Code Speaks Louder:
Exploring Security and Privacy Relevant Regional Variations in Mobile Applications

Jiawei Guo Yu Nong

Zhigiang Lin Haipeng Cai™

University at Buffalo, SUNY University at Buffalo, SUNY The Ohio State University University at Buffalo, SUNY

Jiaweigu@buffalo.edu yunong @buffalo.edu

Abstract—Mobile apps are known to distribute different ver-
sions across geographic regions to accommodate local reg-
ulations and market preferences. While prior research has
examined metadata-level differences such as permissions and
privacy policies, there lacks systematic investigation into code-
level geographic variations that may impact security. In this
paper, we present the first comprehensive study of geo-feature
differences (GFDs) in Android apps at the code implemen-
tation level. We develop FREELENS, a novel framework that
overcomes key technical challenges including code obfuscation
and analysis scalability to identify and characterize security-
relevant variations across regions. Using FREELENS, we con-
ducted a large-scale study of 21,120 Android apps distributed
across ten countries with diverse levels of Internet freedom.
Our findings reveal that GFDs are widespread, with significant
variations in advertising, data handling, and authentication
mechanisms. These differences frequently compromise secu-
rity baselines and introduce disparities in privacy protections
across regions. The study highlights a rising trend in GFD
prevalence, emphasizing the urgency for harmonized privacy
and security standards. Based on our empirical findings,
we also provide actionable insights for developers, platform
providers, and regulators to ensure equitable user protections.

1. Introduction

It is known that mobile applications (apps) are dis-
tributed with different versions, which may exhibit differ-
ent behaviors, across geographic regions, driven by factors
ranging from regulatory compliance to market adaptation.
For instance, investigations into popular messaging apps
revealed varying levels of encryption and content filtering
across countries [1], demonstrating how geographic varia-
tions can impact user privacy and information access.

Understanding these geographic feature differences
(GFDs) and their implications for security and privacy is
crucial for users, developers, and regulators alike. However,
identifying and analyzing such differences systematically
presents significant challenges. While these variations often
stem from legitimate needs to comply with local regulations

= Haipeng Cai is the corresponding author.

zlin@cse.ohio-state.edu haipengc @ buffalo.edu

or adapt to market preferences, they can also mask concern-
ing disparities in security protections and privacy guarantees.

Previous research has primarily approached this prob-
lem through analysis of app metadata and configurations.
Kumar et al. [2] conducted the first large-scale study of
geodifferences in mobile apps by examining application
variations in permissions, privacy policies, and basic se-
curity features in Android across regions. Yang et al. [3]
investigated differences between official and third-party app
markets by analyzing app metadata and market policies.
While these studies provide valuable insights into surface-
level differences, they cannot capture the full spectrum of
behavioral variations implemented at the code level.

In this paper, we fill this gap by conducting a large-scale,
semantic code-level characterization of feature variations
between country-specific versions of the same mobile app,
referred to as geo-feature differences (GFDs). Examining
GFDs at code level is essential because code implemen-
tations ultimately determine an app’s actual behavior, po-
tentially revealing security and privacy relevant variations
that are not apparent or cannot be identified from metadata
alone. For instance, two versions of an app might declare
identical permissions but implement different data collection
or processing logic, leading to varying privacy implications
across regions. Through code-level differencing of diverse
regional versions of apps with GFDs (referred to as GFD
apps), the overarching goal of our study is to systemat-
ically demystify how mobile app vendors/developers may
(stealthily) differentiate their application functionalities and
what the functional variations imply in security and privacy.

However, conducting such a study at scale presents sev-
eral critical challenges. First (C1), collecting representative
app samples across regions is non-trivial due to geographic
restrictions and version control mechanisms enforced by
app distribution services (e.g., Google Play Store). Second
(C2), it is well known that precise, fine-grained analysis
of mobile apps (e.g., in Android) is costly hence often
facing scalability challenges [4], [5], [6], [7], while surface-
level analysis (e.g., of metadata [2]) only offers very limited
understanding of real GFDs. Third (C3), for legitimate (e.g.,
compliance/protection) purposes, mobile apps are often ob-
fuscated [8], which makes it difficult to identify meaningful
differences between app versions. Finally (C4), connecting
low-level code to high-level feature differences and further

to security/privacy understandings requires bridging signif-
icant semantic gaps.

To address these challenges, we developed FREELENS,
an automated framework that combines strategic app col-
lection, obfuscation-resilient code analysis, and semantic
code-level analysis techniques. Our framework employs a
three-phase approach, with each phase aiming to overcome
each fundamental challenge. To overcome CI1, Phase 3.2
conducts efficient mining of region-specific app versions
using controlled Google Play Store accounts. To counter
C2 and C3, Phase 3.3 balances analysis scalability and
effectiveness through profiling method-level control flow in
apps, while identifying meaningful code differences through
an obfuscation-resilient call-path analysis. To address C4,
Phase 3.4 employs interpretation of these differences using
large language models to bridge the semantic gap between
code changes and security implications. This approach en-
ables us to analyze geographic variations systematically
while maintaining scalability and accuracy.

Using this framework, we conducted a large-scale mea-
surement study of 21,120 Android apps across ten countries
representing different levels of internet freedom. Our investi-
gation examines how apps implement geographic variations,
what patterns these variations follow, and what security and
privacy implications they carry. The study pays particular at-
tention to highly-popular apps, where geographic variations
can affect millions of users worldwide.

Our study reveals several important findings. First, our
analysis revealed that GFDs are widespread, with over 5%
of the examined apps exhibiting feature disparities between
country-specific versions. These differences span various
categories, including advertising strategies, user interface
design, authentication mechanisms, and system manage-
ment. Notably, advertising and monetization emerged as
the most prevalent category, reflecting the strong influence
of regional market dynamics. Second, we observed critical
security and privacy implications arising from these differ-
ences. For instance, data security and privacy issues were
the most common, often linked to regional variations in
data handling practices. Similarly, disparities in advertising
implementations, such as varying levels of user tracking
and behavioral profiling, highlighted privacy risks specific to
certain regions. These findings suggest that regional adapta-
tions frequently compromise consistent privacy protections
and security baselines. Third, the study highlighted trends
indicating an increasing prevalence of GFDs in recent years,
particularly in apps released after 2020. This rise under-
scores the growing complexity of regional customization in
the mobile app ecosystem, raising the stakes for ensuring
equitable security and privacy standards.

The implications of our findings extend to multiple
stakeholders. For developers, our results highlight the need
for more systematic approaches to managing geographic
customization while maintaining consistent security stan-
dards. For platform providers, our findings suggest oppor-
tunities for improved tools and guidelines to help develop-
ers track and evaluate security implications of geographic
variations. For users, our study reveals the importance of

understanding potential security and privacy differences in
apps based on their geographic location.
This paper makes the following key contributions:

« We conducted the first systematic study of code-level
geographic feature differences in Android apps and
their security implications.

« We developed FREELENS, a novel framework for iden-
tifying and analyzing security-relevant geographic vari-
ations in Android apps.

« We performed comprehensive characterization of secu-
rity/privacy implications in geographic app variations,
supported by detailed case studies.

« We provided actionable insights for improving the se-
curity consistency of apps across geographic regions.

We have released our code and datasets to

facilitate relevant future research, as found at
https://figshare.com/s/e68f2b0a7247192cc909.

2. Background and Motivation

In this section, we provide the relevant background for
and then motivate our study.

2.1. Google Play App Release Mechanisms

The Google Play Store utilizes advanced app distribu-
tion mechanisms, allowing developers to tailor application
releases for specific geographic regions [9]. Developers can
target production, open testing, or closed testing tracks for
country-specific app rollouts, forming the foundation of our
investigation into cross-regional app functionality variations,
particularly in security and privacy features.

Android apps adhere to a dual-versioning system: ver-
sion name and version code. The version name, a user-
facing identifier (e.g., “2.1.4”), follows semantic patterns
and appears in the Google Play Store to communicate
updates. The version code, an internal integer identifier,
ensures proper sequencing for app updates. While invisible
to users, version codes are pivotal for Android to manage
app version precedence.

Google Play’s model ensures users can only access the
latest version available for their region. This constraint
facilitates compliance with regional regulations but creates
scenarios where users in different regions receive distinct
app versions. These mechanisms enable developers to cus-
tomize app functionality based on geographic requirements,
laying the groundwork for geographic feature differences
(GFDs), the focus of our study.

2.2. Android App Code Analysis

Analyzing Android apps requires sophisticated tools to
reveal functional differences at the code level. Tools like
FlowDroid [4] enable static taint analysis and precise mod-
eling of Android’s lifecycle, making it a critical asset for
identifying security and privacy issues.

https://figshare.com/s/e68f2b0a7247192cc909

However, app code analysis faces challenges from obfus-
cation techniques like name obfuscation, control flow mod-
ification, string encryption, and dead code insertion [10],
[11]. Tools such as ProGuard and DexGuard [12] introduce
these measures, complicating the analysis and masking func-
tional differences between app versions. These challenges
underscore the need for robust methodologies in understand-
ing geographic variations.

2.3. Cross-Domain App Differential Analysis

Prior work has examined cross-domain app differences
from various perspectives. Yang et al. [3] explored security
discrepancies of the same app between Google Play and
third-party app markets, highlighting issues like excessive
permissions and vulnerabilities. Dong et.al [13] investigated
different behaviors of the same app on differenct devices
Most relevant, Kumar et al. [2] analyzed geographic app
differences, identifying regional disparities in privacy poli-
cies and permissions.

While these studies focused on metadata-level differ-
ences, our work advances the field by delving into code-
level implementation differences, revealing deeper insights
into how apps handle security and privacy across regions.
For example, we analyzed the Google Authenticator [14]
app distributed in the U.S. and India, as contrasted in
Figure 1. Despite similar metadata—permissions, privacy
policies, and third-party libraries, only the U.S. version
implemented a “Privacy Screen” feature at the time, which
obscures sensitive authentication codes when multitasking,
mitigating shoulder-surfing attacks. This disparity highlights
how the nuance detected by metadata-level analysis fails
to reveal exact functionality feature differences that signifi-
cantly impact user privacy and security.

= Search... S ® Google Authenticator Q)

& Settings

< Settings

Looks like there aren't any Google Authenticator codes ereyet
here yet

Add a code
Add a code

Figure 1. A motivating example of GFDs only revealed at code level.

By investigating deeper, code-level disparities, our work
uniquely uncovers previously hidden implications of re-
gional app customization, providing actionable insights for
developers and platform providers to ensure consistent se-
curity/privacy standards across all regions.

3. The FREELENS Approach

In this section, we present the technical design and
effectiveness evaluation of FREELENS, our automated GFD
characterization approach. We start with an overview (§3.1)
of FREELENS, followed by the details of its three mod-
ules/phases: potential GFD app mining (§3.2), obfuscation-
resilient GFD app identification (§3.3), and semantic GFD
characterization (§3.4). Lastly, we assess the effectiveness
of FREELENS in terms of its accuracy (§3.5).

3.1. Overview

Figure 2 presents a high-level overview of FREELENS
highlighting its architecture. The workflow begins with three
FREELENS Inputs (1) app list: a curated list of Android
apps (by package names) that meet our selection criteria;
(2) country list: a list of target countries where the selected
apps are distributed; and (3) country-specific user accounts:
accounts registered in the target countries with associated
payment methods. The first two inputs define the scope of
our study, while (3) is needed for scraping the apps from
the target countries. As we scrape the apps using Google
Services, the accounts are Google accounts.

