
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DroidCat: Effective Android Malware Detection
and Categorization via App-Level Profiling

Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao

Abstract—Most existing Android malware detection and categorization techniques are static approaches, which suffer from evasion
attacks such as obfuscation. By analyzing program behaviors, dynamic approaches are potentially more resilient against these attacks.
Yet existing dynamic approaches mostly rely on characterizing system calls which are subject to system-call obfuscation. This paper
presents DroidCat, a novel dynamic app classification technique, to complement existing approaches. By using a diverse set of
dynamic features based on method calls and ICC Intents without involving permission, app resources, or system calls while fully
handling reflection, DroidCat achieves superior robustness than static approaches as well as dynamic approaches relying on system
calls. The features were distilled from a behavioral characterization study of benign versus malicious apps. Through three
complementary evaluation studies with 34,343 apps from various sources and spanning the past nine years, we demonstrated the
stability of DroidCat in achieving high classification performance and superior accuracy compared to two state-of-the-art peer
techniques that represent both static and dynamic approaches. Overall, DroidCat achieved 97% F1-measure accuracy consistently for
classifying apps evolving over the nine years, detecting or categorizing malware, 16% to 27% higher than any of the two baselines
compared. Further, our experiments with obfuscated benchmarks confirmed higher robustness of DroidCat over these baseline
techniques. We also investigated the effects of various design decisions on DroidCat’s effectiveness and the most important features
for our dynamic classification. We found that features capturing app execution structure such as the distribution of method calls over
user code and libraries are much more important than typical security features such as sensitive flows.

Index Terms—Android, security, malware, dynamic analysis, profiling, detection, categorization, stability, robustness, obfuscation.

F

1 INTRODUCTION

Android has been the target platform of 97% malicious
mobile apps [1], most of which steal personal information,
abuse privileged resources, and/or install additional
malicious software [2]. With the Android market growing
rapidly, it is critically important to differentiate malware
from benign apps (i.e., malware detection). Further, for
threat assessment and defense planning, it is also crucial to
differentiate malware of different families (i.e., malware
categorization by family).

Two main classes of approaches to Android malware
detection/categorization have been studied: static and
dynamic. Static approaches leverage static code analysis to
check whether an app contains abnormal information flows
or calling structures [3], [4], [5], [6], [7], [8], matches
malicious code patterns [9], [10], requests for excessive
permissions [11], [12], [13], [14], and/or invokes APIs that
are frequently used by malware [15], [16], [17], [18].

Static approaches may have the advantage of being
sound and scalable to screening large numbers of apps, yet
they cannot always precisely detect malware for three
reasons. First, due to the event-driven features of Android,
such as lifecycle callbacks and GUI handling, run-time
control/data flows are not always statically estimatable;
they depend on the run-time environment. This
approximation makes static analysis unable to reveal many
malware activities. Second, the mere existence of some
permissions and/or APIs in code does not always mean
that they are actually executed or invoked frequently at
runtime to cause an attack. Purely checking for existence of
permissions and/or APIs can cause static analysis to
wrongly report malware. In particular since API Level 23,
Android has added dynamic permission support such that

• Haipeng Cai is with the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA, 99163.
E-mail: haipeng.cai@wsu.edu

• Na Meng, Barbara Ryder, and Daphne Yao are with the Department of
Computer Science, Virginia Tech, Blacksburg, VA.

Manuscript received February 19, 2018; revised September, 2018.

apps can request, acquire, and revoke permissions at
runtime [19]. This new run-time permission mechanism
implies that static approaches will not be able to discover
when an abnormal permission is requested and granted at
runtime, and would suffer from more false alarms if users
revoke dangerous permissions after app installation. Third,
static approaches have limited capabilities in detecting
malicious behaviors that are exercised through dynamic
code constructs (e.g., calling sensitive APIs via reflection).
These and other limits [20] make static analysis vulnerable
to widely adopted detection-evading schemes (e.g., code
obfuscation [21] and metamorphism [22]). Recently,
resource-centric features are also used in static code
analysis to overcome the above-mentioned limitations [23].
However, such approaches can still be evaded by malware
adopting resource obfuscation [24], [25].

In comparison, dynamic approaches provide a
complementary way to detect/categorize malware [26],
[27], [28], [29]. In particular, behavior-based techniques [30]
model program behavioral profiles [31], [32] with
system/API call traces (e.g., [33], [34], [35]) and/or
resource usage [28], [33]. Machine learning has been
increasingly incorporated in these techniques, training
classification models from those profiles to distinguish
malware from benign apps. However, system-call based
malware detectors can still be evaded when an app
obfuscates system calls [30], [36], [37], [38]. Sensitive API
usage does not necessarily indicate malicious intentions.
Abnormal resource usage does not always correspond to
abnormal behaviors, either. Generally, behavior-based
approaches relying on system-call sequences and/or
dependencies may be easily thwarted by system-call
obfuscation techniques (e.g., mimicry attack [37] and
illusion [38]). A more comprehensive dynamic app
classifier is needed to capture varied behavioral profiles
and thus be robust to attacks against specific profiles.

Recent dynamic Android malware categorization
approaches utilize the histogram [39] or chains (or

dependencies) [34] of system calls. A recent dynamic
Android malware detection technique [26] differentiates
API call counts and strictly matches API signatures to
distinguish malware from benign apps. Due to the
underlying app features used, both kinds of techniques are
subject to replacement attacks [30] (replacing system-call
dependencies with semantically equivalent variants) in
addition to system-call obfuscation (renaming system-call
signatures). Also, the detection approach [26] may not
work with apps that adopt the dynamic permission
mechanism already introduced in Android [19], due to its
reliance on statically retrieved app permissions. Several
other malware detectors combine dynamic profiles with
static features (e.g., those based on APIs [18] or static
permissions [26], [35]), and thus are vulnerable to the same
evasion schemes impeding static approaches.

In this paper, we develop a novel app classification
technique, DroidCat, based on systematic app-level
profiling and supervised learning. DroidCat is developed
to not only detect but also categorize Android malware
effectively (referred to as the malware detection and malware
categorization mode, respectively). Different from existing
learning-based dynamic approaches, DroidCat trains its
classification model based on a diverse behavioral app
profile consisting of features that cover run-time app
characteristics in complementary perspectives. DroidCat
profiles inter-component communication (ICC) calls and
invocations of all methods, including those defined by user
code, third-party libraries, and the Android framework,
instead of monitoring system calls. Also, it fully handles
reflective calls while not using features based on app
resources or permissions. DroidCat is thus robust to attacks
targeting system calls or exploiting reflection. DroidCat is
also robust to attacks targeting specific sensitive APIs,
because they are not the only target of method invocations.

The features used in DroidCat were decided based on a
dynamic characterization study of 136 benign and 135
malicious apps. In the study, we traced the execution of
each app, defined and evaluated 122 behavioral metrics to
thoroughly characterize behavioral differences between the
two app groups. All these metrics measure the relative
occurrence percentage of method invocations or ICCs, which
can never be captured by static malware analyzers.

Based on the study, we discovered 70 discriminating
metrics with noticeably different values on the two app
groups, and included all of them in the feature set. The 70
features are grouped into three feature dimensions:
structure, security, and ICC. By training a model with the
Random Forest algorithm [40], DroidCat builds a
multi-class classifier that predicts whether an app is benign
or malicious from a particular malware family. We
extensively assessed DroidCat in contrast to DroidSieve [23],
a state-of-the-art static app classification technique, and
Afonso [27], a state-of-the-art dynamic peer approach. The
evaluation experiments are conducted on 17,365 benign
and 16,978 malicious apps that span the past nine years.

Our evaluation results revealed very-high stability of
DroidCat in providing competitive classification accuracy
for apps evolving over the years: it achieved 97.4% and
97.8% F1 accuracy for malware detection and malware
categorization, respectively, all with small variations across
the datasets of varying years. Our comparative study
further demonstrated the substantial advantages of
DroidCat over both baseline techniques, with 27% and 16%
higher F1 accuracy in the detection and categorization
mode, respectively. We also assessed the robustness of our
approach against a set of malware adopting various

sophisticated obfuscation schemes, along with three
different sets of benign apps. Our study showed that
DroidCat worked robustly well on obfuscated malware
with 96% to 97% F1 accuracy, significantly (5% to 46%)
higher than the F1 accuracy of either baseline approach.
Our analysis of the three techniques’ performance with
respect to varying decision thresholds further corroborated
the consistent advantages of our approach. We also
conducted in-depth case studies to assess the performance
of DroidCat on individual malware families and various
factors that may impact its performance.

In summary, we made the following contributions:
• We developed DroidCat, a novel Android app

classification approach based on a new, diverse set of
features that capture app behaviors at runtime through
short app-level profiling. The features were discovered
from a dynamic characterization study that revealed
behavioral differences between benign and malicious
apps in terms of method calls and ICCs.

• We evaluated DroidCat via three complementary
studies versus two state-of-the-art peer approaches as
baselines on 34,343 distinct apps spanning year 2009
through year 2017. Our results showed that DroidCat
largely outperformed the baselines in stability,
classification performance, and robustness in both
classification modes, with competitive efficiency.

• We conducted in-depth case studies of DroidCat
concerning its performance on individual malware
families and various factors that affect its classification
capabilities. Our results confirmed the consistently
high overall performance of DroidCat, and additionally
showed its strong performance on most of the families
we examined. We also identified the most effective
learning algorithm and dynamic features for DroidCat,
and demonstrated the low sensitivity of DroidCat to
the coverage of dynamic inputs.

• We released for public access DroidCat and our
benchmark suites, to facilitate reproduction of our
results and the development/evaluation of future
malware detection and categorization techniques.

2 MOTIVATING EXAMPLE

Malware developers increasingly adopt various
obfuscation techniques (e.g., code reflection) to evade
security checks [41]. Figure 1 shows five code excerpts in a
real trojan-horse sample of a dominant [42] malware family
FakeInst which sends SMS texts to premium-rate numbers.
Except for data encryption (by calling m6 on line 3), this
malware heavily uses reflection to invoke methods
including Android APIs so as to access privileged resources
such as device id (lines 1–11). In addition, to exploit the
SMS service (lines 13–18), it retrieves the text and number
needed for the malicious messaging via reflection (line
27–29) and then invokes sendSms (line 30) which calls
ad.notify.SmsItem::send via reflection again (lines 20–23).

