, because the former has been publicly disclosed and rated as generally
critical (otherwise they would not have been accepted into the NVD). Thus, we assigned CVSS scores (which are
always >= 1) as the weights for vulnerabilities with CVE records; other security vulnerabilities were assigned a
weight of 1. We then computed the vulnerableness of a subject as
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Nimise + Z (CVSSe * (100 — age /100)) (11)
CVE e

where CV'SS, is the CVSS score of a vulnerability e reported as a CVE, age, is the age of e calculated as the difference
between the current year and the year the vulnerability e was first entered into the NVD, and Ny, ;s is the number
of vulnerabilities found in miscellaneous defect sources. Given the nature of this computation, we normalized the

vulnerability as computed above by the subject’s logical SLOC.

In summary, we use a total of eight direct quality metrics (shown at the bottom layer of Figure 3) to measure nine
sub-characteristics for four characteristics that form our reference-quality model. Among these quality metrics, code
churn size, defect density, and vulnerableness are static—we computed one metric value for each subject system; the
others five metrics are dynamic, computed per subject execution—the system-level metric value is simply computed
as the mean of per-execution measures for all the executions considered for each subject (see §5.1.1). As a high-level
overview, Table 5 lists the system-level measurement results of the two information flow based quality metrics. The

results of the other metrics are summarized in Table 6.

Table 6. Measurement results of other (six) direct quality metrics for all subjects—all normalized by code size in logical SLOC

. Execution Code Churn | Cyclomatic | Defect | Attack

Subject Time (seconds) Size Complexity | Density | Surface Vulnerableness
XNIO 1.51E-03 9.28E-02 2.03E-01 | 9.34E-03 | 4.55E-03 1.01E+00
OpenChord 8.45E-03 8.87E-02 1.72E-01 | 2.35E-03 | 1.13E-02 6.26E-01
xSocket 9.46E-04 4.83E-02 2.38E-01 | 5.16E-04 | 1.98E-03 2.58E-01
QuickServer 8.23E-04 4.73E-02 2.45E-01 | 2.99E-04 | 7.10E-04 4.38E-01
Thrift 5.91E-04 6.57E-02 1.45E-01 | 4.28E-03 | 2.51E-03 8.14E+00
Grizzly 3.08E-04 7.81E-02 2.21E-01 | 1.98E-03 | 6.30E-04 8.80E-01
Karaf 5.13E-04 1.17E-02 1.66E-01 | 9.08E-03 | 3.01E-04 1.96E+00
ZooKeeper 4.60E-04 1.37E-02 5.17E-02 | 7.41E-03 | 6.16E-03 9.00E-01
Voldemort 4.19E-04 3.97E-03 2.42E-01 | 4.93E-04 | 4.61E-03 1.80E-01
Netty 1.10E-04 1.11E-02 2.33E-01 | 5.03E-03 | 7.13E-04 1.80E-01
Derby 5.90E-05 2.70E-02 1.55E-01 | 9.70E-03 | 4.91E-04 5.12E-01

5.1.3  Experimental Procedure. Now that we have the IPC and direct quality measurement facilities and subject datasets,
we are ready to answer the two research questions laid out earlier as follows.

For RQ1, we characterize the IPC coupling/cohesion and relevant other traits of distributed systems in different
execution scenarios, by measuring IPC in those executions with respect to the proposed IPC metrics. We computed all the
IPC metrics (§4) against all the subjects and run-time inputs (Table 3), using our dynamic dependence abstraction frame-
work [22]. The goal of answering this question is to demonstrate the practicality of IPC measurement with DISTMEASURE
for distributed systems hence its usefulness in quantifying their IPC characteristics (i.e., component/process-level
coupling and cohesion) as a way of measuring their IPC-induced behaviors.

For RQ2, with the IPC measures computed for RQ1 and the direct measures of these quality metrics computed as
detailed above (§5.1.2), we performed extensive statistical analyses to examine the correlation between each of the six
IPC metrics and each of the eight quality metrics. We used Spearman'‘s rank correlation analysis [122], a non-parametric
method making no assumptions about the relationship between the two variables involved (which is the reason why
we chose Spearman‘s method over alternatives such as Kendall’s [1] and Pearson’s [13] methods). Further, we adopted
the interpretations of correlation strength according to varied value ranges of Spearman's rank coefficient r in [121]:
the correlation is very weak if |r| is below 0.20, weak if |r| is between 0.20 and 0.39, moderate if |r| is between 0.40 and
0.59, strong if |r| is between 0.60 and 0.79, very strong if |r| is 0.8 or above. For each coefficient, we also computed the p

value associated with it at a typical 0.95 confidence level, which indicates the statistical significance of the correlation.
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Table 7. Measurement results of system-level IPC metrics

Subject Executions RMC RCC CCC IPR CCL PLC

XNIO 16.82 58.96 2.76 0.51 74.43 41.10
OpenChord 3.14 67.15 5.29 0.78 267.36 255.78
xSocket 20.74 76.77 3.63 0.36 257.98 208.19
QuickServer 2.12 36.21 2.42 0.40 113.27 70.85
Thrift 11.59 25.27 3.17 0.56 23.40 41.59
Grizzly 39.68 152.09 2.16 0.67 665.13 673.34
Karaf 2.85 22.31 1.06 0.45 70.16 78.32
ZooKeeper 6.26 191.83 3.04 0.42 506.32 461.36
ZooKeeper Load 4.01 90.02 1.19 0.37 391.41 369.29
ZooKeeper System 4.84 131.32 2.62 0.39 382.56 332.70
Voldemort 40.17 301.54 5.02 0.54 528.32 569.79
Netty 1.00 129.00 2.38 0.54 863.39 765.36
Derby 3.31 29.45 2.22 0.72 717.70 734.12

We used our dynamic analyzers [22, 50] for distributed programs to compute information flow paths hence the two
direct quality metrics based on such paths. The lists of information sources and sinks involved were curated based on the
documentation of Java security/cryptography APIs. We used a Java source code measurement tool LocMetrics [10, 76]
to compute the code size of a system (i.e., logical SLOC). To compute the run-time cyclomatic complexity of each
subject execution, we instrumented the subject and counted the number of simple decisions (predicates) exercised
in the instrumented execution. The diff tool [11] was used to compute the code churn sizes between consecutive
versions of each subject. All the machines used in our study were Ubuntu Linux 18.04.1 LTS workstations, each with an
Intel E7-4860 2.27GHz CPU and 256GB DRAM.

5.2 Results

This section presents our major results for the measurements of our subject systems using the proposed IPC metrics

and their relations to the quality metrics, in response to the two research questions (RQ1 and RQ?2).

5.2.1 RQI:IPC Characterization. Our results on IPC characterization are summarized in Table 7. Each number represents
one of the six IPC metrics computed for one subject and one type of test (i.e., at system level). For all subjects but
ZooKeeper, the test type is omitted as only one type of (i.e., integration) test inputs was available. Recall that for each
subject and test type, we have extensively augmented the test inputs as described earlier (§5.1.1). The results shown are
the mean IPC metric values over all the executions per subject and test type. We also note that since our per-execution
(system-level) IPC metrics were computed as averages (over all processes/classes in the execution), they do not need to
be further normalized (as for the quality metrics using logical SLOCs).

The RMC results show that two enterprise systems, Grizzly and Voldemort, had the highest degree of message
coupling among their distributed processes. The main reason is that during their integration-test executions these
two systems exhibited an extraordinary level of inter-component dependency leading to a larger number of message
exchanges among the processes. The integration test needed all the processes to collaborate closely, hence a high RMC
as a result. Intuitively, the RMC measures immediately indicate the complexity of IPC in terms of message passing
among processes. The higher RMC metric values also implied heavier network communications. We observed that the
RMC values did not seem to be consistently related to the system size (in terms of logical SLOC)—the processes in the
largest system (Derby) were very lightly coupled, less than those in the smallest system (XNIO), despite both being
with respect to the same type of test inputs (i.e., integration test).
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The RCC measures appeared to be independent of RMC, evidenced by the absence of association between the two
metrics: In short, higher or lower RCC did not consistently co-occur with higher or lower RMC. Similar to RMC, RCC
saw no correlation with system size either. The numbers revealed that during the integration test, Voldemort had the
most highly coupled processes at class level, followed by Zookeeper, while in Karaf, a class in one process did not
influence much the classes in other processes.

Like RMC and RCC, the other four metrics (i.e., CCC/IPR/CCL/PLC) saw no significant correlation with subject
size nor with any other IPC metrics—per our computation, the correlations between any two of these IPC metrics
were weak or very weak. An implication of the latter is that each of them is uniquely expressive/significant—none of
them subsumed any others. What was clearly different between RMC/RCC/CCL/PLC and CCC/IPR was that the 13
measures saw substantial variations in RMC/RCC/CCL/PLC, yet very small ones in CCC/IPR. This contrast suggests
that RMC/RCC/CCL/PLC can vary widely across systems, while CCC/IPR tends to fall in relatively narrow ranges.