With these inputs, in Phase 1, FREELENS first scrapes
the latest version of each chosen app across all target
countries using our parallel app-scraping infrastructure. The
resulting APKs then undergo a lightweight screening pro-
cess, filtering out apps that unlikely have GFDs between
their country-specific APKs. The goal of this phase is to
garner potential GFD apps (i.e., those not filtered out).

Taking these potential GFD apps, FREELENS performs
static code analysis in Phase 2 to identify actual GFD apps
and their GFDs. For each candidate GFD app, this phase
profiles each pair of its country-specific APKs, resulting in
pairwise profiles, followed by diffing these profiles. To bal-
ance analysis scalability and effectiveness, we profile apps
at the granularity level of method-level control flows (i.e.,
call-path level), while examining call paths up to frame-
work/SDK APIs (i.e., API-bounded profiling). The rationale
is that apps cannot access security/privacy relevant capabil-
ities except via those APIs in Android [15], [16], [17], and
the APIs cannot be obfuscated. The method-level analysis
is also more robust (e.g., than diffing at statement level)
against app obfuscations. To further enhance the robustness,
FREELENS computes call-path signatures to capture the
most significant app differences without being impeded by
method-level obfuscations (e.g., method renaming).

Finally, in Phase 3, FREELENS characterizes the GFD
apps and their call-path diffs computed in Phase 2, gener-
ating natural-language summaries of feature variations from
those diffs between each pair of country-specific APKs of
each GFD app through (call-)graph-based reasoning (about
the code diffs) on foundation LLMs. The resulting pairwise
GFDs are fed to these LLMs again to summarize their
associated security and privacy implications/violations. The
two-level summary mapping (i.e., from code-level to natural-
language-level feature differences and further to those impli-

FREELENS Inputs | country-specific Study scope
user accounts [|[Applist] [Country!|

(GFDs and their associated security [€

_—1 Explainable results |FREELENS Outputs
ist]

y

and privacy implications/violations)

Country-specific

App APKs from}_b Lightweight GFD N

app scraping target countries| app screening

Potential
GFDapps

Pairwise GFDs

1.1 12
Phase 1. Potential GFD App Mining

Two-level
summary mapping

Path-sensitive
graph reasoning

A
GFDapps with = I Foundation LLMs I 3.2
call-path diffs

API-bounded call- Pairwise Signature-based
path profiling call paths call-path diffing
2.1 2.2

Phase 2. Obfuscation-Resilient GFD App Identification

Phase 3. Semantic GFD Characterization

Figure 2. An overview of FREELENS, including its inputs, three working phases and per-phase steps, and outputs.

cations) enables explainable characterization results, which
are the main FREELENS Outputs for further manual con-
firmation inspection in our measurement study (§4).

The key advantage of this multi-phase approach is its
ability to efficiently process large numbers of apps while
maintaining precision in identifying security-relevant differ-
ences. Phase 1 quickly filters out apps unlikely to contain
GFDs, allowing Phases 2 and 3 to focus computational
resources on detailed analysis of promising candidates. Ad-
ditionally, our approach’s resilience to code obfuscation
ensures reliable results even when analyzing commercial
apps that employ aggressive code protection techniques.

3.2. Potential GFD App Mining (Phase 1)

This phase serves initial data collection and filtering pur-
poses, aiming to mine a comprehensively dataset of potential
GFD apps while overcoming the associated challenge (C1).
It works in two key steps as elaborated as follows.

3.2.1. Country-Specific App Scraping (Step 1.1). Given
an app list, a country list, and an app-download account for
each country, FREELENS automatically scrapes for each app
the country-specific APK of a specified version from each of
the countries in the target list, using the account registered
for that country. To accelerate the scraping process and
maintain version consistency, the FREELENS component for
Step 1.1 is deployed on multiple machines running this com-
ponent in parallel, each configured with a different (Google)
account representing the corresponding target country. This
parallelization strategy is crucial for minimizing version
discrepancies that could arise from app updates during the
scraping process. While such updates may occur, our parallel
approach significantly reduces the likelihood of obtaining
different versions across countries. For instance, if an app
updates during collection, the probability of downloading
an old version for one country and an updated version for
another is minimal, as the downloads for each app across
all countries occur near-simultaneously.

To ensure that we did obtain the desired app version (i.e.,
the APK is the same as what users in the target country
download from Google Play Store), we randomly picked
some apps and compare their metadata which is shown on its
Play Store page against the APKs. Our result shows that they

are all identical. Since each app we scraped is an APK bun-
dle [18], which consists of the base APK and the split APKs
(e.g., configs, native library), we check the suffix of config
APKs which is the language code. If two APK bundles
of the same app have different config APKs, this indicates
that we downloaded the version distributed in that country.
For example, consider the app com.mustread distributed
in India and USA. If they have the localization support,
they will have different number of config APKs related to
languages. As illustrated in Figure 3, the Indian version
contains more language config APKs to support regional
languages. For example, bn stands for Bengali [19] and gu
for Gujarati [20], which are both languages spoken in India.
In contrast, the US version contains fewer config APKs,
especially only English language support. These differences
in language support configurations provide evidence that we
successfully downloaded country-specific versions of apps.
The presence of regional language resources in the Indian
version versus the English-only US version aligns with the
expected localization patterns for these markets.

com.mustread-277.apk
configxhdpi-277.apk
config.ta-277.apk
config.te-277 apk
config.bn-277 apk
configkn-277 .apk
conﬁg.mr—277.apk
config.gu-277.apk
config.en-277 .apk

P o
config.arm64_v8a-277 apk -

Figure 3. Split APKs for the same app distributed in India and USA.

com.mustread-278.apk
config.xhdpi-278.apk
config.en-278.apk
config.arm64_v8a-278 apk

Indian
version

USA
version

3.2.2. Lightweight GFD App Screening (Step 1.2).

For identifying potential GFD app candidates, FREELENS
adopts a pruning step prior to detailed app differencing
analysis for efficiency/scalability purposes. Unlike Kumar
et al.’s [2] use of binary diffing, we quantify the structural
characteristics of apps at three levels: number of classes,
number of methods, and instruction counts. Then, if these
metrics are all identical between two APKs, we rule out the
possibility that they have code differences between them.
For instance, intuitively, given the typically large number of
instructions in an Android app, exact match in instruction
count between two code-different APKs is very unlikely.
We conducted pairwise comparisons of these metrics across

all the countries for all the apps in our study (§4) and
confirmed that this heuristic consistently holds true. Since
computing these structural metrics is quite lightweight and
most of the APK pairs turn out to be identical indeed, such
an initial screening step is highly cost-beneficial. This step is
especially crucial given the quadratic complexity of pairwise
comparisons—comparing all the APK pairs via our detailed
code diffing (even just at call-graph level) would face a
major scalability challenge for a large-scale study like ours.

After the screening, apps with at least one pair of
country-specific APKs that have any difference in any of
the three metrics are considered potential GFD apps, which
are passed to Phase 2.

3.3. Obfuscation-Resilient GFD App Identification
(Phase 2)

This phase aims to identify GFD apps and their concrete
GFDs from the candidate GFD apps from Phase 1 via
detailed code analysis. To that end, it has to address two
challenges to static analysis of Android apps: scalability
barriers to such analyses (C2) and prevalent obfuscations
in these apps (C3). This is achieved via two steps below.

3.3.1. API-Bounded Call-Path Profiling (Step 2.1). Given
two (country-specific) APKs of a given app, we compare
them to identify differences (i.e., GFDs). Prior work [2]
opted for differencing apps at the level of metadata (e.g.,
permissions), which is overly coarse-grained and leads to
missing important app differences that are only reflected at
code level (§2.3). On the other hand, fine-grained analysis
(e.g., of data/control flow at statement level) of real-world
Android apps is known to suffer critical scalability barri-
ers [4], [5], [21], [22], [7], which exacerbate for a large-scale
study like ours. Thus, we choose to compare the two given
APKs in terms of method-level control flow, diffing apps
by important calling relationships in them, so as to strike
a balance between the cost and effectiveness of our app
differencing analysis. Given that accesses in Android apps
to security/privacy capabilities must be through Android
framework/SDK APIs [15], [16], [17], we profile call paths
bounded by (i.e., ending at) callsites to these APIs in each
APK. In this way, we focus on app differences in terms of
security/privacy related accesses, which aligns well with the
overall goal of our study. The fact that these APIs cannot
be obfuscated further implies robustness merits of profiling
at the call-path level.

Specifically, we first construct the standard (static) call
graph [4] of each APK and augment it with edges rep-
resenting calls to any APIs. Next, we traverse this aug-
mented call graph, starting from each entry method until
an API is encountered, resulting in API-bounded call paths
within the APK. Considering the framework-centric struc-
ture of Android apps, we identify entry methods by locating
Android framework callback overrides in the user code.
Crucially, these callback methods cannot be obfuscated,
providing reliable alignment points between the two APKs
and minimizing false-positive differences due to renaming

obfuscation. Both the start and end points of each call path
are unobfuscated methods, which serve as stable anchors
for the diffing step next to achieve obfuscation resiliency.
Since it is based on (method-level) control flow structure,
this call-path profiling approach is generally only affected
by control flow obfuscation.

3.3.2. Signature-Based Call-Path Diffing (Step 2.2). After
obtaining the call paths, we perform differential analysis to
identify (code-level) GFDs between the two given (country-
specific) APKs of each app. To maintain resilience against
obfuscation, our comparison strategy focuses on three sta-
ble characteristics of each call path: (1) the entry method
(Android framework callback), (2) the endpoint method
(Android SDK method), and (3) the call path length. Then,
we may treat all intermediate methods on a call path as
symbolic placeholders, avoiding direct comparison of po-
tentially obfuscated method signatures. While this approach
ensures robustness against obfuscation, it introduces a new
challenge: when the two versions (APKs) of an app have
different numbers of call paths with the same start (entry
method) and end points (API), determining which specific
path represents the actual difference becomes non-trivial.

To address this challenge, we leverage an empirical
observation about Android app obfuscation: when using
the same obfuscation configuration, identical methods will
be consistently renamed following the same pattern. While
this does not help with direct method alignment, it pro-
vides a way to identify differing paths through aggregate
characteristics. Specifically, for each intermediate method
signature on each call path, we abstract it into its aggregate
(total) length. Then, we use this metric together with the
entry method, path length, and end-point API as a call-
path’s signature, hence comparing two call paths based
on their signatures. This approach allows us to handle cases
where methods have been obfuscated but maintain consis-
tent renaming patterns. For example, consider obfuscated
methods <com.example.app.al: void b2 ()> and
<com.example.app.e3: void d4 ()>. Despite dif-
ferent obfuscated names, these methods would be identified
as equivalent based on their signature structure and position
in the call path. Figure 4 shows an example.