While simple reflection with string constants (e.g., lines
22,27,28) can be deobfuscated by static analysis [43], [44] (at
extra cost), more complex cases may not be (e.g., lines
4,5,15,16 where the class and method names are retrieved
from a database object mdb). As a result, static code-based
features related to APIs and sensitive flows would not be
extracted from the app, and techniques based on such
features would not detect the security threats. Also, the
malicious behaviour in this sample is exhibited in its code
only, not reflected in its resource/asset files (e.g.,
configuration and UI layout); thus approaches bypassing

2

1 // in ad.notify.Settings::getImei(Context context)
2 // m6 returns ’phone’; cls returns ’android.telephony.TelephonyManager’
3 TelephonyManager tm = context.getSystemService(m6(b, b−1, x|76));
4 Class c = Class.forName(mdb.cls(ci));
5 Method m = c.getMethod(mdb.met(mi),null); //met returns ’getDeviceId’
6 return m.invoke(tm, null);
7

8 // in NotificationApplication::onCreate(); cls returns ’ad.notify.Settings’
9 Class c = Class.forName(mdb.cls(ci)); //met returns ’getImei’
10 Method m = c.getMethod(mdb.met(mi), new Class<Context>[1]);
11 adUrl += m.invoke(null, context);
12

13 // in ad.notify.SmsItem::send(String str, String str2)
14 // cls returns ’android.telephony.SmsManager’
15 Class c = Class.forName(mdb.cls(ci)); //met returns ’sendTextMessage’
16 Method m = c.getMethod(mdb.met(mi), new Class<Object>[5]);
17 SmsManager smsManager = SmgManager.getDefault();
18 m.invoke(smsManager, str, null, str2, null, null)
19

20 // in ad.notify.OperaUpdateActivity::sendSms(String str, String str2)
21 Class c = Class.forName(mdb.cls(ci)); // cls returns ’ad.notify.SmsItem’
22 Method m = c.getMethod("send", new Class<String>[2]);
23 Boolean bs = m.invoke(null, str, str2);
24

25 // in ad.notify.OperaUpdateActivity::threadOperationRun(int i, Object o)
26 SmsItem smsItem=getSmsItem(ad.notify.NotifyApplication.smsIndex);
27 Class c = Class.forName("ad.notify.SmsItem");
28 Field f1 = c.getField("number"); int number = f1.get(smsItem);
29 Field f2 = c.getField ("text"); Object text = f2.get(smsItem);
30 sendSms(number, text);

Fig. 1. Code excerpts from a FakeInst malware sample: the complex and
heavy use of reflection can thwart static code-based feature extraction.

code analysis (e.g., DroidSieve [23]) might not succeed
either. Further, malware developers can easily obfuscate
app resources too [25]. In these situations, we believe that a
robust dynamic approach is a necessary complement for
defending against such malware samples.

3 BACKGROUND
Android applications. Programmers develop Android
apps primarily using Java, and build them into app
package (i.e., APK) files. Each APK file can contain three
software layers: user code (userCode), Android libraries
(SDK), and third-party libraries if any (3rdLib). An Android
app typically comprises four components as follows [45]:
Activities which deal with UI and handle user interaction to
the device screen, Services which handle background
processing associated with an application, Broadcast
Receivers which handle communication between Android
OS and applications, and Content Providers which handle
data storage and management (e.g., database) issues.
ICC. Components interact with each other through ICC
objects—mainly Intents. If both the sender and the receiver
of an Intent are within the same app, we classify the ICC as
internal; otherwise, it is external. If an Intent has the receiver
explicitly specified in its content, we classify the ICC as
explicit; otherwise, it is implicit.
Lifecycle methods and callbacks. Each app component
follows a prescribed lifecycle that defines how this
component is created, used, and destroyed.
Correspondingly, developers are allowed to overwrite
various lifecycle methods (e.g., onCreate(), onStart(), and
onDestroy()) to define program behaviors when the events
happen. Developers can also overwrite other event
handlers (e.g., onClick()) or define new callbacks to
implement extra logic when other interesting events occur.
Security-relevant APIs. There are sensitive APIs that
acquire personal information of users like locations and
contacts. For example, Location.getLatitude() and
Location.getLongitude() retrieve GPS location
coordinates. We consider these APIs sources of potential

sensitive information flows. There are also output APIs that
send data out of the current component via network or
storage. We consider them sinks of potential sensitive
information flows. If an app’s execution trace has any
(control-flow) paths from sources to sinks, the app might
be malicious due to potential sensitive data leakage.

4 FEATURE DISCOVERY AND COMPUTATION
At the core of our approach are its features that are
computed from app execution traces. Although from these
traces we could extract many features, not every feature is
a good differentiator of malicious apps from benign ones.
Therefore, with a relatively small dataset (136 benign and
135 malicious apps) (Section 4.1), we first conducted a
systematic dynamic characterization study by defining and
measuring 122 metrics (Section 4.2) as possible features.
Based on the comparison between the two groups of apps,
we decided which metrics were good differentiation
factors, and thus included them into our feature set
(Section 4.4). The central objective of this exploratory study
is to discover the features to be used by DroidCat.

4.1 Benchmarks
Our characterization study used a benchmark suite of both
benign apps and malicious apps. To collect benign apps,
we downloaded the top 3,000 most popular free apps in
Google Play at the end of year 2015 as our initial candidate
pool. Next, we randomly selected an app from the pool and
checked whether it met the following three criteria: (1) the
minimum supporting SDK version is 4.4 (API 19) or above,
(2) the instrumented APK file runs successfully with inputs
by Monkey [46], and (3) navigating the app with Monkey
inputs for ten minutes covers at least 50% of user code (we
used our characterization toolkit DroidFax [47] which
includes a statement-coverage measurement tool directly
working with APKs, which instruments each statement in
user code to track coverage at runtime). If an app met all
criteria, we further checked it with VirusTotal [48] to
confirm if the app was benign. As such we obtained 136
benign apps. For malicious apps, we started with the
MalGenome dataset [49], the most widely used malware
collection. We found 135 apps meeting the above criteria,
and confirmed them all as malware using VirusTotal. The
APK sizes of our benchmarks vary from 2.9MB to 25.6MB.
Recall that this characterization study is exploratory with
the goal of identifying robust and discriminating dynamic
features for app classification, thus we aimed at a relatively
small scale (in terms of the benchmark suite size).

4.2 Metrics Definition
Based on collected execution traces, we characterized app
behaviors by defining 122 metrics in three orthogonal
dimensions: structure, ICC, and security (Table 1).
Intuitively, the more diversely these metrics capture app
execution, the more completely they characterize app
behaviors. These metrics measure not only the existence of
certain method invocations or ICCs, but also their relative
occurrence frequencies and distribution. For brevity, we
will only discuss a few metrics in the paper; detailed
description of all metrics can be found at
http://chapering.github.io/droidfax/metrics.htm.

Structure dimension contains 63 metrics on the
distributions of method calls, their declaring classes, and
caller-callee links. 31 of these metrics describe the
distributions of all method calls among three code layers

3

http://chapering.github.io/droidfax/metrics.htm

TABLE 1
Metrics for dynamic characterization and feature selection

of Substantially # of Noticeably
Dimension # of Metrics Exemplar Metric Disparate Metrics Different Metrics

Structure 63 The percentage of method calls whose definitions are in user code. 15 32
ICC 7 The percentage of external implicit ICCs. 2 5

Security 52 The percentage of sinks reachable by at least one path from a sensitive source 19 33
Total 122 36 70

(i.e. user code, third-party libraries, and Android SDK), or
among different components. The other 32 metrics describe
the distributions of a specific kind of methods—callbacks
(including lifecycle methods and event handlers). One
example Structure metric is the percentage of method calls
to the SDK layer. Another example is the percentage of
Activity lifecycle callbacks over all callbacks invoked.

ICC dimension contains 7 metrics to describe ICC
distributions. Since there are two ways to classify ICCs,
internal vs. external, and implicit vs. explicit, enumerating all
possible combinations leads to four metrics. The other three
metrics are defined based on the type of data contained in
the Intent object associated with an ICC: the Intent carries
data in either its URI or extras field only, or both. One
example ICC metric is the percentage of ICCs that carry
data through URI only. Another example is, out of all ICCs
exercised, the percentage that are implicit and external.

Security dimension contains 52 metrics to describe
distributions of sources, sinks, and the reachability between
them through method-level control flows. The reachability
is used to differentiate from all exercised sources/sinks that
are risky. If a source reaches at least one sink, it is
considered a risky source. Similarly, a risky sink is reachable
from at least one source. Both of these indicate security
vulnerabilities, because sensitive data may be leaked when
flowing from sources to sinks. For example, a Security
metric is the percentage of method calls targeting sources
over all method calls. Another example is the percentage of
exercised sinks that are risky.

4.3 Metrics (Feature) Computation
To compute the 122 metrics of an Android app, we first
instrumented the program for execution trace collection.
Specifically, we used Soot [50] to transform each app’s APK
along with the SDK library (android.jar) into Jimple
code (Soot’s intermediate representation), and then inserted
in the Jimple code probes to run-time monitors for tracing
every method call (including those targeting SDK APIs and
third-party library functions) and every ICC Intent. We also
labeled additional information for instrumented classes
and methods to facilitate metric computation. For instance,
we marked the component type for each instrumented
class, the category of each instrumented callback, and the
source or sink property of each relevant SDK API. To
decide the component type of a class such as Foo, we
applied Class Hierarchy Analysis (CHA) [51] to identify all
the superclasses. If Foo extends any of the four known
component types such as Activity, its component type is
labeled accordingly. We used the method-type mapping list
in [47] to label the category of callbacks and the
source/sink property of APIs. Exception handling and
reflection are two widely used Java constructs. Accordingly,
our instrumentation fully tracks two special kinds of
method and ICC calls: (1) those made via reflection, and (2)
those due to exceptional control flows [52] (e.g., calls from
catch blocks and finally blocks).

