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Abstract—Fuzzing is one of the major techniques for uncov-
ering vulnerabilities in smart contracts. The effectiveness of
fuzzing is significantly affected by its throughput but unfortu-
nately existing fuzzers for smart contracts have low throughput
due to the slow execution of EVM, the delay introduced by
the consensus protocols, the limited parallelization capability of
CPUs, and the overhead caused by the instrumented EVM. To
tackle this critical issue, in this paper, we take the first step to
leverage GPU’s parallel computing power to boost the through-
put of smart contract fuzzing. More precisely, by converting the
fuzzing workload to a SIMD task, we can activate thousands of
GPU cores to test the smart contract simultaneously. To achieve
this purpose, we design new solutions to address three major
challenges, namely developing incremental storage to reduce
GPU memory cost, proposing a stateful bitmap to embed
transaction dependency to the feedback metric, and designing
a parallel feedback algorithm to rule out undesired seeds that
cause redundant overlaps. We implement a prototype named
MAU, which first transforms the bytecode of a smart contract
to a SIMD application in PTX assembly and then runs it
parallelly on the GPU. We evaluate MAU using both a large and
small benchmark. The experimental results demonstrate that
the throughput of MAU reaches 162.37K execs/sec and 328.06K
execs/sec, which leads to an 8.69-15.38X improvement to the
state-of-the-art tool. Moreover, the high throughput empowers
MAU to detect 1.01-2.50X more bugs and obtain 1.03–4.71X
more code coverage than baselines.

1. Introduction

Smart contracts are decentralized applications that man-
age cryptocurrency, i.e., Ether and ERC tokens. The prosper-
ity of blockchain ecosystems relies on various applications
(e.g., DeFi) based on smart contracts. Unfortunately, recent
years have witnessed many attacks that exploit the vulner-
abilities in smart contracts and lead to billions of financial
losses [59], [33], [20], [43], [53], [30], [26], [36], [9], [38],
[31]. Therefore, many approaches have been proposed to
detect vulnerabilities in smart contracts [21], [51], [65].
Among them, fuzzing has been widely used to successfully
uncover many vulnerabilities in smart contracts [32], [47],
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TABLE 1: Comparison of existing smart contract fuzzers.
OC: open-source. Bytecode: the tool can run without the
source code of the target smart contract. Throughput: the
number of seeds evaluated by the tool within one second.
Novelty: the main contribution aspects. We did not test
Harvey because it is closed-source.

Tool OC Bytecode Throughput Novelty
Ityfuzz [54] ✓ ✓ 33.0K ➁➂
Smartian [11] ✓ ✓ 419 ➂
EF\CF [52] ✓ ✓ 23.9K ➁
sFuzz [47] ✓ ✓ 512 ➂
ILF [27] ✓ ✓ 57 ➀
Echidna [25] ✓ ✗ 166 ➂
Harvey [66] ✗ ✗ - ➀➂
ConFuzzius [62] ✓ ✗ 107 ➂

[27], [11], [66], [25], [62], [10], [58]. We focus on Ethereum
smart contracts because Ethereum blockchain supports the
largest number of smart contracts with over one million daily
transactions [29]. Six of the top ten popular blockchains by
market capitalization [12] are compatible with Ethereum.

Fuzzing typically aims to generate test cases that are
expected to test as many execution states of the target pro-
gram as possible. Since smart contracts are stateful [11], the
fuzzer usually needs to generate a sequence of transactions
as the test case (a.k.a. seed). To be specific, smart contract
fuzzing is an iteration process consisting of three typical
steps in each round, such as ➀ mutating a seed to derive a
new one; ➁ executing the smart contract with the mutated
seed; ➂ gathering feedback metrics to guide the next round,
such as code coverage [11], branch distance [47], machine
learning [27], and transaction dependency [11], [62], [54].
The seed with a higher value (known as interesting) has
more chances to be selected in the following rounds.

The effectiveness of fuzzing is significantly affected
by throughput [7], i.e., the number of seeds evaluated per
second. A linear increase in code coverage approximately
requires exponentially more CPU resources [6]. To uncover
potential opportunities for improving throughput, we con-
ducted a motivating study to profile the distribution of time
spent by fuzzing tools across Steps ➀-➂ (§ 2.4). While
researchers have invested tremendous efforts on improv-
ing Steps ➀ and Step ➂ with smarter mutation strate-



gies [32], [47], [27] and prioritizing valuable seeds [54],
[47], [25], [62], [11], limited research [52] focuses on
improving Step ➁ (Execution), which spent over 70% of
testing time. Table 1 lists the throughput of eight state-
of-the-art fuzzers. The throughput data comes from [65],
which runs the tools on a small benchmark with an average
number of 224 lines of code. Although researchers have
proposed various optimizations for fuzzing, time-consuming
factors are still hindering the throughput, thereby preventing
smart contract fuzzers from obtaining higher code coverage
and better performance. Specifically, these fuzzers execute
the smart contracts in EVM (Ethereum Virtual Machine)
with the underlying consensus protocols in a single CPU
thread and interrupt EVM to collect feedback metrics. Un-
fortunately, their throughput is significantly restricted by
the slow execution of EVM, the delay introduced by the
underlying consensus protocols, the limited parallelization
capability of CPUs, and the overhead caused by the EVM
instrumentation. EF\CF is the only tool optimized for ➁,
however, it is even slower than the conventional fuzzer like
Ityfuzz. Smartian [11] is the third follower. It achieves only
419 execs/sec, even though it has used an efficient EVM
interpreter, i.e., Nethermind.