In terms of the numbers, the mean CCC was mostly between one and five, meaning that every class collaborated
with about one to five other classes in remote processes. Complementary to the four metrics (i.e., RMC/RCC/CCC/CCL)
that concern the dependence/reliance of one process on others (albeit at different levels of granularity), IPR informs the
common dependence of processes. That said, OpenChord’s processes had a much higher degree of common functionalities
shared among them than other systems; in contrast, xSocket had very little functional sharing among its processes
during the integration test.

Regarding CCL, our measurement results show that by average, every single class contributed noticeably, if not
substantially, to the interprocess communication loads in any execution of any subject system. The observation that
these subject executions had CCL values between 23 to 863 suggests that every class depended on 23~863 times as
many methods in remote processes as those in itself—in other words, on overall average every method in an executed
class depended on 23~863 methods throughout all remote processes in the studied system executions. We also found
that the remote dependence sets of methods within a class largely overlapped. Nevertheless, the CCL numbers still
indicate generally substantial interdependence (hence functional coupling) among the distributed processes in these
systems. The largest CCL was seen by Netty, indicating its greatest (among the 13 cases) per-class contribution to the
communication loads among its distributed processes—this highest level of interprocess communication complexity
may suggest the greatest difficulty in debugging the IPC performance/correctness with this system.

Our results point to some similarities between PLC and CCL—the PLC values ranged from 41 to 765, meaning every
method within a process depended on 41~765 other methods in the same process. Thus, in terms of PLC for cohesion
and CCL for coupling, our subject executions have seen overall notable closeness between process-level cohesion
and process-level coupling. Despite a lack of strictly consistent correlation between PLC and CCL, higher/lower PLC
generally came along with higher/lower CCL. For instance, Thrift had the lowest CCL and its PLC was almost the
lowest too. On the other hand, Netty had the highest PLC while having the highest CCL as well, suggesting busy
interactions both within and across processes in this subject’s executions. In all, at process level, having generally more

(less) cohesive processes did not make the processes less (more) coupled.
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Answer to RQ1: The six IPC metrics each measured/characterized the IPC coupling or cohesion in a uniquely
significant perspective—no one metric subsumes/implies another. Meanwhile, RCC/RMC/CCL/PLC can be
sharply different among different systems while other metrics (i.e., CCC/IPR) seem to be relatively stable across
systems. No IPC metric seems to be correlated with system sizes, even in the same type of execution scenarios;
and no consistent correlation was seen between any two IPC metrics—the only exception was between CCL

and PLC, suggesting at process level high/low coupling did not make cohesion low/high.

5.2.2  RQ2: Quality Relevance of IPC . The data groups underlying our correlation analysis include (i) the dynamic
measures with respect to each of the six IPC metrics overall subject executions (as summarized in Table 7) and (ii) the
direct measures of each of the eight quality metrics overall subjects or subject executions (as summarized in Table 5 and
Table 6). Since we examine the correlation (p-value) between each IPC metric and each quality metric, we performed

the correlation analysis for 6x8=48 pairs of (i) and (ii) data groups.

Table 8. Spearman’s correlation coefficients (p-values) between our IPC metrics and quality metrics

Quality metrics IPC metrics
Level Type Name RMC RCC CCC IPR CCL PLC
Code Churn Size 0.2320 -0.3260 0.2541 0.2707 -0.3978 -0.4972
(4.46E-01) | (2.77E-01) | (4.02E-01) | (3.71E-01) | (1.78E-01) | (8.38E-02)
System Static Defect Density -0.2210 -0.3149 -0.4475 0.0497 0.0166 0.0331
(4.68E-01) | (2.95E-01) | (1.25E-01) | (8.72E-01) | (9.57E-01) | (9.14E-01)
Vulnerableness 0.0553 -0.4205 | -0.2407 -0.0470 -0.6224 | -0.5616
(8.58E-01) | (1.53E-01) | (4.28E-01) | (8.79E-01) | (2.31E-02) | (4.58E-02)
Execution Time -0.2845 -0.0864 0.4735 0.0461 -0.1554  |-0.2471
(0.00E+00) | (2.39E-29) |(0.00E+00)| (2.11E-09) | (1.10E-91) | (3.32E-233)
Cyclomatic 0.4239 0.0573 0.4831 |0.1988 03644 | -0.3941
Execution | Dynamic | Complexity (0.00E+00) | (9.16E-14) | (0.00E+00) | (5.77E-150) | (0.00E+00) | (0.00E+00)
Information Flow | 0.1295 0.0777 -0.0091 | -0.3771 20.1327 | -0.1570
Path Count (4.99E-64) | (4.97E-24) | (2.38E-01) | (0.00E+00) | (3.31E-67) | (1.15E-93)
Information Flow | -0.1616 0.0349 -0.1159 -0.2494 0.1134 0.0757
Path Length (3.45E-99) | (5.77E-06) | (1.50E-51) | (1.24E-237) | (2.07E-49) | (6.59E-23)
0.1556 -0.2132 0.4534 -0.0868 -0.7424 -0.7968

Attack Surface | ¢ 3cp 09y | (9.49E-173) | (0.00E+00) | (1.42E-29) | (0.00E+00) | (0.00E-+00)

Note that the two groups in each pair need to be of equal sizes. For each of the three quality metrics that are static
(one measure per subject)—code churn size, defect density, and vulnerableness, the group had 11 data points (as seen
from the first column of Table 3); accordingly, we had to use one aggregate IPC measure for each subject as well. Thus,
the data points underlying the statistical analysis were from different systems, not from different versions of the same
systems. Because these systems are quite different in terms of run-time behaviors and application logic, we did not
consider that they were dependent on each other with respect to their measures in our IPC and quality metrics. To that
end, we took the mean of the measures per IPC metric over all the executions of each subject (further across the three
test types for ZooKeeper). The other five quality metrics are dynamic (one measure per subject execution), the group
had a total of 16,880 data points (as seen from the last column of Table 3); accordingly, we just used the IPC metric

value computed for each subject execution without any aggregation.
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Table 8 lists the 48 resulting Spearman‘s rank coefficients and their associated statistical significance (p values at
0.95 confidence level, shown in the parentheses). The results show widely varying relations of our IPC metrics to the
eight quality metrics. We regard a moderate or strong correlation as noteworthy and marked such cases in boldface. Yet
we also note that these coefficient numbers themselves are not supposed to convey significance or signify a conclusion;
rather, their contrasts tell the comparative quality levels among systems/executions.

Regarding code churn size, our results revealed that PLC tended to have a noteworthy correlation with this quality
(modifiability) metric. Recall that PLC is a process-level cohesion metric and that high cohesion is commonly known to
benefit maintainability in general [54, 55]. Thus, the negativity of this correlation is intuitive: the systems with more
cohesive processes/components are easier to modify—that is, changes made to any process/component more readily
propagate throughout the process/component. As a result, fewer changes are required, leading to lower code churn
sizes in an average case.

With defect density, CCC was the only IPC metric noteworthily correlated. By definition, a higher CCC is a strong
indicator of higher coupling among all the processes throughout the entire system execution (as opposed to RCC
indicating the average coupling between any two processes), hence that of overall higher interprocess complexity.
Meanwhile, recall that in our framework defect density is computed based on defects reported publicly. Intuitively, finding
defects can be more difficult in a system with more complex inter-component interactions (i.e., interdependencies),
resulting in less defects having been reported. This justifies the correlation between CCC and defect density being
negative. In fact, our original rationale for introducing the CCC metric was mainly due to its potential connection to the
correctness quality sub-characteristic, for which defect density is the key quality metric considered in DISTMEASURE.

Our results indicate that CCL and PLC were notably informative about system vulnerableness with respect to our
direct measure of vulnerableness in terms of the number of vulnerabilities reported publicly in the past. The negativity
of the correlation further indicates that higher degrees of coupling and communication loads among classes and a
higher level of cohesion between processes were associated with lower vulnerableness. One reason is that it is hard for
users to find vulnerabilities in complex systems with higher class coupling, communication loads, or process cohesion.
In particular, for distributed systems, there are few available tools for discovering security vulnerabilities induced
by implicit dependencies across processes [46], which are used to compute RCC/CCL. Accordingly, a higher RCC or
CCL means more such implicit dependencies hence greater difficulties in discovering those vulnerabilities. In fact, it
was found that in distributed systems more vulnerabilities were found on those implicit (interprocess) dependence
chains than those found within individual processes [46]. As a result, systems with higher RCC/CCL may have fewer
vulnerabilities reported, hence lower vulnerableness measured directly.

The positive correlation of CCC with execution time revealed that a higher degree of class central coupling was
consistently related to longer execution time. Justifiably, given that a system needs collaborations among its classes
to finish a task when one class has to communicate with more others across processes (as implied by the higher
interactivity), it takes longer to carry out the task. As mentioned above, CCC measures the overall coupling among all
processes in the underlying distributed system execution; a higher CCC strongly indicates a higher level of the overall
complexity of the execution, which is intuitively associated with greater time cost of that execution.