Next, we ran the instrumented APK of each app on an
Android emulator [53] to collect execution traces, which
include all method calls and ICCs exercised. Note that we

do not monitor OS-level system calls, because we want
DroidCat to be robust to any attacks targeting system calls.
Our instrumentation is not limited to sensitive APIs, either.
By ensuring that sensitive APIs are not the only target
scope of method-call profiling, we make DroidCat more
robust against attacks targeting sensitive APIs. Prior work
shows that even without invoking malicious system calls or
sensitive APIs, some malicious apps still can conduct
attacks by manipulating other apps via ICCs [54], [55], [56],
[57]. Thus, we also trace ICCs to further reveal behavioral
differences between benign and malicious apps.

To characterize the dynamic behaviors of apps, we need
to run each instrumented app for a sufficiently long time
using various inputs to cover as many program paths as
possible. Manually entering inputs to apps is very
inefficient. In order to quickly trigger diverse executions of
an app, we used Monkey [46] to randomly generate inputs.
To balance between efficiency and code coverage, we set
Monkey to feed every app for ten minutes. (DroidCat only
executes each app for five minutes; we investigated the
effect of dynamic coverage on the effectiveness of DroidCat
in Section 7.3.) Once the trace for an app is collected via the
probed run-time monitors, most of the 122 metrics are
computed through straightforward trace statistics. The
metrics involving risky sources/sinks are calculated
through a dynamic call graph built from the trace, which
facilitates reachability computation.

4.4 Metrics (Feature) Selection
To identify any metric that well differentiates between the
two app groups, we measured the value of each metric on
every benchmark app, and then computed the mean values
separately for all benign and malware benchmarks. If a
metric had a mean value difference greater than or equal to
5%, we considered the behavioral profile of the two groups
substantially disparate with respect to the metric. If a
metric had a difference greater than or equal to 2%, we said
the behavioral profile was noticeably different with respect
to the metric. We experimented with various thresholds
chosen heuristically, and found these two (5% and 2%)
reasonably well represent two major levels of
differentiation between our malware and benign samples.

As shown in Table 1, by comparing mean metric values
across app groups, we found 36 substantially disparate
metrics, and 70 noticeably different metrics. We show the
top 10 differentiating metrics in Figure 2. There are ten
metrics listed on the Y-axis, and the X-axis corresponds to
mean metric values, which vary from 0% to 100%. Each
metric listed on Y-axis corresponds to: a red bar to show
the mean value of all malicious apps, and a green bar to
represent the mean of all benign ones. The whisker on each
bar represents the standard error of the mean. Empirically,
these 10 metrics best demonstrate the behavioral
differences between malicious and benign apps.

In the structure dimension, malicious apps call fewer
methods defined in SDK and more methods defined in user
code, and involve more callbacks relevant to UI. This
indicates that user operations may trigger excessive or
unexpected computation. For instance, on average, SDK

4

27%

21%

14%

10%

23%

56%

73%

12%

19%

60%

39%

9%

26%

42%

5%

84%

92%

28%

45%

8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Risky source invocation

Logging sink invocation

ICC carrying URI data only

External explicit ICC

System status event handler

View event handler

Activity lifecycle callback

3rdLib‐>SDK calls

UserCode‐>SDK calls

SDK‐>SDK calls malware benign

St
ru
ct
ur
e

IC
C

Se
cu
rit
y

Fig. 2. Top-10 differentiating metrics between malware and benign apps revealed by our exploratory characterization study.

Supervised
learning

Multi-class
classifier

Training

Testing

Instrumentation

Profiling

Feature extraction

Feature Computation
Instrumented

apps

Execution
traces

Behavioral
features

Benign
apps

Malicious
apps

Android
apps

classification
result

Monitoring ordinary method
calls and ICC Intents, and fully
handling calls via reflection
and/or exceptional control flows.

Fig. 3. DroidCat overview: it trains a multi-class classifier using benign and malicious apps and then classifies unknown apps.

APIs account for 80% function calls in the execution of
malicious apps, but 91% function calls in benign apps’
executions. Concerning caller-callee links, For instance,
SDK->SDK accounts for 60% of method calls in benign apps,
but only accounts for 8% in malware. In comparison,
UserCode->SDK and 3rdLib->SDK are the most frequent
caller-callee links in malware. In terms of callbacks,
malicious apps involve 92% Activity lifecycle callbacks
and 84% View event handlers. Both numbers are
significantly larger than their counterparts in benign apps:
73% and 56%. However, malicious apps involve a much
smaller portion of system status event handlers than
benign ones, which is 5% vs. 23%.

Implication 1: Malware tended to invoke SDK APIs
more often from user code or third-party libraries, and
define more UI callbacks indicating that user operations
on them may trigger excessive/unexpected computation.

In the ICC dimension, malware involves more external
explicit ICCs with more URI data carried by Intents. This
means that malware uses explicit ICCs more often to
potentially exploit specific external components, or sends
more URI data via ICCs to disseminate potentially
malicious URIs. Specifically, on average, malware
executions contain 42% external explicit ICCs, while benign
app executions only contain 10%. In reality, to
communicate with external components, benign apps
usually leverage implicit instead of explicit ICCs. This is
reasonable because developers usually know little about
the run-time environment of a user’s phone, such as what
external components are available to receive Intents.
Therefore, external implicit ICCs can be used to flexibly
detect all available potential receivers before any Intent is
sent. In contrast, the frequently used external explicit ICCs
by malware seem suspicious. Among data-carrying ICCs,
malicious apps have 30% ICCs carrying URI data, while
this number is only 10% in benign apps.

Implication 2: Malware may use more explicit ICCs to
potentially attack specific external components, or disse-
minate potentially malicious URIs more often via ICCs.

In the security dimension, malware invokes more risky
source APIs, but fewer logging sink APIs. By executing
more risky sources, malware may cause sensitive data
leakage. As shown in Figure 2, among all invoked source
APIs, malicious apps have 39% risky sources, while benign
ones only have 27%. Among all invoked sink APIs, logging
sinks accounts for 21% for benign apps, but 9% for
malware, which means users may log more frequently in
benign apps to secure their sensitive data operations.
Besides, we also observe that sink APIs like Network access
and Messaging (SMS/MMS), are invoked more frequently
by malware than benign apps.

Implication 3: Malicious apps exhibit less logging
practice than benign ones. They execute more risky sour-
ces, which may lead to sensitive data leakage.

5 THE DroidCat APPROACH
Based on our characterization study, we developed
DroidCat, an app classification approach leveraging
systematic profiling and supervised learning, to decide
whether a given app is benign or belongs to a particular
malware family. As shown in Figure 3, there are two phases
in our approach: training and testing. For training,
DroidCat takes both benign and malicious apps as inputs.
For each app, it computes the 70 metrics as behavioral
features as described above. The features are then provided
to supervised machine learning to train a multi-class
classifier [58], using the Random Forest algorithm [40]. For
testing, given an arbitrary app, DroidCat computes the
same set of behavioral features and then feeds these
features to the classifier to decide whether the app is
benign or a member of a malware family.

5

We implemented the learning component of DroidCat in
Python, using the Scikit-learn toolkit [59], to train and test
the classifier. We provided open source the entire DroidCat
system (including the feature computation component) and
our datasets at https://chapering.github.io/droidcat.

6 EVALUATION

For a comprehensive assessment of DroidCat’s capabilities
in malware detection and categorization, we conducted
three complementary evaluation studies. In Study I, we aim
to gauge the stability of DroidCat by applying it to four
longitudinal datasets (across nine years) to see how well it
works for apps in the evolving Android ecosystem. In
Study II, we compare the prediction performance of
DroidCat against state-of-the-art peer approaches, including
a static and a dynamic approach, by applying the three
techniques to two newest datasets among the four. In Study
III, we measure the robustness against obfuscation of the
three techniques using an obfuscation benchmark suite
along with varying benign sample sets. We first describe
our evaluation datasets in Section 6.1 and procedure in
Sections 6.2 and 6.3, and then present the evaluation results
of the three studies in Sections 6.4, 6.5, and 6.6, respectively.

6.1 Datasets
TABLE 2

Main datasets used in our evaluation studies

Dataset Period
Benign apps Malware

Source #Apps Source #Apps #Families
D1617 2016-2017 GP,AZ 5,346 VS,AZ 3,450 153
D1415 2014-2015 GP,AZ 6,545 VS,AZ 3,190 163
D1213 2012-2013 GP,AZ 5,035 VS,AZ,DB,MG 9,084 192
D0911 2009-2011 AZ 439 VS,AZ,DB,MG 1,254 88

Table 2 lists the various datasets (named by ids in the
first column) used in our evaluation experiments. Each
dataset includes a number (fourth column) of benign apps
and a number (sixth column) of malware in a number (the
last column) of families. Apps in each of these four datasets
are all from the same period (range of years, in the second
column), according to the age of each app measured by its
first-seen date we obtained from VirusTotal [48]. The table
gives the sources (third and fifth columns) of the samples.
AndroZoo (AZ) [60] is an online Android app collection
that archives both benign and malicious apps. Google Play
(GP) [61] is the official Android app store. VirusShare
(VS) [62] is a database of malware of various kinds
including Android malware. The Drebin dataset (DB) is a
set of malware shared in [15], and (Malware) Genome
(MG) is a malware set shared in [63]. We also used an
obfuscation benchmark suite along with benign apps from
AZ and GP for Study III (as detailed in Section 6.6).

Concerning the overhead of dynamic analysis, we
randomly chose a subset of samples from each respective
source, except for the MG dataset which we used all
samples therein given its relatively small size. A few apps
were discarded during the benchmark collection, because
they could not be unzipped, were missing resource files
(e.g., assets), or could not be successfully instrumented,
installed, or traced. In particular, for the D1617 and D1415
datasets which we used for a comparative study (Study II),
we also discarded samples with which any of the three
compared techniques failed in its analysis. We did not
apply any of the selection criteria in the characterization
study (Section 4.1). The numbers (of samples) listed in the
table are those of the remaining samples actually used in
our studies. In all, our datasets include 17,365 benign apps
and 16,978 malware, for a total of 34,343 samples. The age

of these samples ranged across the past nine years (i.e.,
2009–2017). We note that there were not exactly the same
samples shared by any two of our datasets (although some
samples in one dataset might be the evolved versions of
samples in another). In cases where the original datasets
(e.g., DB and MG) overlap, we removed the common
samples from either dataset (e.g., we dismissed MG
samples from the original DB dataset). We also ensured
that these four datasets did not overlap with the dataset
used in our characterization study—we excluded the 136
GP apps and 135 MG malware used in that study when
forming the four datasets in Table 2. The reason was to
avoid relevant biases (e.g., overfitting) since the
characterization dataset was used for developing/tuning
DroidCat (i.e., for discovering/selecting its features).