Task parallelism is a straightforward yet costly ap-
proach to improve throughput. However, fuzzers using large-
scale machines or clusters still confront throughput limits,
as noted in [22], [39], [57]. This issue is further com-
pounded when fuzzing smart contracts, which run on slower
interpreter-based code rather than native code. Yet it has
been shown that linearly more compute resources only
leads to finding the same known bugs linearly faster while
finding linearly more (new) bugs requires exponentially
more compute resources [6]. Thus, to significantly accelerate
new vulnerability discovery, increasing fuzzing efficiency by
orders of magnitude is needed, for which leveraging GPU is
promising. For instance, one NVIDIA RTX3090 GPU has
10,496 cores, whereas a typical CPU has at most 128 cores.

In this paper, we design and develop MAU, the first
GPU-based fuzzer for smart contracts to improve through-
put exponentially by leveraging GPU’s parallel computing
power and exploiting the features of smart contract fuzzing.
More precisely, although GPUs are not designed for general
computation, we can convert the smart contract fuzzing
to a GPU-friendly application, i.e., SIMD code (Single
Instruction, Multiple Data [61]) and then discard the EVM
interpreter. Moreover, we observe four properties of smart
contract fuzzing that make it possible to leverage GPU
to boost the throughput: P1) No heavy synchronization
among threads is required because each fuzzing round is
relatively independent. That is, smart contracts are usually
free of locks; P2) The SIMD overhead due to the branch
divergence [13] could be eased because most seeds are unin-
teresting and execute duplicate paths. Note that preemptively
omitting all these uninteresting seeds is impractical, as their
redundancy only becomes apparent post-evaluation. P3) The
execution of Ethereum smart contracts is serial; P4) Smart
contracts do not utilize system calls like Libc. Due to P3 and
P4, we can convert the target smart contract to a standalone

application on the GPU.
Given the bytecode of a smart contract, MAU first trans-

forms/rewrites it into a PTX assembly [49] that can run
on a GPU through a functional equivalent LLVM IR [37].
The instruction lifting (§ 3.2) converts EVM instructions to
LLVM assembly, which are further extended with code vec-
torization (§ 3.3) for a SIMD-based fuzzing. The rewritten
IR is translated to a PTX assembly, which MAU executes
in a GPU to evaluate the seeds in terms of code coverage
and transaction dependency (§ 3.4).

It is non-trivial to develop MAU due to three chal-
lenges. C1: Storage is essential for smart contract execution.
However, migrating the EVM storage to GPU is expensive
because the EVM specification defines that each storage
should have a size of 2256 ∗ 32 bytes, which far exceeds
the GPU’s capability. C2: During smart contract execution,
tracking transaction dependency in an instrumented EVM
(CPU side) will introduce a non-negligible overhead to
fuzzing. C3: Based on our observation, only a few seeds can
find new paths. While seeds evaluated together on the GPU
can improve throughput, potential overlapped execution [40]
may cause redundant seeds and prevent the fuzzer from
reaching a higher throughput.

To tackle C1, we use incremental snapshot design to
simulate the storage on GPU (§ 4.2.2). It can sharply reduce
redundant GPU memory cost. To address C2, we propose a
stateful bitmap in § 4.3.2 to gather transaction dependency
efficiently. By instrumenting the smart contract rather than
the EVM interpreter, the stateful bitmap measures the trans-
action sequence in terms of the data dependency between
the state variables. To approach C3, we design a parallel
feedback algorithm to rule out undesired seeds that cause
redundant overlaps (§ 4.3.3).

We implemented the prototype of MAU with around
8,000 lines of C++ and 100 lines of Rust. We carefully
evaluated it using a large benchmark with an average of
13K LoC and a small benchmark with ground truth. The
experimental results demonstrate that the throughput of
MAU reaches 162.37K execs/sec and 328.06K execs/sec in
the large dataset and small dataset, respectively. It leads
to an 8.69X-15.38X improvement to the fastest baseline.
Moreover, the high throughput empowers MAU to achieve
3.36%-371.43% more code coverage and detect 0.71%-
150.32% more bugs than baselines.
Our contributions:

• We design and develop MAU, the first GPU-based
fuzzer for smart contracts, by leveraging GPU’s parallel
computing power and exploiting the features of smart
contract fuzzing.

• We propose new solutions to tackle three challenging
issues in the development of MAU and implement the
prototype, which is available at Figshare.

• We evaluate MAU using comprehensive benchmarks in
terms of various metrics. The experimental results show
that MAU can detect 1.01-2.50X more bugs and obtain
1.03-4.71X more code coverage than baselines, with an
8.69-15.38X throughput improvement (§ 5.3).

https://figshare.com/s/2fd3f1616a17e78ffee7


PUSH 0xc3bae50d
CALLDATA(0)
EQ BNE // vul(uint x)
PUSH 0x71840a0d
CALLDATA(0)
EQ BNE // dep(bool i)
...
CALLDATA(4) 
PUSH 4 
EQ
... RETURN

EVM bytecode

uint y; // state variable
// public method x2

function vul(uint x) public {
  if(x < 2 && y == 4) 
    assert(0); 
}

function dep(uint i) public 
  { y = i; }

source code
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Figure 1: The EVM bytecode (right side) is compiled from
the source code in Solidity (left side).