The above observation that the higher overall system execution complexity was associated with higher CCC
intuitively explains the positive correlation between CCC and run-time cyclomatic complexity—a direct quality metric
dedicated to measuring the execution complexity. We also observed that higher message coupling, measured by RMC,

was indicative of higher execution complexity as well. It turned out that a process typically sent messages to others
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under certain conditions. Thus, that more messages were exchanged among processes, as captured by a higher RMC,
implies that more such predicates (in those conditions) were exercised, hence a greater run-time cyclomatic complexity.

Although more functionality reuse, indicated by higher IPR, tended to be associated with fewer and shorter informa-
tion flow paths, the correlation was relatively weak.

Among our six IPC metrics, CCC was found to be noteworthily and positively correlated to our direct attack
surface measure. Thus, larger class central coupling during a system execution implies a broader attack surface as
measured. Justifiably, a higher degree of overall process coupling, indicated by a greater CCC, points to a higher level
of system execution complexity as discussed earlier, while it is known that more complex software tends to have
more vulnerabilities hence broader attack surface [3]. Meanwhile, CCL and PLC were found to be noteworthily but
negatively correlated to the quality metric attack surface. This is because a higher internal class-level communication or
process-level cohesion means a lower attack surface exposed to the external of the system (e.g., adversaries).

In addition to the correlation coefficients, we also reported the p-value of each coefficient, which is the probability
that the coefficient is not statistically significant. Since we computed these p-values at the 0.95 confidence level, p<0.05
here indicates a statistically significant correlation. As shown in Table 8, between any dynamic quality metric and any
of our IPC metrics that had a noteworthy correlation (shown in boldface), the p-values were all 0.00E+00 (zero). That is,
all of the noteworthy correlations were also (strongly) statistically significant.

On the other hand, regarding the static quality metrics, only the noteworthy correlations between CCL or PLC and
vulnerableness were statistically significant; the other three noteworthy ones were not. The main reason was that the
data points underlying the statistical analysis were only few for the static quality metrics. For the same reason, we need
to be cautious about the noteworthy correlations here even when they were associated with a p<0.5: due to the small
sample size, such obtained statistical significance may have been biased. Also, more broadly, despite our consideration
of diverse subjects and their various executions, the strength or even significance of some of the correlations may
not always hold as we observed, due to factors such as software development process, application domain, codebase
complexity, and technical debt, among others. For instance, embedded systems typically aim for minimal code churn
due to high stability requirements, meaning PLC correlations could become weak or irrelevant in such domains. Thus,
such additional factors need to be considered by practitioners when deciding which IPC metrics to use or be expected

to be effective for understanding a given quality concern.

Answer to RQ2: Five of our six IPC metrics were significantly correlated with one or more of six (out of eight
total) quality metrics. Higher IPC coupling in terms of dependencies of one process/component on others (via
higher RMC/RCC/CCC) was significantly correlated to lower defect density, fewer reported vulnerabilities,
longer execution time, higher complexity, and greater attack surface. Also, more class communication loads (via
higher CCL) implied lower vulnerableness and smaller attack surface(s). In addition, higher process cohesion
(via higher PLC) informed smaller code churn size, fewer reported vulnerabilities, and smaller attack surface(s).
The small (zero) p-values for the coefficients further indicate strongly statistically significant correlations

between the five IPC metrics and corresponding dynamic quality metrics considered.

5.3 Discussion

Our exploration of IPC metrics not only demonstrated the practicality of measuring IPC in large, real-world distributed
systems but also revealed the substantial presence (albeit with varying degrees) of implicit coupling among distributed
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components which are generally decoupled in the architectural design of common distributed software. And we showed
that one way to reveal such implicit coupling is through measuring interprocess coupling.

Our results on IPC measurements revealed that higher coupling in terms of inter-process/component dependencies
is generally bad for quality in three of the four IPC-relevant quality characteristics considered. Specially, in distributed
system executions, higher coupling tended to be associated with undesirable time behavior hence lower performance
efficiency, lower modifiability and testability hence compromised maintainability, and lower overall security in terms
of greater vulnerableness and attack surface. This largely confirmed the drawbacks of high coupling in general [74] and
that they are correlated with (integration) failure proneness in component-based software in particular [64]. Higher
process-level cohesion can benefit quality via enhanced security in multiple sub-characteristics (e.g., reduced lower
attack surface and vulnerableness). This consolidates the previous finding that high cohesion is a positive property of
software processes/components that tend to have high quality [55].

We observed that CCC was significantly correlated with three quality metrics (i.e., execution time, run-time cyclomatic
complexity, and attack surface) while RCC was not significantly correlated with any quality metric, although these two
IPC metrics are very closely related to each other—in fact, in terms of metric computation, CCC is derived from RCC
(Equation 5). Yet as noted earlier, CCC captures the overall coupling among all of the distributed processes in a system
execution, while RCC is the average coupling between two processes in the execution. This contrast suggests that the
more holistic coupling measure may be more indicative of distributed system quality.

Among the four quality characteristics in our reference-quality model (Figure 3), security was significantly correlated
with half (CCC, CCL, PLC) of the six IPC metrics via the direct quality metric of attack surface. In comparison, any of
the other three quality characteristics was significantly correlated with at most two IPC metrics. This result indicates
that IPC metrics were most informative about security, with respect to metrics of attack surface and (information
flow) vulnerabilities, in distributed systems for their confidentiality, integrity, non-repudiation, accountability, and
authenticity according to the ISO/IEC 25010 standard, as shown in Figure 3. For example, in a distributed system
execution, a low PLC (i.e., cohesion among the distributed processes) suggests high attack surface hence low security
(confidentiality/integrity/non-repudiation/accountability/authenticity) of the execution, according to the strong, signifi-
cant (negative) correlation between PLC and the direct attack surface metric (Table 8). In the contrary, a comparatively
higher process-level cohesion would signify a lower security risk in terms of attack surface.

Based on our empirical findings, distributed system developers are recommended to attain and maintain a low
degree of overall (implicit) coupling among systems components in order to achieve and sustain high quality, especially
when concerning performance efficiency, functional suitability, and security. To that end, the content of messages
can be optimized to reduce the number of messages sent between processes hence reducing RMC, while interprocess
dependencies at class and method levels should be reduced (e.g., by implementing more functionalities in local
components rather than heavily relying on remote ones) hence to reduce RCC, CCC, and CCL. On the other hand,
developers are encouraged to promote cohesive components in light of the benefits of higher process-level cohesion to
better maintainability and security. For that purpose, conventional design practices for higher cohesion (e.g., increasing
modularity via refactoring the code of local components) may be adopted. Yet despite these benefits of low coupling
and high cohesion in IPCs, a caveat to developers is that they should not assume that achieving one would automatically
help achieve the other; instead, low coupling and high cohesion are better-targeted each with dedicated efforts.

Meanwhile, given all these correlations between IPC and quality, developers can leverage IPC measurements in

terms of our proposed metrics to understand/analyze hence improve the quality of distributed systems with respect to a
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variety of quality characteristics/sub-characteristics and metrics. Accordingly, IPC metrics may be leveraged to assess

direct quality measures according to their correlations, as we investigate next.

6 PART 3: PREDICTIVE QUALITY ASSESSMENT

In this section, we present how DISTMEASURE enables us to further understand the characteristics of IPC-induced
behaviors and the usefulness of IPC measurements from the perspective of their predictive relationships with different
quality characteristics/sub-characteristics through relevant direct quality metrics, in reference to the quality model
defined earlier. To that end, DiISTMEASURE builds learning-based anomaly detection models for classifying the high-level
status (normal versus anomalous) of distributed software quality in terms of those quality metrics. These classification
models are based on (1) different subsets of the IPC coupling/cohesion metrics, (2) the direct metrics of various quality
characteristics/sub-characteristics, and (3) the statistical correlations between (1) and (2) as found earlier. The main goal
of DISTMEASURE, through its Part 3, is not to refute/disprove the justification and needs for those direct quality metrics,
but rather to demonstrate in further depth the correlation and implications of IPC-induced behaviors on the quality, in
many ways (i.e., via the various quality aspects), of distributed software. This is consistent with the primary goal of this
paper, which is to answer the overarching questions (§1). Meanwhile, through this part of DISTMEASURE, we also aim
to demonstrate the potential of IPC measurement in terms of supporting a practical and useful means for assessing
various aspects of distributed system quality. While the high-level quality anomaly detection capability offered by this
Part 3 of DIsSTMEASURE alone may not immediately suffice for diagnosing/locating quality issues or providing detailed
guidance for fixing those issues, the predictive capability can be useful in at least two ways. First, it provides useful
information towards ultimate quality issues diagnosis and quality improvement—for instance, developers may use our
measurement results to first identify anomalous quality conditions as a first step, before they proceed with further
diagnostic actions. Second, developers/researchers can use our measurement capabilities and results to build tools that
help predict/localize issues at a fine-grained level, given that we do have fine-grained metrics such as those at method
(IPR), class (RCC, CCC, and CCL), and component/process (RMC, RCC, and PLC) levels. The IPC measurement enabled
results are also explainable per the definition of the IPC metrics and their relationships with direct quality metrics.