In this example, if call-paths are matched by entry
methods, end points, and path depths, there will be an
extra path (3 paths versus 2 paths) in the right-side version.
Since we cannot directly compare the method signatures to
identify the extra path due to renaming obfuscation (e.g.,
’ak.a’ versus 'kk.a’, ’bd.a’ versus ’dd.a’), we instead lever-
age the key observation mentioned before: when using the
same obfuscation configuration, identical methods will be
consistently renamed following similar patterns. This means
that while we cannot predict what *ak.a’ will be renamed to,
we know that all instances of this method will be renamed
to the same pattern (in this case, ’kk.a’) with identical length
and parameter types. By comparing aggregate signature
characteristics of entire paths, we can reliably group paths
that represent the same functionality despite obfuscation.
This allows us to determine that the rightmost path in

<*.CameraActivity:
void onResume()>

| <*_CameraActivity: | | <*_ CameraActivity: |
void x1()> void x1()>

. ak.a: vol
c(android.content.Context,

<*.CameraActivity
: void vl

java.lang.String)

| <*_CameraActivity: | | <*_ CameraActivity: | | <*.scan.ui.a:|
voi(‘i(Hl()> void y1()> void run()>
\

kk.a: void -
c(android.content.Context, | <* .CameraActivity |
: void F1()

<* CameraActivity: |
void I1(int)>

~
~
'

<bd.

L a: void <) 720 ot
r(android.content.Context, e o

f(android.app.Activity,java.
lang.String[],int)>

java.lang String)>

<kk.a: void

c(android.content.Context,java.la
ng.String,java.lang.String,

java.lang.String)>

<dd

L a: void <) 20 Wit
r(android.content.Context, e o

f(android.app.Activity,java.
lang.String[],int)>

java.lang String)>

<android.text. TextUtils: boolean

<android.text.TextUtils: boolean | ———— -

isEmpty(java.lang.CharSequence)>

|

|

|

|

|

|

|

|

: java.lang.String) =
I v
|

|

|

|

|

|

|

isEmpty(java.lang.CharSequence)>

Figure 4. Different call paths of the same length, entry points, and end points.

the second version (through scan.ui.a.run()) is the actual
additional functionality, as it has different signature patterns
from all paths in the left version.

In this step, our signature-based call-path diffing specif-
ically addresses obfuscation challenges by matching struc-
tural patterns rather than direct method signatures. Impor-
tantly, even when control flow is obfuscated, as long as
the same obfuscation configuration is applied consistently
to both APKs being compared (which is typically the case
for different app versions from the same developer), our
approach remains resilient. Thus, put together with Step 2.1,
the scenario where FREELENS would face significant chal-
lenges is only when control flow obfuscation is adopted and
inconsistently applied between the two compared APKs—a
rare case in practice as developers typically use consistent
build configurations. Nevertheless, our approach is practi-
cally accurate and robust overall (§3.5).

3.4. Semantic GFD Characterization (Phase 3)

From the call-path diffs as code-level GFDs of GFD
apps identified in Phase 2, this phase aims to generate as-
sociated feature difference summaries as natural-language-
level GFDs and their security/privacy implications. The
key challenge lies in the gaps between the low-level code
differences and these high-level (functionality and security)
semantics of those differences. FREELENS overcomes this
challenges via Phase 3, which works in two main steps.

3.4.1. Path-Sensitive Graph Reasoning (Step 3.1). To
summarize code-level differences as feature changes, we
leverage large language models (LLMs) via graph-based rea-
soning [23], [24] about program behaviors. We structure our
analysis by representing call path differences in a format that
facilitates both human comprehension and LLM analysis.
We use foundation LLMs given their generalizability and
high-accuracy in code summarization [25], [26].

First, we create a method-id mapping for all methods
involved in the changed call paths, including: Entry methods
(Android framework callbacks), intermediate methods in the
call path, and Terminal SDK methods.

Next, we transform the call-path diffs into a tree-like rep-
resentation that preserves the calling relationships between
methods. This hierarchical structure, similar to the output
of the Unix tree command, clearly shows the execution
flow and method dependencies. In this tree structure, one
changed call path starts with the root node, ends up with
a leaf node, with all the internal nodes being intermediate
nodes on the call path. For example, in Listing [, line 1 to
line 8 are the method-id mapping. Starting from line 10 are
the changed paths. In this example, the two added paths are
9-8-12-11-19 and 9-8-12-14-1.

1 [ID to Method Mappingl: // Class: ID-Method
2 android.content.IntentFilter: l-addAction

3 android.util.Log: 7-println

4 x.MainActivity: 8-InitBigoAds, 9-onCreate

5 sg.bigo.ads.BigoAdSdk: 1l1-b, 12-initialize

6 sg.bigo.ads.common.d.a: l4-a

7 sg.bigo.ads.common.s.a: 19-a

9 [Changed Paths]:

10 Activity: *.MainActivity

Il — Entry Method: onCreate // Lifecycle Callback
12 — Added Paths:

13 9 (onCreate)

14 |_8 (InitBigoAds)

15 |_12 (initialize)

16 |-11 (b) // Obfuscated identifer

17 | |_19 (a) // Obfuscated identifer
18 | |_7 (println)

19 |_14 (a) // Obfuscated identifier

20 |_1 (addAction)

Listing 1. An example LLM prompt for Step 3.1 in Phase 3.

The method-id map and transformed call-path diffs form
the LLM prompt. As such, the model summarizes GFDs
based on (1) semantic information in the class/method-name
identifiers and (2) the semantic relationships between the
methods that are sensitive to specific control flow (i.e., call)
paths, hence the path-sensitive graph reasoning.

In particular, this tree representation enables LLMs to
reason about behavioral changes by analyzing (1) the entry
points where changes occur (e.g., which system callback
methods are affected); (2) the sequence of method calls
that implement the change; and (3) the terminal APIs that

indicate the ultimate system interactions. By processing
this structured representation, LLMs can infer higher-level
feature changes from low-level code differences. For in-
stance, in the example above, the LLM can identify that the
change introduces advertisement initialization and tracking
functionality in the app’s startup sequence.

3.4.2. Two-level Summary Mapping (Step 3.2). Beyond
identifying feature differences, FREELENS further summa-
rizes their security/privacy implications. As such, we obtain
three layers of information between each pair of country-
specific APKs/versions of each GFD app: code (call-path)
diffs (L1), feature difference summary (L2), and security/pri-
vacy summary (L3), as ordered from low to high semantic
levels. Then, we further prompt the LLMs to perform two
levels of summary mapping: mapping from L1 to L2 (M1)
and mapping from L2 to L3 (M2). The rationale is to provide
explainable results: the lower level information is used to
explain the next higher level information. In this way, for
both levels of summary (L2 and L3), there is supporting
evidence (via M2 and M3 resp.) to justify the summary.

For example, when analyzing advertisement-related
changes, the LLMs identify: “Added initialization of Bigo
advertisement SDK during app startup with custom tracking
configuration.” at L2. Then, at L3, the models summarize
the security/privacy implication with supporting evidence as
shown in Listing 2.

I # Security Implication: "Increased privacy risk
2 through additional user tracking"

3 # Supporting Evidence:

4 — Addition of advertisement SDK initialization
5 (path: onCreate -> InitBigoAds)

6 — Implementation of custom tracking callbacks

7 (path: initialize -> setupAds ->logEvent)

Listing 2. An example security/privacy implication summary with M2.

These two evidence-based mappings are essential for the
further inspection and characterization in our measurement
study (§4). First, it enables human analysts to verify the
LLMs’ conclusions by examining the specific code paths
that led to each identified security concern. Second, it helps
maintain traceability between high-level security implica-
tions and their concrete implementation (i.e., feature) differ-
ences. Moreover, it reduces the risk of false positives (due
to LLMs’ hallucinations) by requiring explicit evidence for
each identified feature difference and security/privacy issue.

3.5. Implementation and Evaluation

In Step 1.1, we utilized Raccoon [27], an Android app
downloader which supports batch download apps with CLI
support, to assist with acquiring the given version of an
app. For Step 1.2, we employed Jadx [28] to analyze the
structural characteristics hence computing the three met-
rics (e.g., instruction count) for each APK. Finally, for
creating the standard call graph of each APK, we used
FlowDroid [4], a popular static analyzer of Android apps.
We analyze the entire APK, including any third-party code

if present in the APK. We did not explicitly recognize third-
party code, nor treat them differently from user code, in our
analysis. Accordingly, when differencing the two country-
specific APKs of an app, the differences in third-party code,
if any, are also analyzed. Similarly, for native code, our
approach handles related differences in calling relationships
with native functions, as these are captured in our call graph
and call-path diffing. For the two-level summarization step,
we provide the prompt template used in Figure 5.

You are an expert in analyzing Android app changes and their security implications. You will analyze call path
changes or class/methods addition/deletion in Android and provide insights
focusing on functionality changes and security/privacy implications
[Input Format]
Added and Removed classes and methods [if applicable]:
{Added and removed methods in the added and removed classes}
Modified methods [if applicable]:
{Method ID to signature mapping}
{Changed call paths showing added/removed call paths per class and entry method. ALl paths starting from entry
methods to end points are changed paths.
[Output Format - Strict JSON only]
"changes”: [
{
"change_summary”: "summarize how functionality features changed in non-technical terms"
"supporting_evidence": ["relevant unobfuscated package, class, method, or API calls from the paths"]
"security_implications": ["concrete security/privacy concerns or empty array if none identified"]
1,
"changes_summarization": {
“summary”: "Summary of overall changes"
"security_level": "High/Medium/Low/None based on the identified security/privacy implications"
}
Or an empty JSON object if no changes are found
[Analysis Rules (Do not include in output)]
1. Focus #*onlys on non-trivial changes
- Non-obfuscated method/class/package names and their purposes
- SDK/framework API calls that indicate user-facing features
- Summarize "How" the changes are made, not just "What® changes are made
2. For obfuscated methods:
- only consider unobfuscated parts
- Ignore fully obfuscated methods unless their context (surrounding calls, parent class) provides clear
meaning
- Use SDK method calls as context to understand the purpose
3. Change Detection Rules: Entry methods themselves are not added or removed, but the call paths starting from
them are changed.
- Entry methods appearing in the changes DO NOT indicate the feature itself is added/removed. These entry
methods (and their classes) exist in both versions - call paths starting from them are what changed.
- only summarize functionality changes if
a) The changed call paths show clear functionality differences
b) The non-obfuscated methods in the paths indicate specific feature changes
- Ignore changes whereno clear functional difference can be inferred from the paths
4. Group related changes to a single record

Remember to output ONLY the JSON result without any explanation, reasoning, or additional text.

Figure 5. Prompt template used for the two-level summarization.

Importantly, given that FREELENS is an automated tool,
it is critical to evaluate its accuracy in identifying GFD
apps and characterizing their GFDs before conducting our
study using the tool. To conduct a rigorous evaluation,
we randomly sampled our entire dataset of 21,120 scraped
apps (§4) with 98% confidence level (CL), 5% margin of
error (ME), and population proportion of 5% (given that
1,122 of the 21,120, or approximately 5%, were eventually
identified as GFDs). This led to 103 apps as a statistically
representative sample. Around these 103 apps, we build
ground truth including (1) whether each app is a GFD app
according to one of its country-specific APK/version pairs,
(2) the code (call-path) differences between that pair, and
(3) the summaries of feature differences and security/privacy
implications for the same pair. Our ground truth creation
involved a meticulous manual analysis pipeline: an in-depth
app code review by comparing code-level differences be-
tween the two versions, reviewing their release notes and
relevant documentation (e.g., apps’ About and Data-Safety
pages on Play Store, Google’s official policies/regulations),
and conducting extensive functionality testing of each APK
by manual app exploration on physical devices. To ensure
reliability and mitigate bias, three of the authors each in-

TABLE 1. EFFECTIVENESS OF FREELENS

Capability Precision | Recall | F1 Score
GFD classification 98.97% 100% 99.48%
GFD characterization 92.09% 89.31% 90.68%

dependently created the ground truth, followed by cross-
validation and a consensus process.