• We perform a systematic evaluation of MAU on
183,111 real-world smart contracts. MAU identified
vulnerabilities in 548 projects, holding assets exceeding
$172K in value (§ 5.5). The detailed statistics about the
found bugs are included in the artifact1.

2. Background

This section provides an overview of SIMD and smart
contract fuzzing, followed by a motivating study that ex-
plores opportunities for enhancement.

2.1. SIMD via CUDA

SIMD (Single Instruction, Multiple Data) is a parallel
architecture in which a single instruction controls multiple
processing units. In the realm of GPUs, this parallelism
is typically implemented through CUDA [48]. While all
threads start from the same instruction address, they execute
independently within their individual contexts, including
registers and stacks. Data parallelism [60] focuses on dis-
tributing the data across different threads, which solve sub-
tasks on the data in parallel. PTX [49] is the GPU instruction
set tailored for SIMD. Any exception thrown from a PTX
application is sticky, resulting in a corrupted GPU context.
In practice, the occurrence of a sticky error terminates all
other running threads, even if the error is isolated to one
particular thread. Therefore, it is important to make the
PTX program gently exit from the GPU environment when
handling the exceptions defined in the EVM specification.

2.2. Smart Contract

Ethereum smart contracts are typically written in Solid-
ity [18], including a set of state variables declared globally
and a series of methods designed to manipulate these vari-
ables. Smart contract source code is compiled into EVM
bytecode, which is a sequence of instructions. The EVM,
acting as the execution environment, interprets EVM byte-
code with the given input (i.e., transaction). During transac-
tion execution, EVM instructions: 1) load input arguments
from calldata; 2) manage runtime data in the stack; 3) store

1. https://figshare.com/s/2fd3f1616a17e78ffee7
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Figure 2: A typical workflow of smart contract fuzzing.

temporary data (i.e., local variables) in the memory; 4) and
store persistent data (i.e., state variables) in the storage.
In particular, calldata is an input buffer, maintaining the
invoked function’s signature and arguments.

Smart contracts are stateful, with persistent state vari-
ables on the blockchain. These variables can affect the
execution path. Specifically, state variables often partici-
pate in branch conditions, restricting access to certain code
segments until the dataflow dependency of state variables
has been satisfied by a predefined transaction. We call this
hurdle transaction dependency. As shown in the example
in Figure 1, the bug at line 5 can only be triggered when
the conditional branch at L4 satisfies expected values for x

and y. To hit the bug, we have to first set the state variable
y to 4 by executing dep(4), then explore the transaction
argument x to meet the condition at L4. Resolving trans-
action dependency remains an open question [11], [56]. It
is challenging to identify expected transaction sequences
due to the implicit dataflow dependency in smart contracts,
especially for binary-only testing.

2.3. Smart Contract Fuzzing

Smart contract fuzzing is a technique aimed at search-
ing test cases (i.e., seeds) that a target smart contract can
exercise to explore as many program states as possible. It
is an iterative process consisting of three typical steps, as
outlined in Figure 2. During each iteration, the fuzzer ➀
mutates a seed from the corpus to derive a new one; ➁
executes the target smart contract in EVM to evaluate the
mutated seed; ➂ gathers feedback metrics like code coverage
and transaction dependency to assess the seed’s value. If a
seed has enough values, the fuzzer will take it as interesting
and add it to the corpus for the next fuzzing round.

While many studies have focused on improving Step
➀ and ➂ with smarter mutation strategies [32], [47], [27]
and prioritizing valuable seeds [47], [25], [66], this paper
concentrates on improving Step ➁ (Execution), which few
work has been devoted to. It is motivated by our observation
that fuzzers are more effective when the throughput is
improved, e.g., fuzzing on a faster CPU with SSD [69].
Throughput is defined as the number of seeds evaluated by
the fuzzer per second. Specifically, we aim to examine and
rectify design elements in fuzzing tools that may hinder
iteration speed, thereby enhancing overall throughput and
fuzzing performance.

https://figshare.com/s/2fd3f1616a17e78ffee7
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Figure 3: Distribution of time spent by Ityfuzz and Smartian
across three typical steps in one fuzzing iteration. In the
legend, Mutation, EVM, and Feedback represent steps ➀,
➁, and ➂, respectively.

2.4. Motivating Study

To uncover potential opportunities for improving fuzzing
performance, we conduct a motivating study to profile the
distribution of time spent by fuzzing tools across the three
typical steps in one fuzzing iteration.
Experimental Environment. We randomly selected five
real-world smart contracts with varying source code sizes,
ranging from 100 LoC to 20,000 LoC. As for fuzzers, we
customized Ityfuzz [54] and Smartian [11] to examine time
distribution at each fuzzing step. Ityfuzz was chosen because
it is the only fuzzer based on LibAFL, an efficient frame-
work adopted by many other tools [68], [42]. Smartian was
also included because it is a conventional fuzzer optimized
for resolving transaction dependency. Although EF\CF [52]
is the only tool focusing on improving Step ➁, Ityfuzz can
outperform it in terms of throughput. This is also the reason
why we pick Ityfuzz rather than EF\CF. We did not select
more fuzzers because Ityfuzz and Smartian have already
been shown to significantly outperform other baselines in
their papers. We ran both tools for ten minutes on the five
smart contracts. All experiments were conducted in the same
environment we used at § 5.
Results. Overall, the primary bottleneck of the throughput
is the slow execution within EVM. Figure 3 visualizes the
average time distribution across step ➀-➂. Smartian crashed
when testing the three complex examples larger than 1,000
LoC, resulting in missing performance data. For Ityfuzz and
Smartian, 83% and 78% of the total time was spent on
Step ➁, highlighting EVM execution as a significant time-
consuming factor. In contrast, Ityfuzz allocated 2% and 15%