6.2 Experimental Setup
For the baseline techniques, we consider both static and
dynamic approaches to Android malware prediction. In
particular, we compare DroidCat to DroidSieve, a
state-of-the-art static malware detection and categorization
approach. DroidSieve characterizes an app with
resource-centric features (e.g., use permissions extracted
from the manifest file of an APK) in addition to code
(syntactic) features, and then uses these features to train an
Extra Trees model that is later used for predicting the label
of a given app. We chose Afonso as another baseline
technique, a state-of-the-art dynamic approach for app
classification. Afonso traces in an app the invocations of
Android APIs and system calls in specified lists, and uses
the call frequencies to differentiate malware from benign
apps based on a Random Forest model.

To enable our comparative studies, we obtained the
feature computation code from the DroidSieve authors and
implemented the learning component. With help of the
authors, we were able to reproduce the performance results
against part of the datasets used in the original evaluation
of this technique hence gained confidence about the
correctness of our implementation. We implemented the
Afonso tool according to the API and system call lists
provided by the authors. We developed DroidCat as
described earlier. To compute the features and prediction
results with the two baselines, we followed the exact
settings as described in the respective original papers (and
by the authors of DroidSieve via emails for which we
initially had difficulties getting performance results close to
originally reported ones). In particular, to produce the
execution traces required by Afonso, we ran each app on a
Nexus One emulator with API Level 23, 2G RAM, and 1G
SD storage for 5 minutes as triggered by Monkey random
inputs (same as for DroidCat as described in Section 4.3).
All of our experiments were performed on a Ubuntu 15.04
workstation with 8G DDR and a 2.6GHz processor.

6.3 Methodology
We evaluated DroidCat in each of its two working modes:
(1) malware detection, in which it labels a given app as either
benign or malicious, and (2) malware categorization, in which
it labels a given malware with the predicted malware family.
To facilitate the assessment of DroidCat in these two different
modes, we simply treat DroidCat as a multi-class classifier,
with different number of classes to differentiate in different
modes (e.g., two classes in the detection mode, and two or
more classes in the categorization mode).

For Study I, we ran four tests of DroidCat, each using
one of the four datasets (D0911 through D1617). For Study

6

https://chapering.github.io/droidcat

II, we executed DroidCat and the two baselines on D1617
and D1415, because these two are the most recent datasets.
We used three obfuscation datasets for Study III, in which
we ran three tests of the three techniques accordingly.

In each test of these three studies, we sorted apps of
each class by their age (first-seen date) and split the apps by
the date at 70 percentile, and then we held out the 30%
newest ones from each class for testing while using the rest
for training. We used this hold-out validation in order to
avoid overfitting [64]: samples used for fitting a
classification model are never used in validating the model.
Our evaluation studies did not involve any re-sampling (as
in cross validation) either, so as to avoid causing biases in
the validation results [65]. This experiment design also
makes sure that we never use a model trained on newer
samples to test older samples—doing so would not be
sensible with respect to the practical use scenarios of a
malware detector and the evolution of apps.

The three studies share the same set of metrics for
evaluating the performance of the compared techniques in
predicting apps of each class. We compute these metrics for
each class and then average the metrics values among all
classes to obtain the overall performance of each technique.
Specifically, for each class Ci, we assessed a technique’s
performance with the following three metrics:

Precision (P) measures among all the apps labeled as
“Ci” by the technique, how many of them actually belong
to that class.

Pi =
of apps belonging to Ci

Total # of apps labeled as “C ′′i
. (1)

Recall (R) measures among all apps belonging to Ci,
how many of them are labeled by the technique as “Ci”.

Ri =
of apps labeled as “C ′′i

Total # of apps belonging to Ci
. (2)

F1 score (F1) is the harmonic mean of precision and
recall. It can be interpreted as a weighted average of the
precision and recall.

F1i =
2 ∗ Pi ∗Ri

Pi + Ri
. (3)

Note that the technique only labels apps with “C ′′1 , “C2”,
. . . , and never uses any label like “not Ci”. To facilitate the
metrics computation with respect to a particular class like
C1, we treat all apps with other labels like “C2”, “C3”, . . . as
“not Ci”. For example, suppose there are 10 apps belonging
to C3. The technique labels 11 apps with “C3”, but only 8 of
them actually belong to C3. As a result, P3 = 8/11 = 73%
because only 8 out of the 11 “C3”-labeled apps are identified
correctly. R3 = 8/10 = 80% because only 8 out of the 10 C3

apps are labeled correctly. F13 = 2 ∗ 73% ∗ 80%/(73% +
80%) = 76%.

With the above effectiveness metrics computed for each
class, we further evaluated the overall effectiveness of the
technique by computing the weighted average among
classes. Intuitively, the larger the number of apps in a class,
the more weight its effectiveness metrics should have. The
malware families vary greatly in size, so we weight each
family’s contribution to the average by its relative size to
the entire testing set. Formally, if we use Γ to represent P
or R, and use ni to represent the number of testing samples
in Ci, then the overall effectiveness in terms of precision
and recall can be computed for N classes with

Γoverall =

∑N
i=1 Γi ∗ ni∑N

i=1 ni

. (4)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

D1617 (0.9759)

D1415 (0.9715)

D1213 (0.9500)

D0911 (0.9748)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

D1617 (0.9476)

D1415 (0.9414)

D1213 (0.9844)

D0911 (0.9779)

Fig. 4. DroidCat ROC curves with AUCs for malware detection (left) and
categorization (right) on four datasets (D0911 through D1617).

Finally, the overall F1 is computed with:

F1overall =
2 ∗ Poverall ∗Roverall

Poverall + Roverall
(5)

To further assess the capabilities of our approach versus
the baselines, we compute the receiver operating
characteristic (ROC) curve for each technique and relevant
dataset it applied to. These curves show how a binary
classifier performs with respect to varying decision
thresholds, as opposed to one (default) threshold
associated with an F1 score. They also depict various
tradeoffs between true positive and false positive rates.
Thus, the curves complement the three accuracy metrics (P,
R, and F1), together constituting a comprehensive measure
of the classification performance. In particular, we used the
prediction probabilities produced by the classifier to
compute these curves. For multi-class classification (i.e., the
malware categorization mode), we wrap the classifier with
a one-vs-all classifier to compute the curve for each class,
and then average all per-class curves to produce an
averaged curve. For each ROC curve, we also report the
area under curve (AUC) as a summary metric for the ROC.

6.4 Study I: Performance Stability
TABLE 3

DroidCat performance for malware detection and categorization.

Dataset
Detection Categorization

P R F1 P R F1
D1617 99.31% 99.27% 99.28% 94.79% 94.74% 94.54%
D1415 97.26% 97.09% 97.16% 97.84% 97.75% 97.70%
D1213 96.38% 96.04% 96.12% 99.73% 99.71% 99.70%
D0911 97.19% 96.96% 97.00% 99.48% 99.43% 99.44%
mean 97.53% 97.34% 97.39% 97.96% 97.91% 97.84%
stdev 1.25% 1.37% 1.34% 2.27% 2.28% 2.38%

Table 3 lists the classification performance of DroidCat in
terms of the three metrics we defined earlier: precision (P),
recall (R), and F1-measure accuracy (F1). Each row gives
the results for the two working modes of DroidCat against
one of the four datasets used in this study. For instance, on
the D1617 dataset (apps in year 2016 through year 2017),
DroidCat had 99.31% precision and 99.27% recall for
detection (binary classification), and 94.54% F1 for
categorizing malware into families. The last two rows show
the mean performance metrics values over the four datasets
of DroidCat in each of the two modes, and the associated
standard deviation (stdev) of the mean. For instance, for
malware detection, DroidCat achieved an average F1
accuracy of 97.39% with a standard deviation of 1.34%
across all the four datasets spanning the past nine years.

As shown, the performance of DroidCat depended on
both the dataset it was applied to and the working mode.
Specifically, it had the highest accuracy (99.28%) on the
newest (D1617) dataset for malware detection, yet

7

performed the best (with 99.70% F1) on the second oldest
(D1213) dataset for malware family categorization.
Similarly, the worst-case performance also was associated
with different mode for different dataset: lowest detection
accuracy (96.12%) was for D1213 while lowest
categorization accuracy (94.54%) was seen by D1617.

Intuitively, it is more challenging to differentiate more
classes. Our results show that overall DroidCat performed
almost equally well (97.39% versus 97.84%) for detection
and categorization modes. While our features were
discovered originally from a characterization study that
only concerned two classes (malware versus benign apps),
this overall contrast suggests that the features could also
well differentiate among varied malware families. On the
other hand, however, we observed that over the years the
categorization performance appeared to decline gradually
while the performance for detection did not. What this
implies is that the features seem to be less robust against
the evolution of malware than for differentiating benign
apps from all kinds of malware as a whole.

Figure 4 depicts the ROC curves and associated AUCs
(in the parentheses) of DroidCat on the four datasets for the
two modes. The results show that DroidCat worked the best
for the newest (D1617) dataset in the detection mode, with
an AUC of almost 0.98 (close to the ideal case of 1.0). On
the other three datasets, our classifier was also highly
accurate with different thresholds. The right chart indicates
that it performed the worst for categorizing malware in the
D1415 dataset. Nevertheless, even this lowest performance
was still highly competitive (0.94 AUC). The categorization
accuracy was noticeably higher on other datasets.
Conclusions. Overall, DroidCat exhibited highly
competitive performance for any mode and dataset, with
F1 ranging from 94.54% to 99.73%, and AUC from 0.94 to
0.98. Importantly, DroidCat appeared to be quite stable in
classifying apps seen in the 9-year span we studied, as
supported by several observations. First, the standard
deviations of performance metrics over the span were
generally small, suggesting DroidCat worked for both old
and new datasets with promising performance. Second, it is
noteworthy that the performance of DroidCat was not much
affected by largely varying dataset sizes or the imbalance
between malware and benign samples: nor did there exist a
clear correlation between the performance and sample sizes
or the imbalances. Third, a larger number of families did
not necessarily make DroidCat perform worse in malware
categorization either. In comparison between its two
modes, DroidCat tended to be even more stable for malware
detection (1.34% standard deviation) than for malware
categorization by families (2.38% standard deviation).