Using this carefully curated ground truth, we assessed
the accuracy of FREELENS in (1) identifying GFD apps
(i.e., GFD classification) and (2) generating the summary of
feature differences and that of their security/privacy impli-
cations (i.e., GFD characterization). For classification, the
evaluation was automated by exactly matching FREELENS
produced labels against the ground-truth. For characteri-
zation, three of the authors manually validated the results
based on the semantic equivalency of FREELENS produced
GFDs and security/privacy implications against respective
ground truth. First, each rater independently performed
the evaluation. Then, per-rater results are cross-checked
hence reaching consensus by resolving disagreement via
negotiation. Table | lists the accuracy results. As shown,
FREELENS can almost perfectly detect GFD apps—only
one app was misclassified as its two given APKs have
spurious call-path diffs due to their inconsistent obfuscation
configurations. The results on GFD characterization show
that FREELENS can effectively identify the vast majority
of actual GFDs—the high recall suggests that FREELENS’s
approach of analyzing call paths and leveraging unobfus-
cated Android framework methods effectively captures most
meaningful feature differences. Meanwhile, the strong pre-
cision indicates that our two-level mapping strategy suc-
cessfully filters out coincidental differences and correctly
identifies security-relevant variations.

4. Study Methodology

To systematically investigate GFDs and their security
implications, we formulate four research questions (RQs):
RQ1 How prevalent are GFD apps and what are the pat-

terns of GFDs across different regions?
RQ2 What are the security/privacy implications of GFDs?
RQ3 How do the GFDs manifest in widely-used apps?
RQ4 Are GFDs aligned with relevant policies/regulations?

Next, we describe the dataset collected and procedure
followed for answering the RQs using FREELENS.

4.1. Dataset

Countries. The first step in studying GFDs is to deter-
mine target geographic regions. Similarly to relevant prior
study [2] and others, we utilize the Freedom House’s In-
ternet Freedom (FHIF) score [29] as our primary selection
criterion. This score provides a comprehensive metric that
considers factors such as access restrictions, content limita-
tions, and violations of user rights in different countries. Un-
like the earlier study employing VPN services and physical
devices across numerous countries [2], we opted for a more

TABLE 2. COUNTRIES SELECTED PER FHIF LEVELS AND SCORES

Country FHIF Level | FHIF Score
United States (USA) Free 76
Germany Free 77
India Partly Free 50
Bangladesh Partly Free 40
Nigeria Partly Free 59
Egypt Not Free 28
Saudi Arabia Not Free 25
Vietnam Not Free 22
Turkey Not Free 31
Pakistan Not Free 27

focused approach using registered Google accounts with
associated payment methods, as documented in Google’s
policy of switching Play Store country [30]. This methodol-
ogy, while covering fewer countries, ensures more reliable
and consistent access to apps across regions. We carefully
selected 10 countries that represent the full spectrum (i.e.,
3 levels) of Internet freedom, as Table 2 shows.

Apps. For app selection, we employed a multi-pronged
approach to ensure both breadth and depth in our dataset.
First, we analyzed metadata from AndroZoo [31] to identify
apps meeting two key criteria: (1) >1 million installations,
indicating significant user impact and (2) availability across
all our target countries, eliminating apps with geographic
restrictions that could confound our analysis. This initial
filtering yielded a substantial dataset of 20,211 apps.

To capture both current trends and historical significance
in the Android ecosystem, we supplemented the above base
dataset with two additional app sets: (1) top-10 currently
trending apps from all 54 functionality categories, in total
540, on Google Play Store at the current time, and (2) top-
500 most installed apps in Google Play Store history [32].
To maintain dataset independence and prevent duplicate
analysis, we carefully filtered the AndroZoo-derived list to
exclude apps present in either of these supplementary sets.
Similarly, we ensured no overlap between the current trend-
ing apps and historical most-installed apps. After removal
of 131 duplicated apps between most installed and current
trending app sets, there are 909 unique apps. Therefore, the
total number of apps we scraped is 21,120. This meticulous
process resulted in 3 distinct, complementary datasets that
collectively provide a comprehensive set of apps. As in prior
work [2], we scraped latest versions of each app per country
throughout October, 2024.

4.2. Procedure

We fed FREELENS with the 21,120 scraped apps, result-
ing in 1,902 unique apps with code differences. However,
for 780 of these apps, the differences are only in third-party
code not used by the apps yet. Ruling out these apps led to
1,122 GFD apps. Then, among the 1,122*C(10,2)=50,490
pairs of (country-specific) APKs, 20,752 have GFDs, for a
total of 44,872 individual GFDs, which have 37,177 individ-
ual security/privacy implications. Then, our investigation of
GFDs follows a principled procedure to address each RQ.

For RQ1, which examines the characteristics and pat-
terns of GFDs, we employed an open coding approach to
categorize functionality differences, first creating a code-
book and then using it to label GFDs. To create the GFD
codebook, we randomly sampled 333 out of all the GFDs,
a sample size of 95% CL and 5% ME (with a conservative
50% population proportion). Then, three of the authors
independently analyzed the sampled differences to create
initial categorization schemes. For functionality differences,
each author (1) examined the code-level changes identified
by FREELENS, (2) assessed whether each difference fit
existing categories, and (3) created new categories when
needed. When establishing a new category, they defined a
descriptive label, provided detailed category criteria, and in-
cluded example code patterns characteristic of that category.
The authors then resolved any categorization disagreements
through discussion until reaching consensus on the final 15
functionality categories (F1-F15) as shown in Table 3.

After establishing the codebook, we categorized all iden-
tified GFDs. To ensure reliable categorization, we employed
negotiated agreement, which is particularly valuable when
the research aims to provide new insights into complex
phenomena. The three authors who developed the codebooks
worked together to categorize each difference, reaching con-
sensus through discussion when initial categorizations dif-
fered. For labeling (remaining) GFDs, this process involved
examining code changes to identify characteristic patterns
matching our established categories.

For RQ2, we followed a similar coding approach. Using
the same statistical parameters as for RQ1, we determined
a significant sample size of 323 cases to create the securi-
ty/privacy implication codebook, as shown in Table 5. Dur-
ing the coding process, for labeling remaining implications,
we analyzed how each functional difference might impact
security properties such as data protection, user privacy, and
system integrity. When differences exhibited multiple char-
acteristics, we categorized them according to their primary
impact while noting secondary effects for further analysis.
To maintain analytical consistency, we examined the same
apps selected for RQ1, but focused specifically on security
and privacy aspects.

To address RQ3’s focus on code-level manifestation
of security/privacy implications in widely-used apps, we
conducted detailed code analysis examining the call path
differences identified in Phase 2 of FREELENS. We stud-
ied multiple apps from each major category identified in
RQI1, analyzing their specific code patterns and technical
mechanisms for implementing geographic variations. This
analysis provided insights into how popular apps concretely
implement feature differences across regions.

To answer RQ4, we focused on apps exhibiting privacy-
sensitive variations identified in our previous analysis. For
each selected app, we conducted a thorough documenta-
tion review including: (1) privacy policies from both app
stores and developer websites, (2) release notes describing
version changes, (3) data safety declarations in Google
Play Store, and (4) any region-specific documentation or
user notifications. We compared these documented policies

4%

_ i Green: Free Country
Germany ’

Red: Not-Free Country 3%

1.2
Egypt Rl 13 BN 13 13 2%
Saudi Arabia
Vietnam 1%

Turkey

Pakistan il . - 5 akzl 13

i i Fe— T 0%
sl MG gt
sa

Figure 6. Distribution of the version differences between countries.

Integration & APIs

Device & Hardware

Error Handling & Logging

Performance & Optimization
Payments & Billing

Input & Interaction

Backend & Infrastructure
Analytics & Data Management
Communication & Notifications
Authentication & Security
Media Management

System Mgmt. & Maintenance
User Interface & Experience

Advertising & Monetization
Miscellaneous

o

50 100 150 200 250 300 350 400

Figure 7. Distribution of functionality feature categories by focus area.

against observed code-level differences to identify potential
discrepancies between stated privacy practices and actual
implementations across regions. We also evaluated whether
these differences comply with major privacy regulations
such as GDPR and CCPA, as well as Google Play Store’s
privacy/security requirements. This analysis helps us under-
stand how developers manage and communicate geographic
variations in their privacy practices to users and regulators.

5. Characterization Results on GFDs (RQ1)

Categories of GFD. We identified 15 distinct categories
of feature differences, as seen in Figure 7 and Table 3.
Adpvertising and Monetization (F1) emerged as the most
common category with 364 instances, reflecting significant
regional variations in how apps implement revenue genera-
tion features. “User Interface & Experience” modifications
(F2) constituted 249 cases, indicating substantial regional
customization of app presentation and interaction patterns.

m Communication & Notifications = System Mgmt. & Maintenance m Miscellaneous
m Authentication & Security [] ytics & Data m User &
W Media Management W Advertising & Monetization W Payments & Billing

19% 28% "
. 20% 149 1% M 1o, o IO, W0, 2%
2 . B wfll 25%
22% % Y m
o5 d - 2o 189 [15% W49 I8 129 [15% I o,
16% [l 10% [l 15%| 18% 149 [l 16% I 149 [l 13%

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

100%

80%

60%
40%
20%

0%

Figure 8. Top-3 GFD categories across years the apps were first released.

TABLE 3. MAIN CATEGORIES OF GFDs FOUND IN OUR STUDY

GFD Category (label)

Description (what features are changed and how they are changed)

Advertising & Monetization (F1)
User Interface & Experience (F2)
System Mgmt. & Maintenance (F3)
Media Management (F4)
Authentication & Security (F5)
Communication & Notifications (F6)
Analytics & Data Management (F7)
Backend & Infrastructure (F8)
Input & Interaction (F9)

Payments & Billing (F10)
Performance & Optimization (F11)
Error Handling & Logging (F12)
Device & Hardware (F13)
Integration & APIs (F14)
Miscellaneous (F15)

Added/removed advertising and monetization features including ad SDK, purchase flows, and consent handling.
Modified user interface experience through dialog prompts, navigation controls, browser interactions, etc.
Refactored core system components including app initialization, intent handling, runtime configurations, etc.
Changed media handling capabilities through audio controls, image loading, video playback, etc.

Altered user privacy and security through permission controls, consent management, authentication, etc.
Added/removed communication features through push notifications, social login flows, in-app messaging, etc.
Modified analytics tracking and data management through legacy integrations and state persistence.

Changed backend and infrastructure for authentication flows, payment integrations, messaging systems, etc.
Altered user interaction security through improved input handling, navigation controls, chat interfaces, etc.
Modified payment and billing systems with subscription flows, authentication methods, and purchase handling.
Optimizing app performance through background processing, lazy loading, memory management, etc.
Implemented comprehensive error handling updates and logging modifications.