of total time to Step ➀ and Step ➂. Smartian spent 6% and
16% of the time running Step ➀ and Step ➂, respectively.
Regarding smart contract size, the study generally revealed a
correlation: the more complex the smart contract is, the more
time spent on EVM execution. This observation suggests
that there are potential opportunities to improve throughput
by optimizing EVM execution, particularly when testing
complex blockchain projects.
Main Idea. To improve the fuzzing throughput, our intuitive
solution is to boost Step ➁ by concurrently evaluating
multiple seeds on a SIMD GPU. More specially, MAU
translates the smart contract to the GPU machine code, i.e.,
PTX assembly, and then evaluates multiple seeds in a SIMD
workflow. GPU is cheaper than CPU in solving parallel
tasks. In Google Cloud, 1,024 GPU cores on a single Tesla
T4 ($0.11/h) are cheaper than one CPU core ($0.14/h). We
can allocate more cores to MAU, potentially yielding further
performance improvements (see § 5.3).

Smart contract fuzzing is GPU-friendly due to the fol-
lowing four aspects. Fuzzing threads execute smart contracts
independently with assigned seeds, making the smart con-
tract free of locks. This means P1: the heavy synchroniza-
tion mechanism is unnecessary. Another common feature
of fuzzing is P2: the redundant execution eases the branch
divergence overhead2. During fuzzing, only a few seeds can
eventually hit new paths. Although most seeds are redun-
dant, it is impossible to skip them because we do not know a
seed is redundant until it has been evaluated. GPU can boost
the fuzzing because most seed evaluations involve similar
paths. The other two properties are about smart contract
primitives. P3: the execution of smart contracts is serial,
aligning well with GPU-accelerated fuzzing; P4: system
calls are not required for executing smart contracts. Due to
P3 and P4, the target smart contract can be converted into
a standalone SIMD application on the GPU, making GPU-
accelerated fuzzing an ideal fit for smart contract fuzzing.

For a preliminary analysis, we compare the state-of-the-
art tool Ityfuzz [54] (utilizing one CPU core) against MAU
(leveraging one CPU core and 256 GPU cores) to analyze
the illustrated puzzle in Figure 1. Ityfuzz requires 13 minutes
to execute 23 million fuzzing iterations before identifying
the buggy code, while MAU can accomplish the same task
within 6.5 minutes or 20 million iterations, demonstrating a
2X speed improvement.

3. Overview

In this section, we briefly introduce the architecture of
MAU and its solutions to the three technical challenges.

3.1. MAU’s Architecture

Figure 4 depicts the architecture of MAU, which takes
EVM bytecode as input and outputs a set of seeds to explore

2. Effect of executing a branch where, for some threads, the branch is
taken, and for other(s), it is not taken. These two groups of threads will
then run in serial rather than parallel.
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Figure 4: The overview of MAU.

as many program states of the smart contract as possible.
MAU consists of three main components: (1) Transformer,
(2) Vectorizer, and (3) Evaluator. Transformer lifts the
EVM bytecode to an LLVM assembly, a register-based
representation. Vectorizer applies code vectorization to the
LLVM assembly, generating a SIMD program that tracks
smart contract execution states in the GPU environment
regarding code coverage and transaction dependency. Dur-
ing the CodeGen phase, the LLVM backend translates the
vectorized assembly into PTX code, which can run on the
GPU. Evaluator schedules and evaluates a batch of seeds in
parallel to improve fuzzing throughput. It employs a CPU-
GPU task decomposition strategy to generate seeds that
deserve more testing. Whenever the GPU-evaluated seeds
explore new program states of the smart contract, Evaluator
validates them on the CPU for correctness. Therefore, GPU-
accelerated fuzzing virtually produces no false positives
because the seeds are eventually executed in the EVM to
confirm the problem. If a bug is detected before the timeout,
Evaluator outputs its bug location (i.e., instruction address).
Throughout the entire fuzzing, Transformer only needs to
run once for PTX generation. It is worth noting that MAU
does not require the source code of the smart contract.

3.2. Transformer

Given the EVM bytecode, Transformer lifts it to a
register-based representation in LLVM IR while remaining
EVM functionalities. We use intermediate representation as
the link between EVM bytecode and PTX code because
the register-based IR offers a uniform platform for code
vectorization and instrumentation.