Finding 1: DroidCat achieved mean F1 accuracy of
97.39% and 97.84%, and AUC of 0.95-0.98 and
0.94-0.98, for malware detection and categorization, re-
spectively. It was also stable in classifying apps from diffe-
rent years within 2009–2017, evidenced by small standard
deviations in F1 of 1.34-2.38% across the nine years.

6.5 Study II: Comparative Classification Performance
In this study, we aim to compare our approach to the two
baselines in their classification capabilities. In particular, we
conducted comparative analysis in the two classification
working modes considered. For malware detection,
Figure 5 shows the contrast among the three techniques
(the three bars in each group) in terms of the three

99.28% 97.16%

72.31%
81.90%

87.72%

81.89%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P R F1 P R F1

D1617 D1415

DroidCat Afonso DroidSieve

Fig. 5. DroidCat versus baselines for malware detection.

94.54% 97.70%

86.95% 88.79%

88.75% 81.78%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P R F1 P R F1

D1617 D1415

DroidCat Afonso DroidSieve

Fig. 6. DroidCat versus baselines for malware categorization.

performance metrics (x axis), for the two datasets (D1617
and D14515) used in this study. Our results revealed
considerable advantages of DroidCat over the two
state-of-the-art techniques: on the D1617 dataset, DroidCat
had 3% higher precision, 19% higher recall, and 11% higher
F1 accuracy than the better-performing baseline DroidSieve.
The advantage of DroidCat over the peer dynamic approach
Afonso was even greater (27% higher F1). On the D1415
dataset, the improvement of DroidCat over the
better-performing baseline Afonso was also substantial (15%
higher F1), albeit the gap between the two baselines was
quite small (0.1%). Across both datasets, DroidSieve was
more accurate for malware detection than Afonso.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DroidCat (0.9715)

Afonso (0.8204)

DroidSieve (0.9267)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DroidCat (0.9759)

Afonso (0.8777)

DroidSieve (0.9018)

Fig. 7. ROC curves with AUCs of DroidCat versus baselines for malware
detection on datasets D1415 (left) and D1617 (right).

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DroidCat (0.9414)

Afonso (0.8165)

DroidSieve (0.8655)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DroidCat (0.9476)

Afonso (0.8807)

DroidSieve (0.8675)

Fig. 8. ROC curves with AUCs of DroidCat versus baselines for malware
categorization on datasets D1415 (left) and D1617 (right).

8

Figure 6 depicts the contrast among the three
techniques in their performance in categorizing malware
into families. As in the detection mode, DroidSieve
outperformed Afonso for the D1617 dataset, while for the
D1415 dataset Afonso was more accurate. However,
considering the gaps in F1, Afonso was overall more
competitive than DroidSieve, opposite to the contrast in the
detection mode. On the other hand, the results clearly show
the significant merits of our approach over both baselines.
Relative to the better-performing peer approach, DroidCat
had about 6% higher F1 accuracy on the D1617 dataset and
over 9% higher accuracy on the D1415 dataset, although
the gaps were lesser than those in the detection mode.
Interestingly, while Afonso was originally evaluated for
malware detection only [27], our results revealed that it
performed more accurately for malware categorization. The
performance of DroidSieve varied very slightly between
these two working modes, though.

Across the two datasets, our results also revealed the
superiority of DroidCat to both baselines in stability. Afonso
achieve noticeably higher performance on the older
(D1415) dataset than on the newer (D1617) dataset,
regardless of the classification modes (although the gap
was smaller for family categorization). DroidSieve was
similarly unstable to Afonso, if not worse, although it
performed significantly better on D1617 (than on D1415,
also in both working modes). In addition, both baselines
had achieved considerably higher performance (e.g.,
constantly over 90% F1) on other datasets (mostly older
than the two we used here) [23], [27], which further suggest
their likely instability. On the other hand, we have been
able to obtain very similar performance numbers to those
originally reported with respect to the originally used
datasets. Thus, both baseline techniques seem to be more
likely to be overfitted to particular datasets relative to our
technique, which again backs up the stability advantage of
DroidCat over the two baselines.

Figures 7 and 8 depict the ROC curves and
corresponding AUCs (shown in parentheses) of DroidCat
versus the baselines on the two datasets used in this study,
for detection and categorization, respectively. The results
clearly show the advantages of our approach over the two
baselines, regardless of the dataset and classification mode
considered, as also evidenced by the constantly higher
AUCs of DroidCat. In fact, the curves revealed that DroidCat
was more accurate than the baselines at any decision
threshold. Between the two baselines, Afonso outperformed
DroidSieve only on one dataset for categorization, while in
other cases DroidSieve was more accurate for varying
thresholds. This contrast was consistent with how these
prior approaches compared in terms of F1 accuracy.

Conclusions. Overall, DroidCat surpassed both baseline
techniques in each of the two classification working modes,
and in most cases the advantages were highly significant.
Across the two modes, the performance gap between the
baselines and DroidCat was even greater in the malware
detection mode. Between the two baselines, DroidSieve
appeared to be more competitive for malware detection,
while for malware family categorization Afonso was
considerably more accurate on one dataset. Afonso
appeared to be more effective for malware categorization
than for malware detection, while DroidSieve had similar
performance between these two modes. Knowing that
Afonso classification was based on call frequencies (i.e.,
sheer counts of calls), the substantial performance merits of
DroidCat over Afonso suggest that relative statistics of calls
and call distributions are more effective than sheer counts.

In addition, both baselines tended to be much less stable
than our approach, as evidenced by the variations of
performance across varied datasets.

Finding 2: DroidCat outperformed the state-of-the-art
techniques compared, with up to 27% and 16% higher F1,
and 0.15 and 0.13 greater AUC, for malware detection
and categorization, respectively. DroidCat also appeared
to be noticeably more stable than the two baseline techni-
ques over time when achieving competitive performance.

6.6 Study III: Robustness

TABLE 4
Datasets used in the study on robustness (Study III)

Dataset
Benign apps Malware (from Praguard)

Period Source #Apps obf% Period #Apps obf%
OBF1617 2016-2017 GP,AZ 3,196 57.38%

2010-2012
1,214

(59 families)
100%OBF1415 2014-2015 AZ 4,462 25.59%

OBF1213 2012-2013 AZ 4,804 12.57%

For this study, we used three obfuscation datasets as
described in Table 4. We intended to only use benign apps
from AZ, but had to include GP apps of year 2017 because
of the shortage of AZ apps of that year. For malware, we
focused on those from Praguard [24], an obfuscation
benchmark suite including the 1260 MG apps and 237
malware from the Contagio dataset [66] all transformed
using multiple obfuscation schemes combined. Praguard
has several subsets each using a different scheme
combination. We used the most obfuscated subset while
removing those corresponding to the 135 MG malware
used in our characterization study (to avoid possible
overfitting biases). From the remaining 1362 apps, we were
able to compute features of 1214 apps for both DroidCat
and the two baselines. The table also lists the percentage of
apps that are obfuscated (obf%). All the apps’ age was
again determined by their first-seen dates. Note that even
benign apps were increasingly obfuscated, which further
justifies the importance of app classifiers being robust
against obfuscation. We applied the methodology as
described in Section 6.3. In addition, we confirmed that in
each data split (based on 70-percentile first-seen dates)
there are non-trivial portions of obfuscated samples of each
class in both training and testing sets. As for Studies I and
II, we ensured that the three benign sets did not overlap.

TABLE 5
Robustness of DroidCat versus baselines

Technique Perf.
Detection

Cate.OBF1617 OBF1415 OBF1213 Average

DroidCat
P 97.46% 96.86% 96.40% 96.85% 97.26%
R 97.34% 96.71% 96.19% 96.69% 97.07%
F1 97.33% 96.66% 96.13% 96.64% 97.06%

Afonso
P 98.43% 71.07% 85.37% 83.91% 54.55%
R 52.07% 86.73% 93.81% 79.89% 56.47%
F1 68.11% 78.13% 89.39% 79.59% 51.03%

DroidSieve
P 86.44% 87.98% 85.08% 86.48% 91.81%
R 83.34% 85.94% 81.77% 83.67% 93.49%
F1 80.51% 82.67% 76.09% 79.62% 92.27%

Table 5 lists classification performance (Perf.) numbers
(P, R, and F1) of DroidCat versus Afonso and DroidSieve in
the detection and categorization (Cate.) modes on the three
datasets (second row) used in this study. The F1 numbers
are highlighted in boldface. The numbers in the sixth
column are the averages over the three datasets, weighted
by the dataset sizes. For instance, on the OBF1617 dataset,
DroidCat had a 97.33% F1 accuracy, versus 68.11% by Afonso
and 80.51% by DroidSieve, all in the detection mode. In the
categorization mode, the three techniques had the same

9

performance across the three datasets since they all use the
same malware set (i.e., the 1214 Praguard malware).

Our results show that DroidCat largely surpassed the
baseline techniques in any performance metric on any of
the three datasets for malware detection. In the malware
categorization mode, DroidSieve achieved an F1 (92%), the
closest to that of DroidCat (97%) among all our comparative
experiments. We note that DroidSieve achieved 99% F1 for
categorizing the MG subset of our malware set here, and
over 99% F1 for detecting the MG malware from
benign-app sets different from ours [23]. The considerable
drop in accuracy, when 237 more malware and many
different benign apps were trained and tested, suggested
the potential overfitting of this technique to particular
datasets. On the other hand, compared to our results in
Study II, DroidSieve performance did not change much due
to obfuscation. Thus, the technique tended to be
obfuscation-resilient indeed, and its performance variation
with respect to the original evaluation results in [23] seems
to be mainly attributed to its instability.

Afonso appeared to be resilient against obfuscation too,
but only for malware detection. The substantial
performance drop (by over 30% in F1) because of
obfuscation indicates its weak obfuscation resiliency for
categorizing malware. Meanwhile, its considerable
performance variations for malware detection across the
three datasets corroborate the instability of this technique.

In contrast, DroidCat tended to be both robust and stable.
The robustness was evidenced by the small difference in
performance metrics between this study and Study II. Its
performance variations across the three datasets were also
quite small, showing its stability even in the presence of
complicated obfuscation.