Added/removed camera, barcode scanning, and location-related hardware functionalities.

Modified third-party integrations, authentication methods, and tracking functionalities.

Mixed feature modification including context management, storage access, encryption mechanisms, etc.

TABLE 4. NUMBER OF GFD APPS RELEASED IN EACH YEAR

Year 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016

2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024

#Apps 25 33 39 64 64 70 69

107 86 121 139 123 112 67 3

This distribution reveals that while apps maintain core
functionality across regions, they frequently adapt secondary
features like advertising, user interface, and system man-
agement to regional requirements or preferences. The high
number of advertising and monetization differences suggests
that regional market significantly influence how apps gener-
ate revenue, while the substantial variations in authentication
and security implementations indicate different approaches
to user protection across regions.

Distribution of the version differences between coun-
tries. Figure 6 shows the percentages of the examined apps
that have different versions on each of the country pairs. For
example, 4.2% of the examined apps have different versions
between Pakistan and USA, while the number is 1.2%
between Germany and Pakistan. We also label the freedom
levels of the countries with different colors where green
means a free country, yellow means a partly-free country,
and red means a not-free country, as indicated in Table 2. We
notice that USA, India, Vietnam, and Turkey have more apps
with different versions to other countries, while Germany,
Bangladesh, Nigeria, Egypt, Saudi Arabia have less. The
larger percentages on USA and India are possibly caused
by the large markets in the two countries [33], while the
cases on Vietnam and Turkey are more likely caused by
the strict regulations [34], [35]. However, we do not notice
apparent patterns between the country pairs with the same
and different freedom level.

18% 15%

10%

15% 12%
12% "
6% 3% 3% 4% 3% 3w 4% 3%
g
" Anasssan=BNEEN
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Figure 9. Percentage distribution of GFD apps by release year.

Distribution of GFD across years. Figure 9 shows the

distribution of GFD app percentage over all apps examined
over the years the apps were first released. We notice that
the apps that were first released after 2020 had higher
percentage (7%-15%) of GFD apps. This indicates that the
GFDs become more frequent these years and thus relevant
security issues from GFDs should be paid attention to. We
further provide the number of GFD apps released in each
year in Table 4.

GFD categories across years the apps were first
released. Figure 8 shows the top-3 GFD categories across
years the apps were first released. We notice that “Adver-
tising & Monetization” became more frequent (20%-44%)
after 2018, while “System Mgmt. & Maintenance” became
less frequent after 2016. This indicates that developers were
more likely to specify advertising and monetization for dif-
ferent countries these years, while the system management
and maintenance was more unified.

6. GFDs’ Security/Privacy Implications (RQ2)

Categories of GFDs’ Security/Privacy Implications.
Table 5 and Figure 10 show the descriptions and distribu-
tion of security implications. Among the 2,443 function-
ality differences identified, 2,018 (82.6%) exhibited poten-
tial security or privacy implications. Our analysis revealed
15 distinct categories of security and privacy concerns as
seen in Figure, with variations ranging from data handling
practices to system-level security implementations. “Data
Security and Privacy” (S1) emerged as the most prevalent
category with 508 instances, highlighting how geographic
variations often impact user data protection measures. These
differences manifested in various ways, from data collec-
tion practices to storage mechanisms and privacy controls.
“Advertising Security” (S2) followed as the second most
common category with 365 cases, reflecting significant re-
gional variations in how apps implement and secure their
advertising frameworks.

TABLE 5. MAIN CATEGORIES OF SECURITY/PRIVACY IMPLICATIONS OF GFDs FOUND IN OUR STUDY

Category (label) Description (what security & privacy implications are and how they may be realized)

Data Security and Privacy (S1) Handling sensitive user data biometrics and permissions compromises privacy and security.

Advertising Security (S2) Modifying advertising integrations and tracking mechanisms affects user privacy and cause potential attack.

Permission and Consent (S3) Modifying permission handling and consent management affects user authorization and data protection compliance.
Access Control (S4) Altering authentication flows, permission handling, and data access exposes sensitive user information.

Authentication and Authorization (S5) Changing authentication flows and verification mechanisms like login, payment, messages compromises security issues.
Device and System Security (S6) Modify system settings, access device information, and manage broadcast receivers impacts device security and privacy.
Web and Browser Security (S7) Insecure WebView modification exposes applications and users to web-based vulnerabilities and privacy risks.
Application Security (S8) Modifying core application components like licensing and API communication impacts application security.

Payment and Financial Security (S9) Insecure handling of financial transactions and secure validation causes unauthorized access and data leakage.

Resource Management Security (S10) Inappropriate system resource management causes unauthorized data exposure, resource leaks, and vulnerabilities.
Input and Validation Security (S11) Modifying input handling mechanisms and validation processes across introduces vulnerabilities if not properly secured.
Monitoring and Analytics (S12) Modifying monitoring and logging mechanisms affects security auditing, user tracking, and advertisement analytics.
Configuration and Management (S13) Modifying system configurations and management introduces system weaknesses through component changes.

Network Security (S14) Altering network connections and permissions for ads, licensing, and VPN functionality causes security risks.

Other (S15) Other core feature modification like cryptography and third-party integrations weakens system protections.

Security implication across years. Figure 11 shows the
top-3 security implication across years the apps were first
released. We notice that “Data Security and Privacy” was
the dominant category from 2010 to 2024. This indicates
that data security and privacy is the major concern from the
geographic feature differences. Besides, advertising security
became more popular in recent years (up to 31% in 2021).
This indicates that advertising should be paid attention to
for the possible security issues from GFDs.

Mapping from functionality feature changes to se-
curity implications. Figure 12 shows the top mappings
from functionality feature changes to security implications.
We notice that category “Advertising & Monetization”(F1)
Figure 10. Distribution of security and privacy categories by focus area. causes diverse security implications including “Access con-

trol”(S4), “Permission and Consent”(S3), “Data security and
Privacy”(S1), and “Advertising Security”’(S2). In contrast,

Network Security
Configuration and M
Monitoring and Analytics
Input and Validation Security
Resource Management Security
Payment and Financial Security
Application Security
Web and Browser Security
Device and System Security
Authentication and Authorization
Other
Access Control
Permission and Consent
Advertising Security
Data Security and Privacy

o
=
=)
=3
N
=3
=3
w
=1
=3
N
=3
=3
5
o
=)

100% m Authentication and Authorization m Data Security and Privacy ”SyStem Mgmt & Maintenance”(F3) tendS tO cause Security

st § dvertsingSeourty - = Aecess Contral - implications on “Access control”(S4) and “Data security and
13% [l 16% 18%) 12%) J 16% [l 12% 12%) : 2 : N : D)

oo | B B o B . Privacy”(S1), vtf‘hlle Analy'/tlcs & Dgta l\/{,anagement (F7)

40% 23% 19% 20% tends to cause “Data security and Privacy”(S1).

0% om0 204 [l 30% [3106 [l 37 % 31% 200 [o, Il 31% [40%

0%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 7. COde'Level GFD Manifestations (RQ3)
Figure 11. Top-3 security implication across (app release) years. To understand the concrete manifestations of these secu-
rity variations, we conducted in-depth analysis of represen-
tative apps from the three top categories (excluding S15), as
seen in Figure 5. These case studies revealed how seemingly
minor feature differences often carry significant security im-
I ESCKE TR st ture Access Control [plications. The following sections present detailed analyses

= of these representative cases, illuminating common patterns
Permission and Consent- e
Advertising & Monetization and their security implications within each category.

.System Management & Maintenance

[User Interface & Experience (UI/UX) 7.1. Advel‘tiSing and Monetization

Data: Security: and Privacy.
[Miscellaneous

NIRRT Our in-depth analysis reveals that advertising-related
differences represent the most prevalent category of GFDs

W except for third party library internal changes. Through care-

Advertising Security

[Media Management] ful examination of the code differences identified in Phase

[Communication & Notifications 2, we observed several distinct patterns in how advertising
implementations vary across regions.

Figure 12. Top mappings from feature changes to security implications. Ad Complexity Variations. We found significant

differences in the sophistication of advertising

Congrats!

You're seeing a test ad.

MAX

BY APPLOVIN

Figure 13. Test ad which does not contain real ad content.

implementations between regional versions. Some
versions implement basic or test advertisements, while
others deploy complex advertising systems. This is
evidenced by the presence of distinctive advertising-
related components in certain versions. For example, in
versions with interstitial ads, we can see the presence of
com.applovin.adview.AppLovinFullscreenThemed-

Activity, com.vungle.ads.internal.ui.AdActivity,

or com.unity3d.ads.adplayer.FullScreenWebView—
Display, etc. These classes indicate the implementation
of advanced advertising features such as full-screen
interstitial ads, rewarded video ads, and sophisticated
ad debugging capabilities. The presence of methods
like dispatchTouchEvent in these classes suggests
interactive ad experiences that can capture and respond to
user interactions. A recent study [36] has shown that third-
party libraries with interstitial advertising capabilities may
have silence installation, inappropriate ads to children, and
ad fraud. The optional integration of these libraries exposes
these concerns to users in certain regions. Figure 13 and
Figure 14 show an example of test ad and an insterstitial
ad that contains rich content, respectively.

Ad Placement Strategies. We observed significant vari-
ations in both where and when advertisements appear within
apps. A common pattern involves what we perceive as
“unwanted advertising,” where ads are integrated into every
major user interface component. The ads are typically placed
at the creation or the destruction of an Activity class. In
the user’s view, it will be displayed when the user enters
or leaves some interfaces. For example, in several apps,
we found differences in back-button handling, as shown
in Listing 3. This implementation demonstrates a strategy
where interstitial ads are triggered by navigation events,
specifically when users attempt to leave an activity using
the back button. This approach maximizes ad exposure
by intercepting common user interactions. As per Google
Play’s official policy [37], showing ads that are displayed to
users in unexpected ways harms the user experience and is

considered Mobile Unwanted Software.

| onBackPressed()

2 |_ AdsHelper.showInterBack ()
| _ Admob.showInterAds ()

4 | _ onAdClosedByUser ()

Listing 3. An example of ad placement strategy.

These findings suggest that regional differences in ad-
vertising implementations often go beyond simple presence
or absence of ads, encompassing sophisticated variations in
ad types, placement strategies, and conditional display logic.
Such differences can have significant implications for user
experience and privacy across different regions. For exam-
ple, recent studies [38] [39] discovered that library-based
Ad promotion can be exploited by malicious developers.

7.2. Authentication

Several apps we observed show some authentication
implications. com.pairip.licensecheck3 is a license
verification module commonly used in Android apps to
validate legitimate app purchases and prevent unauthorized
app usage. It provides authentication services to ensure that
apps are being used according to their licensing terms.

As shown in Listing 4, the
- code path reveals a license ver-
00:12 _ = ification process that is present

= in one version but not in an-
DRAG AND DROP, ;
TO MERGE

other. During activity creation
(onCreate), the app initial-
izes the license check through
LicenseClientV3. The client
then connects to a licensing
service and validates the re-
sponse through several steps.
First, it establishes a connec-
tion with the licensing service
and receives a response bun-
dle containing license informa-
tion. Then, it performs response
validation using cryptographic
= signatures, which involves de-
coding a Base64-encoded pub-
lic key, verifying the signature
of the license response, and val-
idating the JSON response con-
taining license status. If any er-
rors occur during this process, the app shows an error dialog
and handles the exception appropriately.