In the following, we first describe our approach to these classifications (i.e., the quality anomaly detection models)
(86.1), followed by evaluating the classifiers (§6.2) via two research questions as listed below.
¢ RQ3: How effective are the IPC metrics based quality classifications (anomaly detection)? The goal of

answering this question is to further quantitatively assess the quality relevance of IPC-induced behaviors in distributed

systems as characterized using our IPC metrics. The effectiveness quantifies the strength of that relevance.

e RQ4: Which factors affect the performance of our quality classifiers (anomaly detectors)? The goal of
answering this question is to better understand which IPC metrics have particularly significant correlation with
the quality of distributed systems, and potentially how the measurement capabilities of DISTMEASURE may enable
designing future effective quality (anomaly) classifiers.

In addition to answering these questions, we then also discuss the implications of our evaluation results (§6.3).

6.1 Approach

To accommodate different use scenarios and meet diverse user needs, DISTMEASURE uses both unsupervised and
supervised learning strategies in constructing the quality classifiers, while experimenting with different learning
algorithms to identify the most performant one for each strategy. The supervised classifiers apply to situations in which
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users can afford to compute all the dynamic quality metrics hence have labeled training datasets to enable potentially
more accurate classifications. In contrast, the unsupervised classifiers may offer lower accuracy but accommodate
scenarios where the users do not have enough labeled data for supervised training. Computing some (if not all) direct
quality metrics (e.g., those based on information flow paths) can be very expensive [22, 46]. Even when a direct quality
metric can be affordably computed, a single metric value may not be sufficient to tell the quality status with respect to
the quality characteristic/sub-characteristic measured by the metric. These are also the reasons why it may be better
to use IPC metrics to indirectly classify quality status rather than immediately using the direct quality metrics in the

training of and inference with such classifiers.

6.1.1 Learning Features. We consider each of the six proposed IPC metrics (i.e., RMC, RCC, CCC, IPR, CCL, and PLC)
as a potential feature in building a supervised and unsupervised classifier for each of the direct quality metrics with
which at least one of the IPC metrics was found to be significantly correlated. We refer to such quality metrics as
predictable quality metrics. As per Table 8, DISTMEASURE currently supports quality classifications with respect to three
static and three dynamic quality metrics that are predictable. While most of these IPC metrics are defined at different
granularity (i.e., method, class, process, system) levels, here for each subject system execution we only use the values of
the system-level metrics as feature values in Part 2 of our framework.

Specifically, for each predictable quality metric Y, DiIsTMEASURE splits the set X of IPC metrics that have been
found significantly correlated with Y into two subsets: X1 consisting of IPC metrics with which the correlations were
positive, and X2 of those with which the correlations were negative. Then, DISTMEASURE trains a classifier using each
non-empty subset, as elaborated as follows. For each classifier X—Y, we only included in X the IPC metrics with which
Y’s correlation coefficient was found statistically significant, because those that are not significantly correlated, if
included in the model, would reduce the classification precision [84]. Accordingly (as per Table 8), for dynamic quality
metrics, we formed the following classifiers: (CCC)—execution time, (RMC, CCC)—run-time cyclomatic complexity,
(CCC)—attack surface, and (CCL, PLC)—attack surface. Similarly, for static quality metrics, we formed one classifier

only: (CCL, PLC)—vulnerableness, which we will discuss in §6.3.

6.1.2  Unsupervised Classification. For unsupervised learning based quality classifications, we chose the k-means
clustering algorithm from all relevant candidates available in the Scikit-learn library [104] after exhaustive considerations.
Data clustering is a data exploration technique, grouping together objects with similar characteristics for facilitating
their further processing. The k-means algorithm is a popular data-clustering algorithm, which partitions given data
points into k clusters by assigning every data point to the nearest cluster centers [107]. And this algorithm has been
widely used for anomaly detection in many domains (e.g.,[30, 83]).

For each classifier X—Y, Y values were not available in the training set where samples were not labeled, nor were
the samples used for testing. To obtain the ground-truth label of each sample (i.e., between normal and anomalous), we
performed outlier detection using k-means clustering [73] such that we label a sample as anomalous if it is detected
as an outlier, and normal otherwise. Given this rationale, intuitively we set k=1, and we first applied the clustering
algorithm to all the samples in our dataset, including those in the training and testing sets. Then, we computed for
each cluster entry its distance from the cluster center, and regarded the entries as outliers whose distance is greater
than a threshold 7 of percentile over all such distances. In reference to prior similar approaches [73, 89, 138], we chose
=90, which worked reasonably well for the attack surface classifier; for the execution time and cyclomatic complexity
classifiers, however, this threshold resulted in too many outliers, for which we thus set 7=95. Also, while in principle k
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could take other values greater than 1, we found those k values tend to produce unstable clustering results. Thus, we
stayed with k=1 eventually. With only one cluster, all normal data points are covered within the threshold percentile
distance (from the cluster centroid). Such obtained ground-truth labels were used for our evaluation purposes.

The unsupervised classifier was trained to cluster the training samples only based on their X values. At inference
time, for a given subject execution E under classification, DISTMEASURE first computes the values Ex of IPC metrics in
X. Then, the classifier X—Y will classify E according to Ex. The resulting status of Ex as an outlier or not indicates the
subject’s quality as anomalous or normal with respect to the quality metric Y. Essentially, the classifier treats normal

points as part of the cluster and outliers as outside the cluster.

6.1.3 Supervised Classification. For supervised learning-based quality classifications, we chose the bagging algo-
rithm [15] after comparatively exploring several alternatives. Bagging is a method for generating multiple versions
of a model and then using these versions to get an aggregated model. These versions are generated via bootstrap
replication of the training data set and using these as new training data sets. When classifying (predicting a class),
the aggregation performs a vote to decide the class. The bagging model can provide higher accuracy than many other
supervised learning models, especially for unstable data—the prediction accuracy can be retained when there are large
variations across the training samples [15]. Due to the diverse scales, domains, and execution scenarios of our subjects,
the executions represent very different training samples. The expected large variations in these samples suggest that the
bagging algorithm would be a good fit here. Similar to the unsupervised classifications, the supervised classifications in
D1sTMEASURE are also formulated as a binary, anomaly detection problem.

For each classifier X—Y, each training sample was the X vector value computed from a system execution (D; against
T; of Figure 2). To obtain the ground-truth label of each sample, we used the classical z-score based outlier detection
approach [118], such that we label a sample as anomalous if it is detected as an outlier, and normal otherwise. In
particular, we determined a sample as an outlier if its z score is beyond a threshold. To determine this threshold, for
each feature set X, we obtained the value distribution of corresponding quality metric (that we intend to predict with
X values) via boxplots. We found that in our datasets these distributions were generally right skewed. Thus, we only
considered the upper fence of boxplot as the threshold. Specifically, the boxplot upper fence z-score threshold values
for the execution time, cyclomatic complexity, and attack surface classifiers are -0.32, 0.90, and 1.46, respectively.

Each supervised classifier was trained on such labeled samples in a given training set. At inference time, for a given
subject execution E under classification, DISTMEASURE first computes the values Ex of IPC metrics in X. Then, the
classifier X —Y will classify E as normal or anomalous according to Ex, indicating the subject’s quality as normal or

not with respect to the quality metric Y.

6.1.4 Experimental Procedure. Our empirical validation of the IPC metrics based quality classifiers is guided by the two
research questions outlined earlier (Section 6), which are answered by following the experimental procedure below.
For RQ3, taking each unique subject execution as a sample, we had a total of 16,880 samples. Using this large-scale
dataset, for each classifier, we first performed a hold-out validation as in prior works [20, 23, 133]: we randomly selected
30% of all the samples of each class and held them as unseen/novel samples for testing, and used the rest for training.
To mitigate the potential bias in the single hold-out split, we further performed a 10-fold cross-validation (CV): the
sample set was randomly partitioned into 10 disjoint subsets of equal size; the model was trained on 9 of these subsets

and then tested against the remaining subset—this procedure was repeated 10 times.
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For testing a supervised classifier X—Y against a sample E, the ground-truth classification result was the class label
originally assigned to E—we took the mean of the 16,880 Y values as the threshold to label each of the 16,880 samples
with one of the two class labels (i.e., normal and anomalous), as described earlier (Section 6.1.3).

When testing an unsupervised classifier X —Y against a sample E, the ground-truth classification result was deter-
mined as follows. Suppose the classification model has two clusters C; and Cz, for which we computed the mean of Y
values of the subject executions each corresponding to a sample (i.e., feature vector) in each cluster, as M1y and M2y,
respectively. For E, we also computed the Y value, noted as Ey. Then, the ground-truth classification result was Cy if
Ey was closer to M1y than to M2y; otherwise, the ground-truth result was Cs.