We also computed the ROC curves and AUCs of the
three techniques on each of the three datasets. The
contrasts between DroidCat and the two baselines was
similar to those seen in Study II. The AUC numbers
(0.97–0.99 for DroidCat) show considerable advantages of
our approach as well (0.05 and 0.09 greater AUC than any
baseline for detection and categorization, respectively). In
all, the ROC results confirmed that DroidCat is robust to
various obfuscation schemes, with respect to varying
decision thresholds, more than the two baselines.
Conclusions. On overall average, DroidCat achieved a
96.64% F1, compared to 79.59% by Afonso and 79.62% by
DroidSieve in the detection mode. In the categorization
mode, DroidCat also significantly outperformed the two
baseline techniques, with 5–46% higher F1. ROC results
corroborated the robustness merits of our approach,
compared to the baselines. In absolute terms, the accuracy
and AUC numbers revealed that DroidCat can work highly
effectively with obfuscated apps.

Finding 3: DroidCat exhibited superior robustness to
both state-of-the-art techniques compared, by achieving
96% to 97% F1 accuracy on malware that adopted sophi-
sticated obfuscation schemes along with varying sets of
benign apps, significantly higher than the two baselines.

7 IN-DEPTH CASE STUDIES
We have conducted in-depth case studies on a subset of our
datasets to access the capabilities of our approach in
classifying apps with respect to individual malware
families. Through the case studies, we also investigated the
effects of various design factors on the performance of

DroidCat. We summarize our methodology and findings
below. Further details can be found in our technical report
on DroidCat [67].

7.1 Setup and Methodology
We started with the characterization study dataset and
added into it malware samples from years 2016 and 2017 in
the wild, resulting in 287 benign apps and 388 malware.
The majority of these apps adopted various obfuscation
strategies (e.g., reflection, data encryption, and
class/method renaming). The malware samples were in 15
popular families, including DroidDream, BaseBridge, and
DroidKungFu which were among the most evasive families
according to a prior study [24], and FakeInst and OpFake
which are known to combine multiple obfuscation schemes
(renaming, string encryption, and native payload). We
applied the same hold-out validation procedure, and the
same three accuracy metrics (P, R, F1) as used in the
evaluation experiments (Section 6.3).

7.2 Results
For malware categorization, DroidCat performed perfectly
(with 100% F1) for the majority (11) of the (15) studied
families. In particular, these 11 families include the three
that were previously considered highly evasive:
DroidDream, BaseBridge, and DroidKungFu. Previous tools
studied [24] achieved no more than 54% detection rate (i.e,
the recall metric in our study) on these three families. By
weighted average, over all the 15 classes, DroidCat achieved
97.3% precision, 96.8% recall, and 97.0% F1. In the malware
detection mode, DroidCat worked even more effectively,
with 97.1% precision, 99.4% recall, and 98.2% F1. These
results are largely consistent with what we obtained from
the extensive evaluation studies (Studies I through III).

7.3 Effects of Design Factors
Feature set choice. We investigated several alternative
feature sets, including the full set of 122 metrics, the set of
metrics in each of the three dimensions, and the set of 36
substantially disparate metrics (see Table 1). We found that
D* (the default set of 70 features used by DroidCat) worked
the best, suggesting that adding more features does not
necessarily improve classification performance. The
Structure features had significantly better effectiveness than
ICC and Security features.

Most important dynamic features. To see which
specific features are the most important to our technique,
we computed the importance ranking [23], [68] of the 70
features used by DroidCat. We found that Structure features
consistently dominated the top list, especially when there
were a greater number of classes that our classifier had to
differentiate. In particular, two subcategories of Structure
features contributed the most: (1) distribution of
method/class invocation over the three code layers, and (2)
callback invocation for lifecycle management. The Security
features were generally less important, with the ICC
features being the least important. Among all Security
features, those capturing risky control flows and accesses to
sensitive data/operations of particular kinds (e.g., sinks for
SMS_MMS) exhibited the greatest significance. The very
few ICC features included in these top rankings
contributed more to identifying benign apps from malware
than to distinguishing malware families.

Learning algorithm choice. In addition to the Random
Forest algorithm (RF, with 128 trees) used by default, we

10

experimented DroidCat with seven other learning
algorithms. Our results show that RF performed
significantly better than all the alternatives. Support Vector
Machine [69] (SVM) with linear kernel had the second best
effectiveness, while SVM with rbf kernel performed the
worst. Naive Bayes [70] with Bernoulli distribution had the
third best effectiveness, while with Gaussian distribution it
had the second worst effectiveness. Neither Decision
Trees [71] nor k-Nearest Neighbors [72] worked as well as
the best setting of the above three.

Input coverage. We have repeated our case studies on a
new dataset obtained by applying the same coverage filter
used in our characterization study. Only apps for which
10-minute Monkey inputs covered at least 50% of user code
were selected, resulting in 136 benign and 145 malicious
apps. The user-code coverage for these 281 apps ranged
from 50% to 100% (mean 66%, standard deviation 12%).
The higher-coverage dataset contained 10 app categories:
BENIGN and 9 malware families. We applied the same
held-out validation as used in other experiments. For
malware detection and (9-class) malware categorization,
DroidCat gained consistent increases in each of the three
performance metrics (P, R, F1) on the higher-coverage
datasets compared to our results without the coverage
filter. Yet, the increases were all quite small (at most 1.5%).
These small differences indicate that the performance of
DroidCat did not appear to be very sensitive to the
user-code coverage of run-time inputs.

8 EFFICIENCY
The primary source of analysis overhead of all the three
techniques compared is the cost for feature extraction. For
dynamic approaches like DroidCat and Afonso, this cost
includes the time for tracing each app, which is five
minutes in both techniques. Specifically, DroidCat took
353.9 seconds for feature computation and 0.01 seconds for
testing, on average per app. In contrast, Afonso took 521.74
seconds for feature computation and 0.015 seconds for
testing per app. As expected, the tracing time dominated
the total feature computation cost in DroidCat and Afonso.
Also, in these two techniques, the testing time is almost
negligible, mainly because their feature vectors are both
relatively small (at most 122 features per app in DroidCat,
and 163 features per app in Afonso). As a static approach,
DroidSieve does not incur tracing cost. Its average feature
computation cost was 74.19 seconds per app. However,
DroidSieve uses very-large feature vectors (over 20,000
features per app), causing its substantial cost for the testing
phase (on average 3.52 seconds per app). Concerning the
storage cost, DroidCat and Afonso took 21KB and 32KB per
app, respectively, mainly for storing the traces. DroidSieve
does not incur trace storage cost, and it took 0.4KB per app
for storing feature files.

In all, DroidCat appeared to be reasonably efficient as a
dynamic malware analysis approach, and was
lighter-weight than the peer dynamic approach Afonso.
DroidSieve was the most efficient among the three
techniques, due to its lack of tracing overheads. However,
given the substantially superior performance of DroidCat
over DroidSieve, the additional cost incurred by DroidCat
can be seen to be justified.

9 LIMITATIONS AND THREATS TO VALIDITY
The difficulty and overhead of tracing a large number of
apps present challenges to dynamic analysis, which
constrained the scale of our studies. While reasonably large

for a dynamic analysis of Android apps, our datasets may
still be relatively small in size compared to those used by
many static approaches. In particular, considering our
datasets split by ranges of years, our samples from each
period may not be representative of the app population of
that period. For this reason, our results are potentially
subject to overfitting. To mitigate this limitation, we have
considered benchmarks from diverse sources. Recall the
goal of DroidCat is to complement static approaches in
scenarios where they are inapplicable (Section 2). In all, our
experimental results and conclusions are best interpreted
with respect to the datasets used in our studies.

Prior studies have shown that learning-based malware
detectors are subject to class imbalances in training
datasets [73], [74]. Our results also suffer from this
subjection as our datasets contain imbalanced benign and
malware samples, as well as imbalanced malware families.
There were two causes for these imbalances: (1) our data
sources do not provide balanced sample sets, and (2) for
fair evaluation we needed to use exactly the same samples
for evaluating DroidCat against the two baselines, thus we
had to discard some samples for which the features for any
technique cannot be computed (Section 6.1), which further
perplexed our control of data balance. On the other hand,
however, the imbalances enabled us to additionally assess
the stability of our approach against the baselines: for
instance, in Study I, our results revealed that the
performance of DroidCat was not much affected by the
imbalance of both kinds (more benign apps, in D1617 and
D1415, or more malware, in D1213 and D0911). We also
note that all the datasets against which we compared
DroidCat to the baselines contained much less malware
than benign samples. This kind of imbalance resembles
real-world situations in which we do have much fewer
malware than benign apps.

Intuitively, the more app code covered by the dynamic
inputs, the more app behaviors can be captured and
utilized by our approach. We thus conducted a dedicated
study in this regard. Our results confirmed that with
higher-coverage inputs DroidCat improved in
effectiveness. However, the effectiveness differences were
small (<2%) between two experiments involving datasets
that had large differences (20%) in code coverage.
Nevertheless, these results may not be generalizable; more
conclusive results would need more extensive studies on
the effect of input coverage. Also, although DroidCat relies
on capturing app behavioral patterns in execution
composition and structure (instead of modeling explicit
malicious behaviors through suspicious permission access
and/or data flows), reasonable coverage is still required for
producing usable traces to enable the feature computation.

We aimed to leverage a diverse set of behavioral features
(in three orthogonal dimensions) to make DroidCat robust
to various evasion attacks that target specific kinds of
dynamic profiles. To empirically examine the robustness,
we purposely used an obfuscation benchmark suite in the
evaluation. Further, in the case studies, we used datasets in
which the majority of apps adopted a variety of evasion
techniques, including complex/heavy reflection, data
encryption, and class/method renaming. However, other
types of evasion (especially anti-dynamic-analysis)
attacks [75] have not been explicitly covered in our
experiments. For instance, some malware might detect and
then evade particular kinds of run-time environments (e.g.,
emulator). In our evaluation, the dynamic features were all
extracted from traces gathered on an Android emulator.
The high classification performance we achieved suggests

11

that our approach seems robust against emulator-evasion
attacks. On the other hand, after our features are revealed,
attackers could take adversarial approaches to impede the
computation of our dynamic features or pollute the code to
make our features less discriminatory.