Transformer uses LLVM memory to represent the com-
ponents used by EVM (i.e., stack, memory, calldata, and
storage). The stack-based EVM instructions are devirtulated
to register-based LLVM memory operations (see § 4.1). For
the stack, Transformer employs a byte vector (i.e., µ) along
with an additional register p. p maintains the current stack
depth, so µ[p] is always the item in the stack top. Since
EVM instructions are stack-based, Transformer can obtain
the instructions operands from µ by adjusting the value of p.
For instance, the EVM instruction ADD is expected to 1) pop
its two operands from the stack and push back the result.
It can be lifted to 1) c ← µ[p] + µ[p − 1]; p ← p − 2;
2) p ← p + 1;µ[p] ← c. Additionally, EVM memory is
a byte-addressing vector; thus, Transformer uses a global
byte vector, named v, to represent it. calldata is the input
buffer of the smart contract; thus, Transformer declares a

byte vector (i.e., d) to represent it. Especially, it is expensive
to use memory to simulate storage in the GPU environment
because the storage of each smart contract at most has 2256

slots by design (C1). EVM can read and write any slot
with a 32-byte address. To avoid redundant memory cost,
in § 4.2.2, we use an incremental snapshot design as the
storage, denoted as σ.

3.3. Vectorizer

Taking the LLVM assembly as the input, Vectorizer
aims to generate a SIMD program in LLVM IR. This SIMD
code is expected to evaluate a batch of seeds together to
improve the fuzzing throughput. To this end, Transformer
first applies code vectorization to rewrite the LLVM IR
(§ 4.2) and then instruments a SIMD-friendly bitmap to
track the execution states (§ 4.3.2).

Vectorizer converts the LLVM instructions to vector
operations using data parallelism [16]. The LLVM memory
used in Transformer (i.e., µ, v, d, and σ) are extended
to thread-safe vectors, i.e., µ⃗, v⃗, d⃗, and σ⃗. Each SIMD
thread can access its thread-local data based on its thread ID,
denoted as i. For example, every SIMD thread can execute
the same PTX code, e.g., load d⃗i[0...3] to load the first four
bytes of from their individual calldata and evaluate them
together.

In addition, Vectorizer applies instrumentation to smart
contracts instead of EVM in order to track the seed execu-
tion states in the GPU environment (§ 4.3). An interesting
seed contributes to exploring the program space in terms of
both code coverage and transaction dependency. We adopt
code coverage because the seeds that hit new code are more
likely to explore deeper program space [45]. Since smart
contracts are stateful, the seed should also be interesting
if it can drive the smart contract to an expected state. We
measure the transaction dependency in terms of the dataflow
dependency (read-after-write) between the state variables. If
more dataflow dependencies of state variables are found, we
believe the evaluated seed contains a transaction sequence
that deserves more tests.

Existing tools [11], [62] track read-after-write dataflow
in an instrumented EVM, which introduces non-negligible
overhead (C2). To overcome this challenge, we design a
stateful bitmap in § 4.3.2 to gather transaction dependency
efficiently.

3.4. Evaluator

The established LLVM assembly can be naturally trans-
lated into PTX assembly by the LLVM backend [41]. Eval-
uator executes the PTX assembly on a GPU to search for
interesting seeds and output any possible bugs as defined by
the oracles. Figure 5 is the overview of Evaluator, which
applies a CPU-GPU task decomposition strategy to generate
seeds that deserve more testing. In every fuzzing round,
Evaluator utilizes GPU mutation (GPM) to select one seed
from the corpus and mutates it to generate multiple variants
in GPU memory (§ 4.5). These threads will run in the
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GPU environment in parallel to boost the seed evaluation.
We need GPM because it can avoid frequent data transfers
between the CPU and GPU, which would otherwise reduce
throughput. Additionally, we validate the interesting seeds
from the GPU in the CPU to avoid false positives due to the
potential incorrect code translation if any. Bugs are detected
by the oracles (§ 4.4). In the end, the interesting seeds will
be eventually added to the corpus.

The seeds evaluated together on the GPU may hit
the same paths. The potential overlapped execution [40]
may prevent the multi-thread fuzzer from achieving higher
throughput (C3). To tackle this problem, we design a parallel
feedback algorithm (SBF) to rule out undesired seeds that
cause redundant overlaps (§ 4.3.3).

4. MAU Design

In this section, we present the technical details of MAU.

4.1. Lifting EVM Instructions

To be specific, the processing pipeline consists of four
steps. First, Transformer constructs a CFG from the EVM
bytecode (§ 4.1.1). Second, it uses LLVM memory opera-
tions to emulate the EVM instructions based on the CFG
(§ 4.1.2). Third, it recovers control flow in the generated
LLVM IR by resolving jumps (§ 4.1.3). At last, it recovers
EVM exception-handling in the GPU environment (§ 4.1.4).

4.1.1. Constructing Basic Blocks. Given the EVM byte-
code, we identify EVM basic blocks and then generate
the same number of basic blocks in an on-the-fly LLVM
function. EVM specification defines basic blocks according
to two rules: 1) a basic block must end with a terminator
(i.e., JUMP, JUMPI, RETURN, STOP, REVERT, and SUICIDE); 2)
JUMPDEST is the jump destination. These two rules enable
us to identify all basic blocks using a linear sweep. As a
result, all possible destinations of the indirect jumps used in
EVM bytecode can be over-approximated. This is critical for
resolving indirect jumps in § 4.1.3. For example, all indirect
destinations are recovered.

4.1.2. Generating IR. In each LLVM basic block, we
generate LLVM instructions from the EVM instructions. We
use arrays in LLVM memory to emulate EVM components
(i.e., stack, memory, storage, and calldata). In addition,

TABLE 2: The emulation rules of the code translation. µ,
v, d, and σ represent the LLVM arrays for simulating the
EVM stack, memory, calldata, and storage, respectively. p is
a local register maintaining the current stack depth. switch
is a table jump in LLVM IR used to lift the EVM indirect
jumps. Its jump table contains all destinations.