Based on the ground-truth results determined as above, we computed the precision, recall, and F1 accuracy for
each supervised and unsupervised classifier with both hold-out and 10-fold validations. To explain the classification
results (i.e., why the classifiers work), for each classifier X—Y, we further conducted association analysis between the
characteristics (i.e., high/low value ranges) of the IPC metrics in X and the normal/anomalous status of Y.

For RQ4, we aimed to study two common factors that affect the classification performance of the quality anomaly de-
tectors: the choice of learning algorithm and the selection of features. Regarding the algorithmic choice, for unsupervised
learning, we only considered the k-means clustering algorithm because it was the only one available in the Scikit-learn
library that was suitable for our clustering situation; for supervised learning, we compared the performance of each
classifier using the default (bagging) algorithm to that of the same classifier using eight alternative algorithms (with the
same training/testing data and setting): Naive Bayes [117], Multinomial Naive Bayes [95], (KBF Kernel) SVM [29], kNN
(short for k-nearest neighbor) [131], AdaBoost [44], Voting [81], C4.5 decision tree [112], and Random Forest [16]. We
used default parameters for these ML models (e.g., #estimators=50 for AdaBoost and #estimators=10 for Bagging) as in
the scikit-learn library. Regarding feature selection, for each bagging classifier that uses more than one feature, we
compared feature importance scores and ranked the features according to the scores to identify the most important
feature(s). The scores here are what a technique (on feature importance) assigns to each input feature of a predictive

model that indicates the relative importance of the feature to the model’s decision making (i.e., prediction) [66].

6.2 Results

In this section, we present our experimental results and conclusions for the two research questions regarding Part 3 of
(i-e., quality classifications in) our framework. We mainly focus on the results for the classifiers of dynamic quality
metrics because we had a reasonably large number of (16,880) subject executions as samples. For the classifiers of static
quality metrics, the (11) samples available were too few to suffice for reasonably reliable training and testing that could

lead to solid conclusions—we discuss these classifiers later (§6.3).

Table 9. The effectiveness of unsupervised (k-means) classification for dynamic predictable quality metrics

Model Hold-out Validation 10-fold Cross-validation
IPC Metric Quality Metric Precision | Recall F1 Precision | Recall F1
CccC Execution Time 81.02% | 90.01% | 85.28% 81.52% | 90.28% | 85.68%
RMC, CCC | Cyclomatic Complexity 81.66% | 90.37% | 85.79% 81.52% | 90.28% | 85.68%
CCC Attack Surface 90.37% | 95.06% | 92.66% 90.4% | 95.08% | 92.68%
CCL, PLC Attack Surface 91.16% | 95.48% | 93.27% 90.4% | 95.08% | 92.68%
Average: 86.05% | 92.73% | 89.25% 85.96% | 92.68% | 89.18%

6.2.1 RQ3: Effectiveness. Table 9 shows the results for three effectiveness metrics (precision, recall, and F1 accuracy) of

the unsupervised classifiers for all of the dynamic predictable quality metrics. For each classifier X —Y, the first and
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second column shows the X and Y respectively. Both of the hold-out validation (3-5th columns) and 10-fold validation
(6-8th columns) results revealed that DiIsTMEASURE achieved a generally useful level of accuracy (89% F1 on overall
average) for classifying the distributed system quality with respect to any of the three quality metrics (execution time,
run-time cyclomatic complexity, and attack surface). And four of the six IPC metrics contributed to these classification
capabilities: CCC, RMC, CCL, and PLC, which were found in Part 2 to be significantly correlated with those quality
metrics (see Table 8). Notably, the two validation schemes showed very similar precision (86.05% versus 85.96%), recall
(92.73% versus 92.68%), and F1 accuracy (89.25% versus 89.18%), not only on overall average but also for each individual
classifier This consistency helped consolidate the validity and reliability of these evaluation results.

Overall, the results show that measuring the IPC-induced behaviors in distributed systems using the proposed metrics
such as CCC, RMC, CCL, and PLC can reasonably accurately tell about the anomaly status of the three out of the four
quality characteristics we considered: performance efficiency (in terms of execution time), maintainability (in terms
of cyclomatic complexity), and security (in terms of attack surface). In contrast, the anomaly prediction performance
was even better for security than for the other two (F1 accuracy of 92.68% versus 85.68%). An intuitive explanation
for this difference is that attack surface was computed in a much coarse-grained manner (i.e., based on the number of
network ports and files accessed and number of methods executed) than the other two quality metrics (e.g., cyclomatic
complexity is computed based on the number of branch predicates exercised in the program). Recall that the (k-means)
clustering algorithm works on the basis of similarity. Capturing similarities at finer-grained levels is intuitively more

challenging than capturing coarser-grained similarities.

Table 10. The effectiveness of supervised (bagging) classification for dynamic predictable quality metrics

Model Hold-out Validation 10-fold Cross-validation
IPC Metric Quality Metric Precision | Recall | F1 Precision | Recall F1
CCC Execution Time 99.61% | 99.61% | 99.61% 98.73% | 97.55% | 97.86%
RMC, CCC | Cyclomatic Complexity 99.84% | 99.84% | 99.84% 99.76% | 99.75% | 99.76%
CCC Attack Surface 99.02% | 98.99% | 99.0% 98.9% | 97.44% | 97.9%
CCL, PLC Attack Surface 98.97% | 98.78% | 98.83% 98.55% | 95.36% | 96.23%
Average: 99.36% | 99.3% | 99.32% 98.98% | 97.52% | 97.94%

Instead, learning the association patterns between IPC metrics and the predictable direct quality metrics would be
more effective for classifying the related quality characteristics/sub-characteristics with respect to those quality metrics.
This was corroborated by the effectiveness results of our supervised quality classification in DISTMEASURE, as shown in
Table 10. For the same classification tasks using the same IPC metrics, both the hold-out validation and 10-fold CV
revealed that any of the supervised classifiers performed quite effectively—precision, recall, and F1 accuracy were all
above 95%; the overall average F1 accuracy was 98%. As in the evaluation results for our unsupervised classifications,
these supervised classifiers also had highly consistent numbers in any of the three effectiveness metrics, both for
individual classifiers and overall. Thus, when labeled training samples are available, supervised classification was clearly
more desirable in terms of classification accuracy in our framework.

To explain why/how these classifiers worked, we also computed the frequent if-then associations consisting of an
antecedent (if, IPC metric value being high/low) and a consequent (then, quality metric being anomalous/normal), using
the Apriori algorithm [105] that was implemented in the Python Mlxtend library [97], in two steps:

(1) Data formatting. From the quality and IPC metric values computed from the subject executions against the
corresponding test inputs (cf. Table 3), we set dynamic quality metrics as anomalous or normal according to our
ground-truth labeling process as described earlier, and IPC metrics as high or low when their values are > or <= the

mean values, respectively.
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Table 11. Status frequencies of dynamic quality metrics

Quality metric [ Frequency
Anomalous Execution Time 11.3%
Normal Execution Time 88.7%
Anomalous (run-time) Cyclomatic Complexity 11.3%
Normal (run-time) Cyclomatic Complexity 88.7%
Anomalous Attack Surface 7.1%
Normal Attack Surface 92.9%

(2) Association computation. With the data obtained above, we computed the association rules (i.e., the if-then
association matrix) including relevant support, confidence, and lift values.

Table 11 lists the frequency values of anomalous and normal instances of each dynamic quality metric in our formed
classifiers. And Table 12 summarizes the results of our association analysis on all the classifiers. For each pair of the
anomalous/normal quality metrics and high/low IPC metrics, the support indicates how frequently the pair occurs in
the dataset; the confidence indicates the conditional probability of the appearance of the high or low IPC metric given
the anomalous or normal quality metric; and the lift factor indicates the association strength: lift<1 means that the two
variables in the pair are mutually exclusive; lift==1 means no association; and lift>1 means that there is an association
of the pair with a greater value indicating a stronger association[65].

The results in Table 12 revealed that there were noticeable associations between anomalous/normal quality metrics
(Execution Time, (run-time) Cyclomatic Complexity, and Attack Surface) and high/low IPC metrics (RMC, CCC, CCL,
and PLC), respectively. These associations were consistent with the correlation coefficients between IPC metrics and
dynamic quality metrics discussed earlier (cf. Table 8). For example, for the classifier (RMC, CCC)—run-time cyclomatic
complexity, the association rules mined indicated that normal run-time cyclomatic complexity was associated with
RMC and CCC being either both low or both high, while the earlier correlation analysis results revealed that RMC
and CCC were both positively correlated with this quality metric—that is, the correlation direction/sign is consistent
with these two IPC metrics. For another example, according to the association rules for attack surface, an anomalous
status of this quality metric was associated with both CCL and PLC being low, which is consistent with the negative
correlation between CCL/PLC and attack surface. These association rules help explain why our classifiers were able to
predict the normal/anomalous status of respective quality metrics based on the (normal/outlier) value ranges of the IPC
metrics that were used as classification features.