DroidCat works at app level without any modification
of the Android framework and/or OS as in [18], [76]. This
design makes DroidCat easier to use and more adaptable to
rapid evolution of the Android ecosystem, but it does not
handle dynamically loaded code or native code yet.
Meanwhile, DroidCat requires app instrumentation, which
may constitute an impediment for its use by end users. A
more common deployment setting would be to use
DroidCat for batch screening by an app vetting service (e.g.,
as part of an app store), where the instrumentation, tracing,
learning, and prediction can be packed in one holistic
automated process of the service. Finally, our technique
follows a learning-based approach using features that can
be contrived, thus it may be vulnerable to sophisticated
attacks such as mimicry and poisoning [77].

10 RELATED WORK
Dynamic Characterization for Android Apps. There have
been only a few studies broadly characterizing run-time
behaviors of Android apps. Zhou et al. manually analyzed
1,200 samples to understand malware installation methods,
activation mechanisms, and the nature of carried malicious
payloads [49]. Cai et al. instrumented 114 benign apps for
tracing method calls and ICCs, and investigated the
dynamic behaviors of benign apps [82]. These studies
either focus on malicious apps or benign ones. Canfora et
al. profiled Android apps to characterize their resource
usage and leveraged the profiles to detect malware [83]. We
profiled method and ICC invocations in our
characterization study as in [82] yet with both benign and
malicious samples. Also, our study aimed at not only
behavior understanding [49], [82]. We further utilized the
understanding for app classification like [83] yet with
different behavioral profiles and not only for malware
detection (but also for categorizing malware by families).

Android Malware Detection. Most previous detection
techniques utilized static app features based on API
calls [15], [16], [17], [35], [78], [79], [80] and/or
permissions [15], [18], [23], [26], [35]. ICCDetector [55]
modeled ICC patterns to identify malware that exhibits
different ICC characteristics from benign apps. Besides
static features, a few works enhanced their capability by
exploiting dynamic features (i.e., hybrid approaches) such
as messaging traffic [26], file/network operations [18], and
system/API calls [35]. However, approaches relying on
static code analysis are generally vulnerable to reflection
and other code obfuscation schemes [20], which are widely
adopted in Android apps (especially in malware) [41].
Suarez-Tangil et al. [23] mined non-code (e.g.,
resources/assets) features for more robust detection.
Static-analysis challenges have motivated dynamic
approaches, of which ours is not the first. Afonso et al. [27]
built dynamic features on system/API call frequencies for
malware detection, similar to [29] where occurrences of
unique callsites were used as features. A recent static
technique MamaDroid [81] and its dynamic variant [84]
model app behaviors based on the transition probabilities
between abstracted API calls in the form of Markov chains.

Android Malware Categorization. Approaches have
been proposed to categorize malware into known families.
Xu et al. traced system calls, investigated three alternative
ways to graphically represent the traces, and then

leveraged the graphs to categorize malware [39]. Dash et
al. generated features at different levels, including pure
system calls and higher-level behavioral patterns like file
system access which conflate sequences of related system
calls [34]. Some of the malware detection techniques have
been applied to family categorization as well [23], [78], [79].

Discussion. Table 6 compares our approach to
representative recent peer works in terms of classification
capability with respect to the three possible settings and
robustness against various analysis challenges. For the
settings that a tool was not designed to work in, the
capability was not applicable (hence noted as N/A).

Almost all the static approaches compared are
vulnerable to reflection as they use features based on APIs.
Marvin [18] as a hybrid technique also suffers from this
vulnerability as it relies on a number of static API-based
features. Techniques using features on static permissions,
such as DroidSIFT [79], Drebin [15], and StormDroid [26],
face challenges due to run-time permissions [19], [85]
which are increasingly adopted by (over one third already
of) Android apps [86]. The use of features based on system
calls comprises the resiliency of DroidScribe [34],
Madam [35], and Afonso [27] against obfuscation schemes
targeting system calls [30], [36], [38]. DroidSieve [23] gains
high accuracy with resilience against reflection by reducing
code analysis and using resource-centered features, but
may not detect malware that expresses malicious behaviors
only in code while with benign resources/assets. Our
comparative study results presented in this paper have
supported this hypothesis. In addition, like a few other
works that extract features (other than permission) from
resource files [15], [18], [55], it may not work with malware
with resources obfuscated [24], [25], [41].

In contrast, DroidCat adopts a purely dynamic
approach that resolves reflective calls at runtime, thus it is
fully resilient against even complex cases of reflection. It
relies on no features from resource files or based on system
calls, thus it is robust against obfuscation targeting those
features. While it remains to be studied if it well adapts to
Android ecosystem evolution, DroidCat would not be
much affected by run-time permissions as it does not use
related features. Also, compared to prior approaches
typically focusing on API calls, DroidCat characterizes the
invocations of all methods and ICCs.

We omitted in the table the effectiveness numbers (e.g.,
detection rate and accuracy) for these compared works
because they are not comparable: the numbers all came
from varied evaluation datasets. In this paper, we have
extensively studied two of the listed approached versus
ours on the same datasets. Nonetheless, in terms of any of
the effectiveness metrics we considered, DroidCat
appeared to have very promising performance relative to
the state-of-the-art peer approaches.

11 CONCLUSION

We presented DroidCat, a dynamic app classification
technique that detects and categorizes Android malware
with high accuracy. Features that capture the structure of
app executions are at the core of our approach, in addition
to those based on ICC and security sensitive accesses. We
empirically showed that this diverse, novel set of dynamic
features enabled the superior robustness of DroidCat against
analysis challenges such as heavy and complex use of
reflection, resource obfuscation, system-call obfuscation,
use of run-time permissions, and other evasion schemes.
These challenges impede most existing peer approaches, a

12

TABLE 6
Comparison of recent works on Android malware classification in capability and robustness. DET: detection, CAT: family categorization, SYSC:

system call, RT_PERM: run-time permission, RES: resource, OBF: obfuscation.

Technique Year Approach
Classification Capability Robustness against Analysis Challenges
DET CAT Reflection SYSC_OBF RT_PERM RES_OBF

DroidMiner [78] 2014 Static 3 3 7 3 3 3
DroidSIFT [79] 2014 Static 3 3 7 3 7 3
Drebin [15] 2014 Static 3 N/A 7 3 7 7
MudFlow [80] 2015 Static 3 N/A 7 3 3 3
Afonso et al. [27] 2015 Dynamic 3 N/A unknown 7 3 3
Marvin [18] 2015 Hybrid 3 N/A 7 3 7 7
Madam [35] 2016 Hybrid 3 N/A unknown 7 7 3
ICCDetector [55] 2016 Static 3 N/A 7 3 3 7
DroidScribe [34] 2016 Dynamic N/A 3 3 7 3 3
StormDroid [26] 2016 Hybrid 3 N/A 7 3 7 3
MamaDroid [81] 2017 Static 3 N/A 7 3 3 3
DroidSieve [23] 2017 Static 3 3 3 3 7 7
DroidCat this work Dynamic 3 3 3 3 3 3

real concern since the app traits leading to the challenges
are increasingly prevalent in modern Android ecosystem.

Through extensive evaluation and in-depth case
studies, we have shown the superior stability of our
approach in achieving high classification performance,
compared to two state-of-the-art peer approaches, one
static and one dynamic. Meanwhile, in absolute terms,
DroidCat achieved significantly higher accuracy than the
peer approaches studied for both malware detection and
family categorization. Thus, DroidCat constitutes a
promising solution complementary to existing alternatives.

REFERENCES
[1] “Android malware accounts for 97% of malicious mobile apps,”

http://www.scmagazineuk.com/updated-97-of-malicious-
mobile-malware-targets-android/article/422783/, 2015.

[2] “The ultimate android malware guide: What it does,
where it came from, and how to protect your phone
or tablet,” http://www.digitaltrends.com/android/the-
ultimate-android-malware-guide-what-it-does-where-it-came
-from-and-how-to-protect-your-phone-or-tablet/.

[3] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian,
W. Lee, and G. Jiang, “Checking more and alerting less: Detecting
privacy leakages via enhanced data-flow analysis and peer vo-
ting.” in NDSS, 2015.

[4] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors
using context,” in ICSE, 2015.

[5] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:
Semantics-based detection of Android malware through static
analysis,” in FSE, 2014.

[6] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural de-
tection of Android malware using embedded call graphs,” in Pro-
ceedings of the 2013 ACM Workshop on Artificial Intelligence and Se-
curity, 2013.

[7] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day Android malware detection,” in
MobiSys, 2012, pp. 281–294.

[8] H. Cai and J. Jenkins, “Leveraging historical versions of android
apps for efficient and precise taint analysis,” in MSR, 2018, pp.
265–269.

[9] B. Wolfe, K. Elish, and D. Yao, “High precision screening for An-
droid malware with dimensionality reduction,” in International
Conference on Machine Learning and Applications, 2014.

[10] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, “Automatic gene-
ration of string signatures for malware detection,” in RAID, 2009.

[11] H. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim, “Detecting and
classifying android malware using static analysis along with crea-
tor information,” Int. J. Distrib. Sen. Netw., 2015.

[12] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy, “Using probabilistic generative mo-
dels for ranking risks of Android apps,” in CCS, 2012.

[13] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android permissions: A perspective combining risks
and benefits,” in Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, 2012.

[14] W. Enck, M. Ongtang, and P. D. McDaniel, “On lightweight mobile
phone application certification,” in CCS, 2009, pp. 235–245.

[15] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of Android malware
in your pocket,” in NDSS, 2014.

[16] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in Android,” in SecureComm,
2013.

[17] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droid-
mat: Android malware detection through manifest and API calls
tracing,” in Proceedings of Asia Joint Conference on Information Secu-
rity, 2012, pp. 62–69.

[18] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Effi-
cient and comprehensive mobile app classification through static
and dynamic analysis,” in COMPSAC, vol. 2, 2015, pp. 422–433.

[19] “Requesting permission at run time,” https://
developer.android.com/training/permissions/requesting.html,
2015.

[20] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in ACSAC, 2007, pp. 421–430.

[21] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bry-
ant, “Semantics-aware malware detection,” in IEEE Symposium on
Security and Privacy, 2005, pp. 32–46.

[22] J. Lee, K. Jeong, and H. Lee, “Detecting metamorphic malwares
using code graphs,” in SAC, 2010, pp. 1970–1977.

[23] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro, “DroidSieve: Fast and accurate classification of
obfuscated Android malware,” in CODASPY, 2017, pp. 309–320.