EVM Instruction Translation Rules
push c p← p+ 1;µ[p]← c
pop p← p− 1
dup c p← p+ 1;µ[p]← µ[p− c]
swap c t← µ[p];

µ[p]← µ[p− c];µ[p− c]← t
mload µ[p]← v[µ[p]...(µ[p] + 31)]
mstore v[µ[p]...(µ[p] + 31)]← µ[p− 1];

p← p− 2
sload µ[p]← σ[µ[p]]
sstore σ[µ[p]]← µ[p− 1]; p← p− 2
calldata x, y, z ← µ[p], µ[p− 1], µ[p− 2];

v[x...(x+ z)]← d[y...(y + z)]
unary op µ[p]← op µ[p]
binary op c← µ[p] op µ[p− 1]; p← p− 2;

p← p+ 1;µ[p]← c
sha3 x, y ← µ[p], µ[p− 1]; p← p− 1;

µ[p]← keccak(v[x...(x+ y)])
call p← p− 4;µ[p]← true
getenv env p← p+ 1;µ[p]← env
bne t, c← µ[p], µ[p− 1]; p← p− 2;

br c ̸= 0, t, <fall_through>;
br t← µ[p]; p← p− 1;

switch t, <destinations>;
stop ret true

revert ret false

suicide move the self balance to µ[p];
ret true

determining the operands of EVM instructions from the
EVM bytecode is non-trivial due to the implicit use-define
chain [23], [24], [34]. Specifically, some EVM instructions
may use data defined by the other instructions in prior basic
blocks, resulting in an implicit use-define chain because of
the indirect jumps between EVM basic blocks. To solve this
problem, we use LLVM memory operations to emulate the
EVM instructions. The operands of EVM instructions are
emulated by LLVM memory data without relying on the



use-define chain. To better explain the emulation approach,
we next describe the EVM instruction set with a formal
model and show the translation rules.
bytecode = ins | bytecode
ins = push c | pop | swap | dup | op | sha3 | calldata |

mload | mstore | sload | sstore | call | getenv |
br | bne | suicide | stop | revert

The EVM instruction is a stack-based language. Besides
executing general calculations (op and sha3) and execution
control (br, bne, suicide, stop, and revert), it can use
data from various EVM components, such as stack (push,
pop, swap, and dup), memory (mload and mstore), calldata
(calldata), and storage (sload and sstore). Moreover,
EVM can interact with blockchain through call and getenv.
Table 2 shows the emulation rules for EVM instructions. In
particular, the EVM exceptions are handled in § 4.1.4.
stack instruction. EVM can operate its stack by push, pop,
swap, and dup. We build a simulated stack for the EVM
stack instructions, which includes an LLVM array µ to store
data and a register p to track the stack depth. µ[p] indicates
the item at the top of the EVM stack. As a result, we can
determine all operands of EVM instructions from µ. The
EVM instruction push c is expected to push the constant c
onto the EVM stack. We can lift it to p← p+ 1;µ[p]← c.
Namely, pop is used to pop the top item from the EVM stack,
which we lift to p← p− 1. In particular, swap c exchanges
the 1st and c-th stack items, and dup c duplicates the c-
th stack item. The translation rules for these two kinds of
instructions are shown in Table 2.
memory instruction. EVM has a linear memory, with mload

and mstore accessing data in bytes. We use an LLVM array
v as the EVM memory. mload and mstore are emulated
by LLVM memory operations. Note that the data from the
emulated memory is converted to little-endianness because
GPU is a little-endian architecture, but EVM data is big-
endian. To be specific, the most significant byte will be
exchanged with the least significant byte.
calldata instruction. EVM executes the calldata instruc-
tion to load the input into memory. We maintain calldata in
an LLVM array, denoted as d. We convert calldata to a
memory copying operation, coping data from d to v.
storage instruction. sload and sstore can use the persistent
data in the smart contract storage. We create a hash table
σ as the storage. Their operand can be obtained from the
simulating stack.
computation instruction. op is a group of instructions used
for bitwise and arithmetic operations. For a binary EVM
instruction, it has to pop two stack items as operands, and
hence we use the two memory data µ[p] and µ[p−1] as LHS
and RHS values, respectively. Then, the execution result can
be pushed to the new stack top µ[p− 1].
sha3 instruction. sha3 is used to compute a hash string
in EVM. To emulate it, we implemented a Keccak256 [4]
hash function in the GPU environment. The GPU-based
Keccak256 function utilizes only thread-local memory, such
as local memory and registers.

call instruction. call is an abstract instruction. Each in-
stance instruction is related to cross-contract calls, i.e.,
CALL, STATICCALL, DELEGATECALL, CREATE, and CREATE2. To
simulate the cross-contract calls in GPU, we convert call