Moreover, to further understand how/why the unsupervised classification based on k-means clustering works in
particular, we looked into the clustering tendency of our datasets. We were able to validate these tendencies, which
justifies that the clustering-based classification worked reasonably well (with an average F1 accuracy of 89%) as shown
in Table 9. For instance, Figure 4 shows the clustering tendencies for the classifiers that have more than one feature—the
clustering tendency of a one-dimensional variable is difficult to visualize properly. As shown, for both classifiers, the
underlying clustering tendency is reasonably clear: the outliers are generally on the outskirts, fairly discernible from
the rest of the clusters. Thus, the classification models were able to learn the decision boundary between the anomalous

and normal classes with a reasonable level of accuracy.
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Fig. 4. Clustering tendencies of the datasets underlying the (CCL, PLC)—attack surface (top plot) and (RMC, CCC)—run-time
cyclomatic complexity (bottom plot) classifiers: among the single clusters, the dark-red dots represent outlier data points.

Table 12. Overall associations between anomalous/normal quality metrics and high/low IPC metrics

Quality metric ‘ IPC metrics H Support ‘ Confidence ‘ Lift

Anomalous Execution Time Low CCC 11.26% 100.00% | 1.95
Normal Execution Time High CCC 48.73% 54.92% | 1.13
Anomalous (run-time) Cyclomatic Complexity | Low RMC and High CCC 11.24% 99.73% | 3.32
_ _ _ Low RMC and Low CCC 38.77% 43.69% | 1.13

Normal (run-time) Cyclomatic Complexity High RMC and High CCC 1871% 21.10% 1 1.13
High CCC 7.13% 99.92% | 2.05

Anomalous Attack Surface Low CCL and Low PLC 7.13% | 100.00% | 2.08
Low CCC 51.2% 55.20% | 1.08

Normal Attack Surface High CCL and High PLC || 44.10% 47.45% | 1.08

Answer to RQ3: On overall average, by measuring IPC coupling and cohesion, our unsupervised quality
classifiers achieved 85.96% precision, 92.68% recall, and 89.18% F1, while the supervised classifiers gained
about 97% precision/recall/F1, in recognizing the anomaly level of distributed system quality concerning three
(dynamic direct) quality metrics (i.e., execution time, run-time cyclomatic complexity, and attack surface). The
association analysis further explained the classification capabilities and revealed which IPC metric value ranges

were associated with the anomalous/normal status of corresponding dynamic predictable quality metrics.
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Fig. 5. The average accuracy of alternative learning algorithms compared to the default one (bagging)

6.2.2 RQ4: Influence Factors. As explained earlier, we only studied such effects for supervised classifiers in DiIsTMEA-

SURE. Figure 5 compares the default classification (bagging) algorithm to eight alternatives when applied to quality
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classification based on our IPC metrics. The length of each bar represents the overall average precision, recall, or F1
accuracy across the classifiers for all the predictable quality metrics. Our results show that the bagging algorithm
performed almost equally well as or better than any of the alternative supervised learning algorithms considered.
Random Forest achieved the second-highest F1 accuracy overall, followed by Voting and C4.5 Decision Tree, while
Multinomial Naive Bayes performed the worst. Other algorithms had close classification performance in terms of any
of the three effectiveness metrics in both the hold-out validation and 10-fold validation. Overall, the differences in

precision, recall, and F1 between any two classifiers did not appear to be quite substantial.

Table 13. P-values (effect sizes) of the F1 accuracy for other classifiers versus bagging with 10-fold cross-validations

Model P-value (effect size)
K-Means 2.09E-02 (-1)
Naive Bayes 7.73E-01 (0.125)
Multinomial Naive Bayes | 1.48E-01 (-0.625)
SVC (RBF Kernel) 7.73E-01 (-0.125)
kNN 5.64E-01 (-0.25)
AdaBoost 1(0)
Voting 1(0)
C4.5 Decision Tree 3.86E-01(-0.375)
Random Forest 3.86E-01(-0.375)

In addition, we computed Wilcoxon test p-values [127] and Cliff‘s delta effect sizes [33] on the F1 accuracy of
10-fold cross-validations between other unsupervised/supervised classifiers and our default (bagging) classifier. We
used 10-fold cross-validations over hold-out validations for the computations [146]. As listed in Table 13, almost all of
the p-values are large (>0.05), except the one for the difference between the bagging (supervised) classifier and the
k-means (unsupervised) classifier—that difference is significant as we have already expected from the result comparison
between Tables 9 and 10. The statistics here show the difference was not only significant (p=0.02) but quite large too
(effect size=1). In particular, statistically there was no difference in classification performance between the default
bagging classifier and any of the two compared classifiers: AdaBoost and Voting—p value of 1 and effect size of 0, and the
difference from any other compared supervised classifier was also insignificant. The reason behind large effect sizes but
still with large p values (e.g., when compared to Multinomial Naive Bayes) is because of the relatively small number of
samples involved in the statistical analysis. Overall, these statistical results show that the classification algorithm choice
did not matter that much for our supervised quality anomaly detection problem, suggesting that using the proposed

IPC metrics can readily and stably help predict the anomaly status of respective (correlated) quality metrics.

CCC I 0.74
RMC I (.26

PLC I 0.61
CCL I (.39

Fig. 6. Ranking of features (IPC metrics) by importance score (shown on the x axis) for supervised (bagging) classifiers for (dynamic)
quality metrics. The top chart shows the importance of RMC versus CCC in classifying run-time cyclomatic complexity while the
bottom chart shows the importance of CCL versus PLC in classifying attack surface.

We further studied the effects of feature selection by quantifying the contribution (importance) of each feature in the
dynamic quality metric classifiers in DISTMEASURE. Figure 6 depicts the feature ranking by importance scores for our

supervised (bagging) classifiers for two of the (dynamic) predictable quality metrics: run-time cyclomatic complexity and
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attack surface. These feature importance scores were computed as the standard deviation and mean of the impurity
decrease accumulation [28] (i.e., feature_importances_ in Python models) using the Scikit-learn library [104] of Python.

The classifier for execution time used one feature (CCC) only, for which feature selection was not relevant—the same
applied to the other attack surface classifier (also based solely on CCC). Our results showed that CCC, the strongest IPC
coupling metric as discussed earlier, was clearly more important than RMC for classifying the quality metric run-time
cyclomatic complexity (with the importance score of 0.74 versus 0.26). And PLC, the only IPC cohesion metric in our
framework, was much more important than CCL for classifying the quality metric attack surface (with the importance
score of 0.61 versus 0.39). Note that feature importance and ranking are not relevant in k-means clustering, thus this

study was only conducted on our supervised classifiers.

Answer to RQ4: Bagging was the most effective supervised learning algorithm for our binary quality classifiers
with respect to the quality metrics considered for distributed systems, but overall the supervised-classification
algorithm choice did not have a significant impact. For the only two dynamic quality metric classifiers (for
run-time cyclomatic complexity and attack surface) that used more than one feature, the (strongest) IPC coupling

and the only cohesion metric (i.e., CCC and PLC, respectively) played the most important role.

6.3 Discussion

Per the statistical results for its Part 2, DIsTMEASURE has only one supervised/unsupervised classifier for one static
predictable quality metric: (CCL, PLC)—vulnerableness, as discussed in §6.1.1. For each subject system (as listed in the
first column of Table 3), we computed the static quality metric vulnerableness (as shown in Tables 6); we also computed
the mean (system-level) IPC metrics CCL/PLC over all of each subject’s executions as the IPC metric values for that
subject (as shown in Table 7). Thus, we had 11 data points in total. Then, we followed the same procedure for RQ3 to
evaluate the classifier, except for the inability to perform the 10-fold cross-validation because we did not have enough
samples for that validation scheme. With the hold-out validation, we obtained almost perfect precision, recall, and F1
accuracy of the classifier. While our dataset was not sufficient (due to the small size) for drawing solid, generalizable
conclusions, these results along with the correlations found for RQ2 suggest potentially promising predictive capabilities
of our IPC metrics in assessing distributed software quality with respect to the static predictable quality metric (i.e.,
vulnerableness) as well. Nevertheless, we would need much more data points to train a robust classifier for the quality
metric vulnerableness and more samples for testing the classifier.

While prior works [45, 148] found that unsupervised classifiers may perform better than supervised ones for (albeit
static) defect prediction, our results showed clear advantages of supervised classification, at least for dynamic quality
metrics of distributed systems. This contrast implied that assessing those quality metrics purely based on the similarity
of (significantly correlated) IPC metrics across different system executions may not be effective; instead, a better way
would be to base the classification on the patterns of association between IPC metrics and the quality metrics. The key
reason is that the various system executions may have largely different measurements of the quality metrics even if
their IPC measurements are close enough. On the other hand, the merits of supervised over unsupervised classification
in DISTMEASURE came at a cost—computing the quality metrics in order to label the training samples can be costly in
practice, especially when a large number of such samples are used as we did in the evaluation of DISTMEASURE.