[24] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Ste-
alth attacks: An extended insight into the obfuscation effects on
Android malware,” Computers & Security, vol. 51, pp. 16–31, 2015.

[25] G. Square, “Dexguard,” https://www.guardsquare.com/en/
dexguard, 2017.

[26] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A stre-
aminglized machine learning-based system for detecting Android
malware,” in AsiaCCS, 2016, pp. 377–388.

[27] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera,
and P. L. de Geus, “Identifying Android malware using dynami-
cally obtained features,” Journal of Computer Virology and Hacking
Techniques, vol. 11, no. 1, pp. 9–17, 2015.

[28] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““An-
dromaly": A behavioral malware detection framework for An-
droid devices,” Journal of Intelligent Information Systems, vol. 38,
no. 1, pp. 161–190, 2012.

[29] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for Android,” in Procee-
dings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices. ACM, 2011, pp. 15–26.

[30] J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao, “Impe-
ding behavior-based malware analysis via replacement attacks to
malware specifications,” Journal of Computer Virology and Hacking
Techniques, pp. 1–15, 2016.

[31] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable behavior-based malware clustering,” in NDSS, 2009.

[32] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Au-
tomatic reconstruction of android malware behaviors.” in NDSS,
2015.

[33] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features
model for malware detection,” Journal of Computer Virology and
Hacking Techniques, pp. 1–9, 2015.

[34] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kin-
der, and L. Cavallaro, “Droidscribe: Classifying Android malware
based on runtime behavior,” Mobile Security Technologies, 2016.

[35] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam:
Effective and efficient behavior-based Android malware detection
and prevention,” TDSC, 2016.

[36] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, “Shadow attacks:
Automatically evading system-call-behavior based malware de-
tection,” J. Comput. Virol., 2012.

[37] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of
system-call monitoring,” in ACSAC, 2008, pp. 418–430.

13

http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/
http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/
http://www.digitaltrends.com/android/the-ultimate-android-malware-guide-what-it-does-where-it-came
http://www.digitaltrends.com/android/the-ultimate-android-malware-guide-what-it-does-where-it-came
-from-and-how-to-protect-your-phone-or-tablet/
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://www.guardsquare.com/en/dexguard
https://www.guardsquare.com/en/dexguard

[38] A. Srivastava, A. Lanzi, J. Giffin, and D. Balzarotti, “Operating
system interface obfuscation and the revealing of hidden operati-
ons,” in DIMVA, 2011, pp. 214–233.

[39] L. Xu, D. Zhang, M. A. Alvarez, J. A. Morales, X. Ma, and J. Cava-
zos, “Dynamic Android malware classification using graph-based
representations,” in Cyber Security and Cloud Computing (CSCloud),
2016 IEEE 3rd International Conference on, 2016, pp. 220–231.

[40] T. K. Ho, “Random decision forests,” in International Conference on
Document Analysis and Recognition, 1995.

[41] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of Android malware and Android analysis techniques,”
ACM Computing Surveys (CSUR), vol. 49, no. 4, p. 76, 2017.

[42] “Over 60 percent of Android malware comes from one malware
family: Fakeinstaller,” http://tech.firstpost.com/news-analysis/
over-60-percent-of-android-malware-comes-from-one-malware-
family-mcafee-48109.html, 2012.

[43] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDa-
niel, “Composite constant propagation: Application to Android
inter-component communication analysis,” in ICSE, 2015, pp.
77–88.

[44] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical de-
obfuscation of Android applications,” in CCS, 2016, pp. 343–355.

[45] “Android app components,” http://www.tutorialspoint.com/
android/android_application_components.htm.

[46] Google, “Android Monkey,” http://developer.android.com/
tools/help/monkey.html, 2015.

[47] H. Cai and B. Ryder, “DroidFax: A toolkit for systematic characte-
rization of Android applications,” in ICSME, 2017, pp. 643–647.

[48] “VirusTotal,” https://www.virustotal.com/.
[49] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteriza-

tion and evolution,” in Proceedings of IEEE Symposium on Security
and Privacy, 2012, pp. 95–109.

[50] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a Java
bytecode optimization framework,” in Cetus Users and Compiler
Infrastructure Workshop, 2011, pp. 1–11.

[51] J. Dean, D. Grove, and C. Chambers, “Optimization of
object-oriented programs using static class hierarchy analysis,” in
ECOOP, 1995.

[52] H. Cai and R. Santelices, “Diver: Precise dynamic impact ana-
lysis using dependence-based trace pruning,” in ASE, 2014, pp.
343–348.

[53] Google, “Android emulator,” http://developer.android.com/
tools/help/emulator.html, 2015.

[54] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. L. Traon, “Effective inter-component communication mapping
in Android with Epicc: An essential step towards holistic security
analysis,” in USENIX Security Symposium, 2013.

[55] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-Based malware
detection on Android,” TIFS, vol. 11, no. 6, pp. 1252–1264, 2016.

[56] J. Jenkins and H. Cai, “Dissecting Android inter-component com-
munications via interactive visual explorations,” in ICSME, 2017,
pp. 519–523.

[57] ——, “ICC-Inspect: supporting runtime inspection of android
inter-component communications,” in MobileSoft, 2018, pp. 80–83.

[58] S. B. Kotsiantis, “Supervised machine learning: A review of classi-
fication techniques,” 2007.

[59] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Le-
arning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[60] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting millions of android apps for the research community,”
in MSR, 2016, pp. 468–471.

[61] “Google play store,” https://play.google.com/store, 2018.
[62] “Virusshare,” https://virusshare.com/, 2018.
[63] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteriza-

tion and evolution,” in Proc. of the IEEE Symposium on Security and
Privacy, 2012, pp. 95–109.

[64] T. Dietterich, “Overfitting and undercomputing in machine lear-
ning,” ACM Computing Surveys, vol. 27, no. 3, pp. 326–327, 1995.

[65] R. B. Rao, G. Fung, and R. Rosales, “On the dangers of
cross-validation. an experimental evaluation,” in SIAM Internatio-
nal Conference on Data Mining, 2008, pp. 588–596.

[66] contagiodump.blogspot.com/.
[67] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Unified dyna-

mic detection of Android malware,” Tech. Rep. TR-17-01, January
2017, http://hdl.handle.net/10919/77523.

[68] D. Cournapeau, “Machine learning in python,” http://scikit-
learn.org/stable/supervised_learning.html#supervised-learning,
2016.

[69] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
1995.

[70] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2003.

[71] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., 1986.
[72] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor

Nonparametric Regression,” The American Statistician, vol. 46,
no. 3, pp. 175–185, 1992.

[73] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P.
Ranganath, H. Li, and N. Guevara, “Experimental study with
real-world data for Android app security analysis using machine
learning,” in ACSAC, 2015, pp. 81–90.

[74] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, Y. Le Traon et al.,
“Empirical assessment of machine learning-based malware detec-
tors for Android,” EMSE, vol. 21, no. 1, pp. 183–211, 2016.

[75] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory
behave maliciously: Targeted fuzzing of Android execution envi-
ronments,” in ICSE, 2017.

[76] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratan-
tonio, V. Van Der Veen, and C. Platzer, “Andrubis–1,000,000 apps
later: A view on current Android malware behaviors,” in Internati-
onal Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security, 2014, pp. 3–17.

[77] S. Venkataraman, A. Blum, and D. Song, “Limits of learning-based
signature generation with adversaries,” in NDSS, 2008.

[78] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidmi-
ner: Automated mining and characterization of fine-grained mali-
cious behaviors in Android applications,” in European Symposium
on Research in Computer Security. Springer, 2014, pp. 163–182.

[79] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware An-
droid malware classification using weighted contextual api depen-
dency graphs,” in CCS, 2014, pp. 1105–1116.

[80] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rastho-
fer, and E. Bodden, “Mining apps for abnormal usage of sensitive
data,” in ICSE, 2015, pp. 426–436.

[81] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini, “Mamadroid: Detecting android mal-
ware by building markov chains of behavioral models,” in NDSS,
2017.

[82] H. Cai and B. Ryder, “Understanding Android application pro-
gramming and security: A dynamic study,” in ICSME, 2017, pp.
364–375.

[83] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Acqui-
ring and analyzing app metrics for effective mobile malware de-
tection,” in Proceedings of the 2016 ACM on International Workshop
on Security And Privacy Analytics, 2016.

[84] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. String-
hini, and E. De Cristofaro, “A family of droids: Analyzing be-
havioral model based android malware detection via static and
dynamic analysis,” arXiv preprint arXiv:1803.03448, 2018.

[85] M. Dilhara, H. Cai, and J. Jenkins, “Automated detection and
repair of incompatible uses of runtime permissions in android
apps,” in MobileSoft, 2018, pp. 67–71.

[86] Google, “Android Developer Dashboard,” http://
developer.android.com/about/dashboards/index.html, 2016,
accessed online 09/20/2016.

14

http://tech.firstpost.com/news-analysis/over-60-percent-of-android-malware-comes-from-one-malware-family-mcafee-48109.html
http://tech.firstpost.com/news-analysis/over-60-percent-of-android-malware-comes-from-one-malware-family-mcafee-48109.html
http://tech.firstpost.com/news-analysis/over-60-percent-of-android-malware-comes-from-one-malware-family-mcafee-48109.html
http://www.tutorialspoint.com/android/android_application_components.htm
http://www.tutorialspoint.com/android/android_application_components.htm
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://www.virustotal.com/
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
https://play.google.com/store
https://virusshare.com/
contagiodump.blogspot.com/
http://hdl.handle.net/10919/77523
http://scikit-learn.org/stable/supervised_learning.html#supervised-learning
http://scikit-learn.org/stable/supervised_learning.html#supervised-learning
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

	Introduction
	Motivating Example
	Background
	Feature Discovery and Computation
	Benchmarks
	Metrics Definition
	Metrics (Feature) Computation
	Metrics (Feature) Selection

	The DroidCat Approach
	Evaluation
	Datasets
	Experimental Setup
	Methodology
	Study I: Performance Stability
	Study II: Comparative Classification Performance
	Study III: Robustness

	In-Depth Case Studies
	Setup and Methodology
	Results
	Effects of Design Factors

	Efficiency
	Limitations and Threats to Validity
	Related Work
	Conclusion
	References