DOWNLOAD

Figure 14. Interstitial ad pro-
vided by third-party libraries.

1 onCreate (android.os.Bundle)

2 |_onActivityCreate ()

3 |_initializeLicenseCheck () >

4 | _connectToLicensingService ()>
5 | _handleError ()

6 | _showErrorDialog ()

7 |_validateResponse ()
verifySignature ()

Listing 4. An example of authentication implication.

The absence of this license verification mechanism raises
several security concerns. First, without license verification,
unauthorized copies of the app could run without validation,
potentially violating the developer’s intellectual property
rights and licensing terms. Second, the verification process
includes signature validation using public key cryptography,
and its removal eliminates a crucial integrity check that
ensures the app hasn’t been tampered with or repackaged.
Third, the licensing system helps prevent revenue loss by
ensuring only legitimate purchases can use the app, and its
absence in some versions could lead to unauthorized dis-
tribution and usage. Furthermore, the presence of different
authentication mechanisms across versions creates inconsis-
tencies in how the app manages user access and validates
installations. We noticed that this integrity check mechanism
is replaced by Play Integrity API [40], potentially creating
security loopholes as the version with outdated verification
check mechanism could be exploited. We also observed that
most of apps that did not enforce integrity check will also
be blocked by Google Play Service to be installed, which
is shown in Figure 15.

This case demonstrates how
geographic variations in authenti-
cation mechanisms can create se-
curity disparities across regions.
When some versions of an app
implement robust license verifica-
tion while others omit these checks
entirely, it creates an uneven secu-
rity landscape where users in cer-
tain regions may face greater risks
of using compromised or unautho-
rized versions of the app than users
in other regions. Such inconsisten-
cies in authentication mechanisms
not only affect the app’s security posture but also raise
questions about equitable security provisions across different
geographic regions.

Get this app from Play
&
@

The app installed on your device is
not recognized and could harm your
device. To continue using this app,
search for it on Google Play.

Search on Play

Figure 15. A example
of Google Play Service
blocking App without li-
cense check.

7.3. Access Control

The most common pattern of access control variation
relates to monetization strategies across different regions.
While some access control differences naturally arise from
feature updates where certain users cannot access newly
added functionality, the most prevalent pattern emerges in
apps with consistent core features but varying monetization
implementations. In these cases, one regional version typ-
ically offers users the option to remove advertisements or
unlock premium features through in-app purchases, while
the other version either lacks this option entirely or im-
plements it differently. For example, in apps that support
payment options to remove advertisements, we consistently
observe that these versions also implement particularly ag-
gressive advertising strategies. The implicit design appears
to incentivize purchases by making the free experience less
appealing through frequent ad interruptions.

The implementation of these access control differ-
ences typically manifests through in-app purchase validation
mechanisms. This advertising/monetization feature variation
can imply inequitable access to app functionality across ge-
ographic regions. It has been shown that local monetization
strategies often demand adjustments to user-data handling
and disclosure practices [41]. Our analysis reveals common
patterns where apps integrate with Google Play’s billing
system to manage feature access. For instance, consider the
implementation in Listing 5, this reveals a monetization
strategy where ads are conditionally displayed based on
in-app purchase status, with the billing client verification
determining whether a user should see advertisements.

I onCreate ()
| _BaseBannerAdActivity.SO0 ()
|[_BillingClient.g()

Listing 5. An example of access control implication.

This differential access control creates a two-tier user
experience across regions. Users in regions with premium
options can potentially access an enhanced version of the
app, while users in other regions are locked into a single
experience level, often with unavoidable advertisements or
permanently restricted features. This disparity raises ques-
tions about equitable access to app functionality across dif-
ferent geographic regions and highlights how monetization
strategies can lead to significantly different user experiences
despite apps sharing the same core functionality.

Beyond simple feature gating, we observed that these
access control variations often extend to the entire user
experience. Apps implementing premium options typically
include additional UI elements for purchase workflows,
modified navigation paths to highlight premium features,
and sophisticated state management to handle the transition
between free and premium states. These implementations
demonstrate how deeply monetization-based access control
can influence an app’s architecture and user interaction
patterns across different regions.

8. GFD’S Alignment With Policies/Regulations
(RQ4)

Our analysis of how geographic feature differences align
with relevant policies and regulations reveals concerning dis-
parities between implemented features and their disclosure
to users. We manually examined privacy policies and doc-
umentation of apps exhibiting significant privacy-relevant
GFDs, particularly those categorized under Data Security
and Privacy (S1) and Permission and Consent (S3), focusing
on three key aspects: privacy policy disclosures, regulatory
compliance, and platform policy adherence.

Data Privacy. The optional integration of third-party
libraries raises concerns as they might violate data pri-
vacy [42] [43] [44]. A representative case highlighting these
issues is com.wildberries.ru [45], which is one of
the largest online retail stores based in Russia and has
over 100 million downloads. It incorporates Sentry [46]

crash analysis functionality in one of its regional versions.
Sentry provides detailed crash diagnostics through session
replay, which captures user interactions leading to crashes,
including sequential screenshots of the user interface, as
shown in Listing 6. While Sentry’s default configuration
masks sensitive text and images [47], and we confirmed
that the developer has not enabled the unmask option, this
implementation still raises privacy concerns.

I onResume () >
2 |_<getvalue()>
3 |_<io.sentry.android.replay.ReplayIntegration$rootViewsSpy$2: io.
sentry.android.replay.RootViewsSpy invoke ()>
4 |_<io.sentry.android.replay.RootViewsSpy$Companion: io.sentry.
android.replay.RootViewsSpy install()>
|_postAtFrontOfQueue (), getMainLooper ()

Listing 6. How the app collect crash report via Sentry’s integration.

Though Google Play Store’s data safety page indicates
that the app may collect crash logs and diagnostic data, this
broad categorization inadequately conveys the extent and na-
ture of the data collection. Session replay, even with masking
enabled, can reveal sensitive interaction patterns and user
behaviors. For instance, the sequence and timing of user
actions, screen navigation patterns, and general usage habits
are still captured and transmitted to third-party servers. This
granular behavioral data could be used to profile users or
reconstruct their activities within the app.

Furthermore, while Sentry’s documentation explicitly
states that developers should provide appropriate no-
tices [48] to users about session replay functionality, we
found no explicit mention of this feature in the app’s pri-
vacy policy or user interface. This lack of transparency is
particularly concerning because users in regions where this
feature is enabled are unknowingly having their interactions
recorded and analyzed at a level of detail beyond what
would reasonably be expected for basic crash reporting. The
disparity between regions - where some users are subject to
this detailed behavioral monitoring while others are not -
raises questions about equitable privacy protections across
geographic boundaries.

This case exemplifies several critical policy compliance
issues we observed across our dataset. First, despite Sen-
try’s documentation explicitly requiring developers to notify
users about session replay functionality, the app’s privacy
policy and user interface contain no mention of this feature.
Second, the selective implementation of detailed behavioral
monitoring in certain regions creates uneven privacy pro-
tections, raising concerns about equitable treatment of users
across different jurisdictions. Third, the app’s data collection
practices go beyond what users might reasonably expect
from “basic crash reporting,” yet this expanded scope is not
clearly communicated through any official channels.

This pattern demonstrates how geographic variations
in feature implementation often lead to policy compliance
issues, particularly when privacy-impacting features are de-
ployed inconsistently across regions without appropriate
disclosures. Such practices not only potentially violate plat-
form policies requiring transparent privacy disclosures but
also raise questions about compliance with regional privacy

Privacyandpolicy . _.

parties? We do not receive any
information from third parties.

How do we process your

information? We process your
information to provide, improve, and
administer our Services, communicate
with you, for security and fraud
prevention, and to comply with law. We
may also process your information for
other purposes with your consent. We
process your information only when we
have a valid legal reason to do so.

In what situations and with which parties|
do we share personal information? We
may share information in specific
situations and with specific third parties.

Figure 16. A privacy policy not matching with Play Store about page.

regulations that mandate clear user notification and consent
for data collection activities. The collection of detailed in-
teraction data, even if partially masked, represents a form of
surveillance that users should be explicitly informed about
and given the opportunity to consent to or opt out of.

Permission and User Consent. Although Android’s
runtime permission system provides a standardized mecha-
nism for users to control app permissions, we observed sig-
nificant variations in how apps supplement this system with
additional user notifications and consent mechanisms. Some
regional versions of apps implement explicit informational
interfaces, such as dedicated Ul pages explaining permission
requirements or custom widgets displaying detailed consent
information, while their counterparts in other regions rely
solely on Android’s default permission dialogs. This raises
concerns as study [49] has shown that apps may send
personal data towards data controllers without the user’s
explicit prior consent.

In app com.jvstudios.gpstracker [50] we ana-
lyzed, some region’s version of the app will explicitly show
customized user consent form and the link to privacy policy
when the user first uses the app or changed the app’s
language. In contrast, versions distributed in other countries
lack this transpareny - users are simply presented with
system-default permission dialogs without any contextual
explanation, and notably, these versions provide no in-app
access to view the privacy policy.

More interestingly, while the developer claim in the Play
Store About page that this app “does not collect or share
user data, their privacy policy reveals discrepancies. For
question “In what situations and with which parties do we
share personal information?”, they answer “We may share
information in specific situations and with specific third
parties”. This makes sense as we can see a lot of third-party
ad libraries are used in the app. Previous studies [51] [52]

also have shown that this discrepancy is alarmingly com-
mon. However, only users in certain regions are properly
informed about this data collection through the explicit
consent form. This regional disparity in privacy transparency
raises ethical concerns about informed consent and suggests
possible attempts to comply with stricter privacy regulations
in specific markets while maintaining minimal disclosure
in others. The consent form and the related privacy policy
screenshot can be found in Figure 17 and Figure 16.
These regional variations in consent implementation
raise several policy compliance concerns. First, they create
an information asymmetry where users in different regions
make privacy decisions with varying levels of context and
understanding. While users in some regions receive detailed
explanations about permission requirements and data us-
age, others must make decisions based solely on system-
level permission dialogs. Second, this pattern suggests a
compliance-driven approach to privacy, where stronger pri-
vacy protections are implemented only in regions with strict
regulatory requirements rather than as a universal standard.
The disparity becomes
particularly problematic
when considering the
app’s actual data collection
practices. Users in regions
without explicit consent
mechanisms may be
unaware that their data
could be shared with third
parties, despite using an app
that claims not to collect
or share user data. This

Tap continue and then:
1. Select Precise on your next screer
2. Tap While using the app.

Grant precise location
access to experience:

situation highlights how)

) o A Real-time traffic updates:
geographlc Varlatlons 1n @ Avoid congestion and save time.
privacy implementations

. Personalized recommendations:
can undermine transparency 0 el
and informed consent,
creating situations where 6 Accurateforecasts

Plan your journey with confidence.
privacy protections become

a function of geographic i
location rather than a “
fundamental user right.

This case exemplifies a
broader pattern we observed
where apps implement varying levels of privacy trans-
parency across regions, potentially meeting minimum legal
requirements while falling short of consistent privacy protec-
tion standards. Such practices not only raise ethical concerns
about informed consent but also suggest the need for more
harmonized privacy requirements across regions.