Among the six IPC metrics in DiISTMEASURE, IPR did not appear to statistically significantly inform any of the direct
quality metrics considered. Yet the IPR measurement results can still be useful for understanding run-time code reuse
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in distributed systems. Any of the other five IPC metrics has shown to be indicative of distributed software quality with
respect to at least one of the quality metrics, static and/or dynamic. In particular, the strongest indicator of interprocess
coupling, CCC, which captures the coupling among all of the distributed processes (as opposed to measuring that
between two processes as RCC does) at a fine-grained granularity level (as opposed to measuring that at a coarse level as
RMC does) tended to be the most indicative of distributed software quality. Indeed, CCC was found to be significantly
correlated with more (four) quality metrics than any other IPC metrics in our experiments. As a learning feature, CCC
also contributed to the quality classifications more than other features wherever more than one feature was used in the
classifiers. Meanwhile, PLC, the only metric in our framework that captures process cohesion, exhibited similar merits
to CCC—it was found to be significantly correlated with three quality metrics, more than other IPC metrics except for
CCC, while having contributed to relevant classifiers much more than other features. These results demonstrated the
great usefulness of measuring both coupling and cohesion at process level for assessing distributed software quality.

The above observations hinted at the relationship between correlation coefficients and feature importance scores.
Indeed, our Spearman’s rank correlation coefficients and the feature importance scores for our supervised (bagging)
classifiers were consistent to a certain extent, as seen from Table 8 versus Figure 6. For the quality metric run-time
cyclomatic complexity, the IPC metric CCC was more strongly correlated to it than RMC (correlation coefficient of 0.448
versus 0.42); in the classifier for this quality metric, CCC was seen to be more important than RMC as well (importance
scores of 0.56 versus 0.44). The same consistency was observed between PLC and CCL for quality classification with
respect to attack surface—the former was more strongly correlated with this quality metric, and also more important for
the classification, than the latter.

However, the contrasts of effectiveness across our classifiers were not always consistent with those of the correlation
coefficients between corresponding IPC metrics and quality metrics, according to Table 8 versus Table 9 and Table 10.
For instance, with the quality metric attack surface, CCL and PLC had the strongest correlation among all IPC metrics,
yet the classifier (CCL,PLC)—attack surface was not the most accurate among all the dynamic metric classifiers, in
either the hold-out validation or 10-fold CV when the classification is supervised. For another example, the other
three dynamic metric classifiers had noticeably different F1 accuracy (ranging from 96.23% to 99.86% for supervised
classification), especially for unsupervised classifications (ranging from 85.28% to 93.27%), although the underlying IPC
metrics and quality metrics had very close absolute correlation coefficients (ranging from 0.42 to 0.48); and the classifier
with more strongly correlated underlying IPC and quality metrics was not always more accurate.

This inconsistency can be explained by the fact that the underlying learning algorithms of these classifiers do not work
based on statistical correlations. Moreover, the correlation analyses and learning-based classifications focus on different
aspects of the relationships between the two kinds of variables (i.e., the IPC metrics and the quality metrics)—the former
quantifies the strength of linear association between these two kinds of variables [122] as regards how the second kind
of variable changes with the first, while the latter reflects the influences of the first kind of variable on how the two
ranges of values (for normal versus anomalous) of the second can be differentiated. The statistical correlations provided
a general direction regarding how IPC measurements may help assess distributed software quality with respect to which
direct quality metrics. These correlations also essentially enabled the design of the quality classifiers in DISTMEASURE.
Yet the correlation coefficients themselves are not sufficient for understanding the quality connections/implications of

the IPC measurements, which is why we built the quality classifiers in our framework.
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7 THREATS TO VALIDITY

The main threat to internal validity lies in possible implementation errors in our computation for IPC metrics, direct

measures of quality metrics, correlation analysis, and quality classification. To reduce this threat, we performed
careful code reviews for our tools and used the two smallest subjects to manually validate their functionalities and
analysis/prediction results. In particular, we confirmed the correctness of the dynamic dependencies underlying most
of our IPC measurements using these subjects. While we did not find such issues in our subject executions, missing
dependencies induced by dynamic code constructs (e.g., dynamically loaded code) may generally exist in distributed
software, which would lead to false dependencies hence incorrect IPC measurements.

In addition, our results might have been affected by various factors that we have not considered but have influenced
the process for collecting the data needed for directly quantifying the studied quality metrics. For instance, in order
to quantify code churn size as a direct quality metric, we needed to collect the data on system releases from the
respective version histories. While we considered various sources for collecting such data, our collection might have
been incomplete because some system releases were not available online. To mitigate this threat, we carefully searched
and reviewed all possible release data of our subjects, and reached out to the developers with data requests when we
noticed likely missing releases from the sources we initially found.

Likewise, the validity of our results is subject to the particular direct metrics we used for quantifying related quality
characteristics/sub-characteristics—the results might not be valid with respect to possible other relevant direct measures.
For instance, we currently used (run-time) cyclomatic complexity to quantify testability, without considering other
metrics that may affect this quality sub-characteristic. Yet systems with similar (run-time) cyclomatic complexity may
not always be similarly testable. For example, suppose one program deals with complex data structures while frequently
reading/writing external files while another program only has simple data operations. Intuitively, the testability of
these two programs should be quite different. However, their control flow structures might be very similar during
their executions, leading to close (run-time) cyclomatic complexity between them. We currently do not consider other
quality metrics (e.g., throughput, response time, availability, scalability) that might be related to IPC metrics as well.
The reason is that we would like to be more focused—on quality metrics that we can justifiably connect to IPC-related
system behaviors. Yet we cannot claim that no other quality metric can be informed by IPC measurements.

The main threat to external validity is that our study results may not generalize to other distributed systems and

executions. To reduce this threat, we have chosen subjects of various scales and application domains, focusing on
real-world/industry-scale systems of varied architectures. For instance, among the subjects chosen, ZooKeeper is widely
used by a number of Apache projects (e.g., Hadoop, Spark, and HBase) and large companies (e.g., Facebook, Twitter,
and Yahoo!) while Voldemort is a system underlying LinkedIn’s products. We further note that our major findings (i.e.,
the correlations between IPC metrics and quality metrics) for Part 2 of our framework were consistent with those from
the preliminary version of our study [47]—for the common IPC metrics and quality metrics considered in both studies.
This consistency corroborates both the validity of our earlier results and the credibility of the findings presented in this
paper. Nevertheless, our results are best interpreted with respect to the systems and executions actually studied.
While limited run-time input coverage is a common limitation of dynamic analysis, it is irrelevant for Part 1 of
our framework because it is supposed to focus on measuring the IPC characteristics (which is dynamic by nature)
just for the particular executions of interest. However, a relevant validity threat does arise for Part 3 where we used
these dynamic metrics to classify the quality of the distributed software with respect to static quality metrics. With

different run-time inputs, the correlations between our IPC metrics and static quality metrics, and the performance of
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our classifiers built on the IPC metrics for quality classification with respect to those static quality metrics, may deviate
from what we reported. Regarding the run-time inputs, another external validity threat is that, while we desired to
consider different types of inputs (e.g., integration, system, and load tests) for each subject system and tried hard to
collect such inputs, we ended up being able to do so only for ZooKeeper. Fortunately, the integration tests, which were
available and used for each subject, are indeed intended to exercise the whole-system behaviors. Further, to reduce
the threat, we have manually constructed a large number of run-time inputs for our subjects while ensuring each
corresponding execution was unique, which did largely increase the total run-time coverage for each subject.

The main threat to construct validity lies in our use of statistical analysis for drawing our conclusions. In computing

the system-level IPC metrics, we took the means of lower-level metrics without accounting for the variations (e.g.,
standard deviations), which would need to be considered in more thorough measurement schemes. For a group of data
with large variations, there may not be a perfect summary statistic using a single number, for which mean is still a
widely used aggregation function—other choices like min and max may not be better for us. Also, in our experiments
for this paper, we calculated such variations and found that at process level they are generally negligible in our subject
executions. This is not surprising because, per our configurations of these executions as described earlier (§5.1.1), most
involved only 2 to 3 machines/processes. The variations at method and class levels are larger, but they are still not large
enough to change comparisons in respective metrics between any pair of system executions hence changing conclusions
regarding our research questions, especially for class-level metrics. Note that we only have one metric (i.e., IPR) that
can be computed at method level, and it is not involved in our major findings in any research question, nor used in our
quality anomaly detection classifiers. Yet, in a larger-scale system deployment, these variations could be much larger.
To reduce the threat as regards our correlation analysis, we purposely chose Spearman‘s method over alternatives as it
is a non-parametric method that does not assume normality of underlying data distribution or relationships between the
data groups. On the other hand, although we endeavored to largely augment the run-time inputs for our subjects, this
augmentation did not help get more samples for training and testing the quality classifiers with respect to static quality
metrics. As a result, our evaluation for these classifiers was quite premature. We would need thousands of different Java
distributed systems as subjects for a much stronger evaluation in this regard, which is not readily feasible at this point.
Another construct validity threat lies in our process of labeling the ground-truth quality status between normal and
anomalous in evaluating our quality anomaly detection classifiers. Since these ground-truth labels were determined
based on the outlier values of target quality metrics among the given set of samples, the labels might change when that
set changes (e.g., when we consider more systems or augment their test inputs further). Thus, the ground-truth quality
status is defined relatively to the given dataset; hence, the evaluation results of the classifiers should be interpreted
with respect to the set of subject systems and executions we considered in the evaluation.