to an LLVM function call. The function parameters come
from the simulating stack µ. At default, the return value
is set to true to simulate a successful call. Since we have
no external contracts in the GPU environment, the GPU’s
support for cross-contract calls is limited. It disables the
actual cross-contract interactions within the GPU context.
Nonetheless, MAU retains its efficacy in fuzzing cross-
contract interactions because: (1) MAU provides full support
for cross-contract calls on the CPU side; (2) although the
inaccuracies due to incomplete support for cross-contract
calls may result in redundant seeds on the GPU, these seeds
will be validated in a full-fledged EVM on the CPU side; (3)
despite this limitation, the GPU’s high throughput empowers
MAU to identify more bugs at a faster pace when compared
to baselines (see RQ2).
getenv instruction. getenv is an abstract instruction. Each
instance instruction gets the current blockchain environment
data. A getenv instruction typically pushes a certain value
onto the EVM stack, such as blockchain id, block hash,
timestamp, block height, block difficulty, block’s beneficiary
address, gas limit, gas price, remaining gas, account balance,
execution origination address, caller address, the deposited
value from the caller, smart contract address, and smart
contract bytecode. We transform the blockchain environment
data into global variables, with getenv instructions retrieving
the relevant global variables as the resulting output. In par-
ticular, we use a constant array to store the EVM bytecode
because smart contracts cannot modify bytecode.
control instruction. Smart contracts in EVM can exit via
stop or suicide instruction. We represent this with a return

instruction in LLVM IR. In particular, we move the balance
of the executing smart contract to the address of µ[p],
according to the EVM specification. In addition, revert can
abort the execution and throw an error to EVM. We translate
revert to an exit instruction which returns a Boolean value
indicating the exit code of the smart contract. Note that we
translate revert to a gentle stop without raising a sticky
error, because the sticky error will terminate other threads
that are expected to continue, resulting in a decrease in
throughput. Regarding br and bne, we explain them in
§ 4.1.3.

4.1.3. Resolving Jumps. Once the LLVM IR in basic
blocks is established, we identify the jump destinations of
br and bne. Since br in EVM is an indirect jump that
takes the destination from the top item of the stack, we
lift it to a table jump (i.e., switch) with the complete jump
table constructed in § 4.1.1. The destination is emulated by
an LLVM memory data, i.e., µ[p]. Although such a jump
table results in big “switch” instructions, the evaluation in
Appendix A shows that it only increases execution time
by approximately 8%, which is a relatively low overhead
penalty. To reduce overhead, we can use pointer analysis to
precisely identify each jump’s individual jump table. This



should result in a smaller jump table because each jump has
limited branches. In addition, bne is a conditional jump that
“falls through” to the next instruction when the condition is
unsatisfied. We can identify its “falls through” destination
rather than leveraging the jump table because the “falls
through” edges are explicit in EVM bytecode.

To create a GPU-friendly application, we infer the des-
tinations of indirect jumps and convert them to direct jumps
whenever feasible. With the identified jump destinations,
GPU can leverage branch prediction to be efficient and
ease the branch divergence [13]. Specifically, we perform
a backward search [35] to identify the stack top item used
by br and bne. Taking push c;br as a basic block example,
we can infer its successor is c because the stack top of br

must be c.

4.1.4. EVM Exception Handling. EVM costs gas when-
ever it interprets an EVM instruction. In addition to execut-
ing suicide, stop, and revert instructions to exit explicitly,
Ethereum smart contracts implicitly terminate themselves
when the remaining gas is insufficient to execute more
instructions. The official Ethereum [19] calculates gas us-
age as the sum of per-instruction gas consumption for all
instructions within each basic block. We followed that to
estimate gas deduction. To this end, we create a register
representing the total gas amount to recover this behavior.
In each LLVM basic block, we deduct a certain number of
gas units from the gas register to simulate the gas cost in
EVM. The gas cost of each basic block is the sum of gas
used by the EVM instructions lifted in the basic block. A
conditional branch stops the execution when the value of
the gas register is lower than zero.

4.2. Vectorizing LLVM Assembly

EVM instructions are emulated by LLVM memory oper-
ations (§ 4.1). According to the data lifecycle, we rewrite µ,
v, d, and σ for code vectorization. The thread assigned with
the thread id i can access its thread-safe components, i.e.,
µ⃗i, v⃗i, d⃗i, and σ⃗i. Memory operations are friendly to code
vectorization because we can convert a memory operation
to a vector operation by adding a linear address. To enable
the smart contract to obtain the thread id in GPU runtime,
we import a built-in API from the PTX LLVM backend to
the PTX smart contract.

4.2.1. Local Data. We use local memory to emulate the
stack, memory, and calldata because their data will be
cleared immediately after the smart contract execution fin-
ishes. The local memory of different threads has different
address spaces. Thus, operations to local memory are nat-
urally thread-local and can support SIMD execution with
minor efforts. Specifically, two arrays allocated in local
memory are used in the emulated stack and memory. The
local memory is allocated via malloc at the entry of the
smart contract. To reduce memory consumption, we free
the allocated memory once a thread finishes. In the SIMD
runtime, threads can execute the same malloc instruction

Algorithm 1: Vectorizing storage instructions.
Global: snapshot ni; master volume m
Input : storage index x; storage value y

1 Function SSTORE(x, y):
2 if x ∈ {slot | slot ∈ ni} then
3 nix ← y
4 else
5 ni ∪ {x : y}

6 Function SLOAD(x):
7 y ← 0
8 if x ∈ {slot | slot ∈ ni} then
9 y ← nix

10 else
11 if k ∈ {slot | slot ∈ m} then
12 y ← mk

13 return y

together but obtain a different value as the pointer, which
points to the thread-local memory serving as the EVM stack.
Following the EVM specification, each item in the emulated
stack has 32 bytes, and both the emulated memory and
calldata are byte-addressing arrays.