Figure 17. The consent form of
the app analyzed.

9. Discussion

In this section, we discuss the implications of our results,
limitations of our technique, and disclosures of our findings.

9.1. Implication of Results

Our findings reveal several important implications for
different stakeholders in the mobile app ecosystem: For App

Developers, the prevalence of security and privacy varia-
tions across regions suggests a need for more systematic
approaches to managing geographic customization. While
regional adaptations are often necessary for business or
regulatory reasons, our findings show that these modifica-
tions frequently introduce unintended security disparities.
Developers should establish clear security baselines that
remain consistent across all regional versions, only varying
security implementations when explicitly required by local
regulations. The high occurrence of advertising-related se-
curity differences (S2) particularly suggests that developers
should carefully evaluate how regional monetization strate-
gies impact their app’s overall security posture.

For Platform Providers, the significant number of apps
exhibiting security-relevant geographic differences (82.6%
of identified variations) indicates a need for better tools and
guidelines from platform providers like Google. Current app
store policies primarily focus on individual app versions
rather than cross-regional consistency. Platform providers
should consider implementing mechanisms to help develop-
ers track and evaluate security implications of geographic
variations. For instance, the app submission process could
include automated comparison of security-relevant features
across regional versions.

For Security Researchers, the diversity of security-
relevant variations we uncovered, spanning from data han-
dling to authentication mechanisms, suggests fertile ground
for future research. Particularly noteworthy is how seem-
ingly benign feature differences often carry subtle security
implications. Our methodology of analyzing unobfuscated
APIs provides a foundation for developing more sophisti-
cated tools for cross-version security analysis.

For End Users, the variations in security and privacy
implementations across regions indicate that users should
be more aware of potential differences in protection levels
based on their location. While users might assume that glob-
ally distributed apps maintain consistent security standards,
our findings suggest this is not always true. This highlights
the importance of users understanding security and privacy
features available in their regional versions of apps.

These implications underscore a broader tension in the
mobile app ecosystem between the need for regional cus-
tomization and the importance of maintaining consistent
security standards. As apps continue to evolve with regional
variations, addressing these challenges will become increas-
ingly critical for ensuring equitable security and privacy
protections across geographic boundaries.

9.2. Limitations

Technical Limitations. Our technique is primarily de-
signed to handle renaming obfuscation, which is the most
common type of code obfuscation in Android apps. How-
ever, more sophisticated obfuscation techniques, such as
control flow obfuscation, string encryption, or dynamic
code loading, may lead to false positives in our analysis.
When apps employ these advanced obfuscation methods,
FREELENS might incorrectly identify or characterize feature

differences due to its inability to fully comprehend the
obfuscated code patterns.

Modern commercial Android apps often exhibit high
complexity in their architecture and dependencies, which
can pose challenges for static analysis tools. In particu-
lar, we found that FlowDroid, which we rely on for call
graph construction, sometimes fails to process these com-
plex apps. When call graph construction fails, FREELENS
cannot proceed with its analysis, limiting our coverage of
the Android app ecosystem. Additionally, many modern An-
droid apps utilize dynamic feature modules and on-demand
content loading to optimize app size and performance. Since
FREELENS performs static analysis, it cannot capture dif-
ferences in dynamically loaded features or content that may
vary by region. This limitation particularly affects large-
scale commercial apps that often contain the most interesting
geographic variations. For efficiency purposes, we did not
consider code (whether it be third-party, native, or user code)
that is not used by the app (i.e., not reachable from the app’s
user-code entry points as per the call graph) yet. However,
the reachability analysis could be inaccurate if the two APKs
inconsistently applied control-flow obfuscation. But again
this is not tied with if the code is third-party or not.

Regarding substantial native code components, while
FREELENS effectively captures differences in calling rela-
tionships with native functions through our call graph and
call path diffing, it cannot analyze implementation differ-
ences within the native code (C/C++ and other compiled
languages) itself. This limitation would lead to missing
GFDs that are reflected primarily in changes to native
function implementations rather than their calling patterns.
Additionally, native code involved in obfuscated control
flow (i.e., when the native code is invoked via reflective
calls) is subject to the same reachability related limitation
as mentioned above.

Threats to Validity. Our analysis provides a snapshot
of geographic differences at a specific point in time, rather
than a comprehensive view of how these differences evolve.
This limitation stems from two factors: (1) Google Play’s
API does not provide access to the metadata of historical
app versions. Even though we can get the historical app
versions, we cannot align what versions are the latest at the
specific time due to the lack of upload date. (2) Developers’
app update policies and schedules vary significantly across
regions. Consequently, we cannot determine whether iden-
tified differences are persistent across versions or represent
temporary variations. This limits our ability to understand
the long-term patterns and motivations behind geographic
feature differences.

Moreover, our approach relies on matching apps across
regions using package names, which means we can-
not automatically detect regional variants of apps that
use different package names. For example, Amex app
(com.americanexpress.android.acctsvcs.us) [53]
and its other countries’ variants, e.g., Amex United Kingdom
(com.americanexpress.android.acctsvcs.uk) [54]
are essentially regional versions of the same app but are
treated as separate apps in our analysis. Similarly, other

major platforms may maintain region-specific variants with
distinct package names to comply with local regulations
or cater to regional user preferences. To study such cases,
manual curation of app pairs would be necessary, requiring
domain knowledge and continuous monitoring of regional
app markets. This limitation means our study might miss
important geographic variations implemented through sepa-
rate app variants rather than within a single app package.

9.3. Ethics and Disclosures

Our study involved accessing and analyzing Android
applications across different geographic regions, raising
several ethical considerations that we carefully addressed
throughout our research.

First, all app downloads were conducted through le-
gitimate Google Play Store accounts with proper payment
methods registered in the respective countries. We followed
Google Play’s terms of service and did not employ any cir-
cumvention techniques to access region-restricted content.
Our app selection process focused on publicly available
applications, and we did not attempt to access any private
or restricted versions.

In collecting app data, we were mindful of bandwidth
usage and rate limits. Our parallel downloading infras-
tructure was designed to respect Google Play’s servers by
maintaining reasonable request rates. When analyzing apps,
we limited our investigation to static analysis of code and did
not perform any dynamic analysis that could potentially in-
terfere with app operations or backend services. During our
security analysis, we identified several concerning variations
in privacy and security implementations across regions.

To responsibly disclose our findings, we informed rele-
vant stakeholders of security and privacy concerns identified
during our study. Following standard responsible disclosure
practices, we contacted both the Google Play Store security
team and the developers of apps with significant privacy-
relevant GFDs. Our communications detailed specific incon-
sistencies between declared data practices and actual imple-
mentations, explained the regional variations we observed in
privacy controls, and provided actionable recommendations
for addressing these issues. Moreover, to the developers
of respective apps, we also provided sufficient technical
details to reproduce and verify our findings while offering
assistance for any follow-up investigations. This approach
aims to ensure that security and privacy issues could be
addressed before public disclosure of our research findings.

10. Related Work

Prior work has explored/measured various ramifica-
tions (e.g., security/privacy impact) of Android app evo-
lution [55], [56]. Kumar et al. [3] examined security
discrepancies between app versions from different markets.
Supporting those measurements, software differencing tech-
niques, ranging from textual to semantic analysis [57], [58],
[59], [60], have also been developed. In the Android context,
tools like Androguard [61] and LibRadar [62] compare

code structures and libraries, while others like WuKong [63]
detect app clones. Several studies examined the evolutionary
patterns of benign apps revealing their relatively rare use of
refactoring or obfuscation [56], the evolution of behavioral
differences between benign and malicious apps [64]. A
recent study [65] explored the security relevancy of app in-
compatibilities, revealing that malware suffers notably lesser
run-time compatibility issues than benign apps.

Android static analysis tools, such as FlowDroid [4],
Amandroid [66], and DroidRista [67], employ static taint
analysis to map data flows. Code summarization techniques,
both traditional [68] and context-aware [69], [70], aim
to generate descriptions of code functionality. Android-
specific methods incorporate dynamic analysis and external
resources [71], [72], [73]. These approaches, while valuable
for understanding code behavior, do not directly address the
problem of characterizing GFDs and their security implica-
tions across different regions.

11. Conclusion

This work presents the first large-scale, code-level study
of geographic feature differences (GFDs) in Android apps
and their security implications, analyzing over 21,000 apps
across ten countries. We designed FREELENS framework
which effectively identifies these security-relevant varia-
tions. We find that most of identified GFDs have security
or privacy implications, revealing significant regional varia-
tions, highlighting the impact of commercial and regulatory
pressures on user security.

Acknowledgments

We thank the reviewers for insightful and constructive
comments. J. Guo, Y. Nong, and H. Cai were supported
in part by the Open Technology Fund (OTF) under Grant
B00236-1220-00, and in part by Office of Naval Research
(ONR) under Grant N000142212111. Z. Lin was supported
by National Science Foundation (NSF) under grant 2330264.

References

[11 “Encrypted messaging applications and political messaging: How
they work and why understanding them is important for combating
global disinformation - center for media engagement - center for
media engagement,” https://mediaengagement.org
/research/encrypted-messaging-applications-and-political-messaging/,
Jun. 2023.

[2] R. Kumar, A. Virkud, R. S. Raman, A. Prakash, and R. Ensafi,
“A large-scale investigation into geodifferences in mobile apps,” in
USENIX Security, 2022, pp. 1203-1220.

[3] S. Yang, G. Bai, R. Lin, J. Guo, and W. Diao, “Beyond the horizon:
Exploring cross-market security discrepancies in parallel Android
apps,” in ISSRE, 2024, pp. 558-569.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps,” in PLDI, 2014, p. 259-269.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

M. L. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of Android applications in
DroidSafe,” in NDSS, 2015.

J. Zhang, C. Tian, and Z. Duan, “Fastdroid: efficient taint analysis
for Android applications,” in /CSE-Companion, 2019, pp. 236-237.

D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu, L. Li, and
J. Xue, “Performance-boosting sparsification of the IFDS algorithm
with applications to taint analysis,” in ASE, 2019, pp. 267-279.

P. Wang, Q. Bao, L. Wang, S. Wang, Z. Chen, T. Wei, and D. Wu,
“Software protection on the go: A large-scale empirical study on
mobile app obfuscation,” in /CSE, 2018, pp. 26-36.

“Distribute app releases to specific countries - Play
Console Help,” https://support.google.com/googleplay/android-
developer/answer/7550024 7hl=en.

“Shrink, obfuscate, and optimize your app | Android Studio,”
https://developer.android.com/build/shrink-code.

A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, and F. Mercaldo,
“Detection of obfuscation techniques in Android applications,” in
Proceedings of the 13th International Conference on Availability,
Reliability and Security, 2018, pp. 1-9.

“ProGuard Manual: Home | Guardsquare,” https://www.guardsquare.
com/manual/home.

Z. Dong, Y. Zhao, T. Liu, C. Wang, G. Xu, G. Xu, L. Zhang, and
H. Wang, “Same app, different behaviors: Uncovering device-specific
behaviors in Android apps,” in ASE, 2024, pp. 2099-2109.

“Google Authenticator - Apps on Google Play,” https://play.google
.com/store/apps/details?id=com.google.android.apps.
authenticator2.