The lack of enough distributed system subjects also led to a threat to conclusion validity regarding the static qual-

ity metric classifiers. In building these classifiers, we measured the IPC metrics during each subject execution and
aggregated the measurement results over all executions of the subject into one data point. This aggregation ignored
the varying characteristics of dynamic behavioral profiles across different executions of each subject, and essentially
treated all of the executions of each subject as being collectively representative of that subject’s holistic behaviors. Such
a treatment may cause biases even in our preliminary conclusions about the performance of these classifiers. Finally,
while we have shown the usefulness of IPC measurements of distributed systems using our IPC metrics for assessing
their various quality characteristics/sub-characteristics, we must also acknowledge that our quality classification is
only a high-level assessment of the quality being anomalous (hence worth more inspection/attention) or not. Currently,

D1sTMEASURE is not sufficient for localizing/diagnosing such anomalies when signaled.
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8 RELATED WORK

We discuss previous works that are most related to ours in three categories: dynamic coupling metrics (§8.1), run-time

cohesion (§8.2), and predictive software quality assessment based on machine learning (§8.3).

8.1 Dynamic Coupling Metrics

Dynamic coupling metrics have been well studied for single-process systems [31, 74, 135]. They also have been indirectly
utilized to assist with refactoring monolithic systems to microservices [80, 90]. Arisholm et al. [9] defined a set of
dynamic coupling metrics for object-oriented software and studied the relationship between dynamic coupling measures
and software change-proneness. Their dynamic class export/import coupling (IC_CD and EC_CD) metrics initially
motivated the definition of our IPC metric RMC (Runtime Message Coupling). On the other hand, compared to their
coupling measurement between classes, RMC measures the coupling between processes.

Dynamic coupling metrics also have been used to estimate architectural risks [145] and complexity [61] in relation
to quality metrics such as maintainability [60, 106]. Most of these metrics were defined under the assumption that there
exists an explicit reference/invocation between the entities (e.g., object, method, and class) involved in the coupling
measure, thus they are not suitable for measuring interprocess communication in distributed systems. Meanwhile, our
IPC metrics can also be used as complexity metrics and indicators of various quality metrics.

Jin et al. [71] defined a dynamic component coupling metric (CPC) directly based on inter-component dependencies
derived from method executions with timing information. Conceptually, the CPC metric is closely related to our IPR
metric, in that both are based on approximated dynamic dependencies across components. However, the interprocess
dependencies on which our IPR computation is based are significantly more precise than the purely control-flow-based
dependencies approximated in [71], according to our previous study [27]. In addition, CPC was defined for measuring
structural complexity, while IPR is proposed primarily as a reusability metric. Previous reuse metrics mainly concern
reusing library code and connectivity between server and client nodes as a whole [42]. Instead, we measure interprocess

reusability at code level in terms of metrics defined based on code dependencies.

8.2 Run-Time Cohesion

The cohesion of a software component refers to the extent to which the elements of the component are related [14].
A highly cohesive component performs a set of closely relevant actions and is difficult to be split into separate
components [145]. Static cohesion has been widely explored in software measurements. More recent relevant works
increasingly focused on run-time (i.e., dynamic) cohesion [36, 63, 96, 153].

In particular, Jin et al. [70] proposed a dynamic cohesion measurement approach for distributed software, which
includes two component-level cohesion metrics (i.e., CC and CCW) by extending the metric lack of cohesion in methods
(LCOM), a classical cohesion metric for single-process programs. A structural quality attribute cohesion factor of
component (CHC) was later introduced also for distributed software [71]. These cohesion metrics were evaluated
against specialized distributed programs (e.g., Netflix RSS Reader, RSS Reader Recipes, and/or the distributed version of
iBATIS JPetStore) [70, 71]. The underlying measurement tool used was also designed for these specialized systems. In
comparison, our cohesion metric (PLC) is defined based on method-level dynamic dependencies and evaluated against

real-world common distributed systems.
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8.3 Software Quality Assessment based on Machine Learning

Software quality prediction helps developers with better utilization of resources, effort estimates, and making testing
plans for components that may have defects, hence reducing development costs and mitigating risks at initial stages [113,
124]. Various machine learning techniques, using unsupervised or supervised learning algorithms (e.g., logistic regression,
support vector machine, neural networks, and k-means clustering) have been used for software quality assessment.

For instance, Khoshgoftaar and Allen proposed a software quality assessment model using logistic regression [77].
Xing et al. employed a support vector machine technique for the classification of software modules based on a complexity
metric to predict software quality in early development stages [114]. Abe et al. used a Bayesian classifier to estimate the
success or failure of a software project [2]. In addition, neural network techniques were also applied to the prediction of
software quality [78, 124, 137, 141]. Furthermore, SMPLearner [152] trains a software maintainability prediction model
by gathering the real maintenance efforts computed from code change histories; it experimented with 24 common
machine learning techniques, including support vector machine regression, random forest, K-star, and k-nearest
neighbors. In comparison, while we also explored a number of alternative learning algorithms, our quality classifiers
are built on dynamic coupling and cohesion metrics and target distributed system executions while focusing on IPC
characteristics, a defining aspect of distributed system behaviors.

As a type of software quality assessment model, numerous software defect prediction models have been built from
single or multiple software projects for within- or cross-project prediction [150, 151, 154], respectively. For example,
Zhang et al. built a universal defect prediction model with a large number of software projects from various contexts by
clustering projects based on the similarity of distribution across multiple predictors, deriving the rank transformations,
and fitting the model on the data transformed beforehand [150]. An unsupervised learning model does not require any
training data and thus avoids any homogeneity requirement (e.g., a similar distribution of metrics) among projects [151].
Moreover, some simple unsupervised models outperformed supervised models for a special type of software defect
prediction (i.e., effort-aware just-in-time defect prediction) for open-source software systems [45, 148]. In particular,
unlike distance-based unsupervised learning (e.g., k-means clustering) models, connectivity-based unsupervised defect
classifiers are based on the assumption of a similar intuition that defective entities likely cluster around the same
neighborhood (i.e., area) [151].

In contrast to these prior defect prediction models that are commonly static—they are based on project features rather
than system execution traits, the quality classifiers in DISTMEASURE are dynamic as they are based on IPC measurements
in specific executions. We also differ from prior defect prediction works in that we leverage IPC characteristics as a
particular aspect of system behaviors, which have not been exploited before. DISTMEASURE also addresses the quality
of distributed software systems, which were not particularly addressed in earlier works. Finally, unlike prior works on
defect prediction that mainly aim at predicting whether a software unit (e.g., a file) contains functional defects, our
quality classifiers address a variety of (both functional and non-functional) quality characteristics. Meanwhile, we recall
that the main goal of DISTMEASURE is to enable and explore measuring IPC-induced behaviors and understanding the
measurement results from a perspective of their quality correlations, rather than developing a defect prediction model,

for distributed systems.

9 CONCLUSION AND FUTURE WORK

This paper contributed to dynamic software measurement with a novel set of six metrics for distributed systems

that characterize their IPC, a vital aspect of distributed systems’ run-time behaviors, at various levels (whole-system,
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process/component, class, and method). In addition, with these metrics, we measured the IPC in eleven real-world
distributed systems with respect to varied execution scenarios and demonstrated that each of the metrics was uniquely
expressive of IPC traits in those systems and their executions. We extensively analyzed the statistical correlations
among these IPC metrics and various direct metrics of different quality characteristics/sub-characteristics in reference
to a standard software quality model. Then, based on the discovered correlations, we built learning-based classifiers
classifying the quality metrics of distributed systems for further understanding the characteristics and usefulness of
IPC measurements from the perspective of their predictive relationships with different aspects of the quality of the
systems. Our experiments revealed that IPC measures can be significantly indicative of the various quality aspects of
distributed systems hence potentially help developers assess, and improve the quality of these systems.

One future step is to examine the evolution history of distributed systems by considering multiple versions of each
system. Then, we will characterize how IPC-induced behaviors change over time, also in terms of the proposed IPC
metrics and using our measurement framework, with respect to how the system quality varies in terms of the correlated
direct quality metrics. For instance, we may observe how the PLC and CCL measures change in relation to the changes
in the subject system’s attack surface (e.g., whether these metrics’ values decrease from one version of the system
to another version when more vulnerabilities are reported between the two versions). It would also be rewarding to
consider different performance/quality models (e.g., [125]) when studying our research questions. Also valuable to look
into in the future are other types of distributed systems such as high-performance computing frameworks like Spark

and Hadoop.
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