A. Developers, “Permissions overview,” 2023. [Online]. Available:
https://developer.android.com/guide/topics/permissions/overview

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system
for real-time privacy monitoring on smartphones,” in OSDI, 2010, pp.
393-407.

J. Lin, J. Liu, N. Sadeh, and J. I. Hong, “Android permissions: User
attention, comprehension, and behavior,” in SOUPS, 2014, pp. 1-14.

“About Android App Bundles,” https://developer.android.com/guide/
app-bundle.

“Bengali language,” Wikipedia, Nov. 2024.
“Gujarati language,” Wikipedia, Nov. 2024.

M. Benz, E. K. Kristensen, L. Luo, N. P. B. Jr, E. Bodden, and
A. Zeller, “Heaps’n leaks: how heap snapshots improve Android taint
analysis,” in ICSE, 2020, pp. 1061-1072.

J. Lerch, B. Hermann, E. Bodden, and M. Mezini, “FlowTwist: effi-
cient context-sensitive inside-out taint analysis for large codebases,”
in FSE, 2014, pp. 98-108.

J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin, and
C. Huang, “Graphgpt: Graph instruction tuning for large language
models,” in SIGIR, 2024, pp. 491-500.

H. Wang, S. Feng, T. He, Z. Tan, X. Han, and Y. Tsvetkov, “Can lan-
guage models solve graph problems in natural language?” NeurallPS,
vol. 36, pp. 30840-30861, 2023.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software
engineering: A systematic literature review,” TOSEM, vol. 33, no. 8,
pp. 1-79, 2024.

T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr, “Automatic semantic
augmentation of language model prompts (for code summarization),”
in ICSE, 2024, pp. 1-13.

“APK Downloader for PC,” https://raccoon.onyxbits.de/.
skylot, “Skylot/jadx,” Nov. 2024.

https://developer.android.com/guide/topics/permissions/overview

(29]
[30]

(31]

[32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

“Countries,” https://freedomhouse.org/countries/freedom-net/scores.

“How to change your Google Play country - Google Play Help,”
https://support.google.com/googleplay/answer/7431675?hl=en.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of Android apps for the research community,” in
MSR, 2016, pp. 468-471.

“List of most-downloaded Google Play applications,” Wikipedia, Sep.
2024.

“Google play store statistics by device traffic,” https://www.
enterpriseappstoday.com/stats/google-play-store-statistics.html.

“Internet censorship in vietnam,” https://en.wikipedia.org/wiki/
Internet_censorship_in_Vietnam.

“Censorship in turkey,” https://en.wikipedia.org/wiki/censorship_in
_Turkey.

F. P. Research, “AppLovin (APP) — Formers Allege Ad Fraud; Is DTC
Hype Actually ‘Stealing’ Meta’s Data; Illegal Tracking of Children
& Serving Sex Ads to Kids,” Feb. 2025.

“Mobile Unwanted Software - Play Console Help,” https://support.
google.com/googleplay/android-developer/answer/9970222?sjid=
5354602318567233593-NA#ProtectUserDataAndPrivacy.

S. Ma, C. Chen, S. Yang, S. Hou, T. J.-J. Li, X. Xiao, T. Xie, and
Y. Ye, “Careful about what app promotion ads recommend! detecting
and explaining malware promotion via app promotion graph,” arXiv
preprint arXiv:2410.07588, 2024.

V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. D. Riley, “Are
these ads safe: Detecting hidden attacks through the mobile app-web
interfaces.” in NDSS, 2016.

“Overview of the Play Integrity API | Google Play,” https://developer.
android.com/google/play/integrity/overview.

C. Kuner, L. A. Bygrave, C. Docksey, L. Drechsler, and L. Tosoni,
“The eu general data protection regulation: A commentary/update of
selected articles,” Update of Selected Articles (May 4, 2021), 2021.

K. Zhao, X. Zhan, L. Yu, S. Zhou, H. Zhou, X. Luo, H. Wang, and
Y. Liu, “Demystifying privacy policy of third-party libraries in mobile
apps,” in ICSE, 2023, pp. 1583-1595.

Y. Shen, P.-A. Vervier, and G. Stringhini, “Understanding world-
wide private information collection on Android,” arXiv preprint
arXiv:2102.12869, 2021.

M. H. Meng, C. Yan, Y. Hao, Q. Zhang, Z. Wang, K. Wang, S. G.
Teo, G. Bai, and J. S. Dong, “A large-scale privacy assessment of
Android third-party sdks,” arXiv preprint arXiv:2409.10411, 2024.

“Wildberries - Apps on Google Play,” https://play.google.com/store
/apps/details?id=com.wildberries.ru&hl=en.

“Application Performance Monitoring & Error Tracking Software,”
https://sentry.io/welcome/.

“Set Up Session Replay | Sentry for Android,” https://docs.sentry.io
/platforms/android/session-replay/.

“Protecting User Privacy in Session Replay,” https://docs.sentry.io
/security-legal-pii/scrubbing/protecting-user-privacy/.

T. T. Nguyen, M. Backes, N. Marnau, and B. Stock, “Share first, ask
later (or never?) studying violations of {GDPR’s} explicit consent in
Android apps,” in USENIX Security, 2021, pp. 3667-3684.

“GPS+ Maps, Navigation, Traffic - Apps on Google Play,” https://
play.google.com/store/apps/details?id=com.jvstudios.gpstracker
&hl=en.

1. Arkalakis, M. Diamantaris, S. Moustakas, S. Ioannidis, J. Polakis,
and P. Ilia, “Abandon all hope ye who enter here: A dynamic, lon-
gitudinal investigation of Android’s data safety section,” in USENIX
Security, 2024, pp. 5645-5662.

L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy
policies of Android apps?” in DSN, 2016, pp. 538-549.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

“Amex - Apps on Google Play,” https://play.google.com/store/apps
/details?id=com.americanexpress.android.acctsvcs.us&hl=en_US.

“Amex United Kingdom — Apps on Google Play,” https://play.
google.com/store/apps/details?id=com.americanexpress.android.
acctsves.uk&hl=en_GB.

H. Cai, “Embracing mobile app evolution via continuous ecosystem
mining and characterization,” in IEEE/ACM International Conference
on Mobile Software Engineering and Systems (MOBILESoft), 2020,
pp. 31-35.

H. Cai and B. Ryder, “A longitudinal study of application structure
and behaviors in Android,” TSE, vol. 47, no. 12, pp. 2934-2955,
2020.

B. Fluri, M. Wursch, M. Plnzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,”
TSE, vol. 33, no. 11, pp. 725-743, 2007.

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ASE, 2014,
pp. 313-324.

J. Guo and H. Cai, “EvoTaint: Incremental static taint analysis of
evolving Android apps,” in TOSEM, 2025.

J. Guo, H. Yang, and H. Cai, “VerLog: Enhancing release note gen-
eration for Android apps using large language models,” Proceedings
of the ACM on Software Engineering, vol. 2, no. ISSTA, 2025.

“Androguard/androguard,” androguard, Nov. 2024.

Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and ac-
curate detection of third-party libraries in Android apps,” in ICSE-
Companion, 2016, pp. 653-656.

H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and
accurate two-phase approach to Android app clone detection,” in
ISSTA, 2015, pp. 71-82.

H. Cai, X. Fu, and A. Hamou-Lhadj, “A study of run-time behavioral
evolution of benign versus malicious apps in Android,” Information
and Software Technology (IST), vol. 122, p. 106291, 2020.

J. Guo, X. Fu, L. Li, T. Zhang, M. Fazzini, and H. Cai, “Characteriz-
ing installation-and run-time compatibility issues in Android benign
apps and malware,” TOSEM, 2024.

F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
Android apps,” TOPS, vol. 21, no. 3, pp. 1-32, 2018.

A. Alzaidi, S. Alshehri, and S. M. Buhari, “DroidRista: a highly
precise static data flow analysis framework for Android applications,”
International Journal of Information Security, vol. 19, no. 5, pp. 523—
536, 2020.

P. W. McBurney and C. McMillan, “Automatic source code sum-
marization of context for Java methods,” TSE, vol. 42, no. 2, pp.
103-119, Feb. 2016.

Z. Tang, X. Shen, C. Li, J. Ge, L. Huang, Z. Zhu, and B. Luo, “Ast-
trans: Code summarization with efficient tree-structured attention,” in
ICSE, 2022, pp. 150-162.

Q. Chen, X. Xia, H. Hu, D. Lo, and S. Li, “Why my code sum-
marization model does not work: Code comment improvement with
category prediction,” TOSEM, vol. 30, no. 2, pp. 1-29, 2021.

A. Aghamohammadi, M. Izadi, and A. Heydarnoori, “Generating
summaries for methods of event-driven programs: An Android case
study,” JSS, vol. 170, p. 110800, 2020.

A. Naghshzan, L. Guerrouj, and O. Baysal, “Leveraging unsupervised
learning to summarize APIs discussed in Stack Overflow,” in IEEE
International Conference on Source Code Analysis and Manipulation
(SCAM), 2021, pp. 142-152.

E. Aghajani, G. Bavota, M. Linares-Vasquez, and M. Lanza, “Au-
tomated documentation of Android apps,” TSE, vol. 47, no. 1, pp.
204-220, 2019.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

The Android app analysis framework FreeLens can spot
differences in mostly similar apps. FreeLens capabilities are
demonstrated by studying regional differences in Android
apps and evaluating their security and privacy impact.

A.2. Scientific Contributions

« Creates a New Tool to Enable Future Science

« Identifies an Impactful Vulnerability

e Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

1) Addresses interesting challenges to understand geo-
feature differences.

2) FreeLens will be openly available, enabling future re-
search that requires app diffing.

3) Novel diffing technique used, which uses the fact that
Android Studio’s code shrinking preserves obfuscated
function name lengths.

A.4. Noteworthy Concerns

1) Optimized towards handling the most common type of
Android app obfuscation, in particular Android Studio’s
code shrinking. It will likely fail for some other obfus-
cation techniques, such as mixed boolean arithmetics
and VM-based obfuscation.

2) Only captures differences for calling into native code
but not the native code itself (C/C++ and other com-
piled code).

	Introduction
	Background and Motivation
	Google Play App Release Mechanisms
	Android App Code Analysis
	Cross-Domain App Differential Analysis

	The FreeLens Approach
	Overview
	Potential GFD App Mining (Phase red1)
	Country-Specific App Scraping (Step red1.1)
	Lightweight GFD App Screening (Step red1.2)

	Obfuscation-Resilient GFD App Identification (Phase red2)
	API-Bounded Call-Path Profiling (Step red2.1)
	Signature-Based Call-Path Diffing (Step red2.2)

	Semantic GFD Characterization (Phase red3)
	Path-Sensitive Graph Reasoning (Step red3.1)
	Two-level Summary Mapping (Step red3.2)

	Implementation and Evaluation

	Study Methodology
	Dataset
	Procedure

	Characterization Results on GFDs (RQ1)
	GFDs' Security/Privacy Implications (RQ2)
	Code-Level GFD Manifestations (RQ3)
	Advertising and Monetization
	Authentication
	Access Control

	GFD'S Alignment With Policies/Regulations (RQ4)
	Discussion
	Implication of Results
	Limitations
	Ethics and Disclosures

	Related Work
	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