4.2.2. Persistent Data. Smart contracts can execute SSTORE

and SLOAD to access persistent data in the key-value storage.
In our fuzzing, seeds run together and share the same initial
storage content. To reduce memory consumption, we build a
redirect-on-write snapshot [28] as the EVM storage, which
includes one master volume and multiple incremental snap-
shots, denoted as m and n⃗, respectively. In other words, σ⃗i

is an abstract object from (m, n⃗i). Each element represents
a storage slot in the EVM. A slot is a structured data with
two 32-byte data. The first 32 bytes represent the storage
key, and the second 32 bytes represent the corresponding
storage value. The lightweight storage structure can be used
as the hash mapping defined in the EVM specification. m
maintains the initial content. When running SIMD threads,
the storage used by thread i is an incremental snapshot
from m. Since new data writes are redirected to ni, all
GPU threads can share m as the initial storage content.
To be specific, we rewrite SSTORE and SLOAD as shown in
Algorithm 1.

• SSTORE(x, y) stores y in the storage using x as the
hash key. To handle this, we redirect the written data
(i.e., y) to snapshot ni. Here, nix represents the value
in the thread storage ni where x is the hash key.

• y = SLOAD(x) loads y from the storage using x as the
hash key. To handle this, we first search x from ni. If
it does not exist, we then search m. Otherwise, we will
eventually return zero to fulfill the EVM specification.



4.3. Instrumenting Smart Contract

To evaluate seeds running in SIMD threads, we instru-
ment an LLVM vector. Each element in the vector is a
bitmap. Each thread uses its thread ID to fetch a bitmap
from the vector. Individual threads can track the execution
state independently. In addition to increasing code cover-
age, seeds that satisfy transaction dependency should be
prioritized for testing. To this end, we extend the bitmap
format to keep track of the branches that have already been
seen and the dataflow dependency (read-after-write) between
state variables. We utilize the data dependency between state
variables to resolve transaction dependencies when feasible.
In the following section, we first explain why the edges-only
bitmap (i.e., AFL [68]) is ineffective. Then, we propose the
stateful bitmap to ease the transaction dependency. Finally,
we use a parallel algorithm to count the interesting seeds.

4.3.1. Edges-only Bitmap. AFL defines a tuple (src, dst)
to record one branch transition, i.e., the control flow edge
from one basic block (src) to another one (dst). When using
AFL bitmap, bi indicates the bitmap for the thread i. The
bitmap byte in thread i like bij is the hit count for the taken
branch j. The branch index j is the hash from (src, dst):

j = src≪ 1⊕ dst

After the thread i finishes, the number of non-zero bytes in
bi is the number of distinct branches the seed hits. If more
branches are explored, fuzzers mutate this interesting seed
again regarding the increased code coverage.

However, due to transaction dependency, the code cov-
erage metric is less effective in evaluating the input seeds of
smart contracts. We use Figure 1 as the example to explain
the reason. Suppose we have the following four seeds:

S0 : vul(0) S1 : dep(0)

S2 : dep(2)→ vul(0) S3 : vul(0)→ dep(2)

After S0 and S1 are evaluated, the coverage-based fuzzer
will take S2 as an uninteresting seed because it covers the
same branches that S0 and S1 have already covered. But S2

is worth testing more because it has an expected transaction
sequence, i.e., dep→ vul. dep can change the state variable
y; vul can make the branch at line 4 satisfied. Therefore,
seeds with an expected transaction sequence should also
be interesting, even though they may not increase code
coverage.

4.3.2. Stateful Bitmap. Our feedback metrics include the
code coverage and new data dependency of state variables.
Evolved from the AFL bitmap, a stateful bitmap consists of
branch hits and the changes of state variables. To be specific,
the bitmaps index is a hash:

j = hash(src, dst, stat) = (src≪ 1⊕ dst)⊕ stat

The first part (i.e., src ≪ 1 ⊕ dst) keeps track of the hit
counts of already-seen branches. The second part (i.e., stat)
is a global register that maintains the current state of the

smart contract. Whenever a state variable val is loaded by
a val ← SLOAD(key), stat hosts the state with a hash
value, i.e., stat← key ⊕ val. stat is initiated to zero, thus
if no SLOAD is executed, the bitmap hash degenerates to the
vanilla one, i.e., src≪ 1⊕dst. Therefore, we believe a po-
tential new data dependency between state variables exists,
whenever one transaction loads a state variable changed by
previous transactions. Even if no new branches are explored,
the seed’s value will increase due to the found transaction
dependency, and the seed will become interesting.

The stateful bitmaps can find the interesting seed used
in Figure 1. Although S2 hits no new branches, the seed’s
value still increases due to stat changing from 0 to 2. S3

remains uninteresting because stat used in vul(0) remains
zero resulting in the same seed’s value as S0 and S1 have.
Therefore, the fuzzer can choose S2 again and mutate more,
i.e., changing the function arguments of its two transactions.
New interesting seeds will be generated whenever the first
transaction argument changes to a new value. If the value
of y is set to the expected value, i.e., 4, then the second
transaction, i.e., vul(0), can hit more branches, making
the entire seed interesting. Therefore, the interesting seed
taking dep(4) as its first transaction will be mutated again
until the expected argument of vul() is found as well.

The stateful bitmap allows MAU to track transaction
dependency effectively and efficiently. Although the fuzzer
has to test more seeds for complex transaction dependency,
the bitmap ensures the testing of transactions with read-
after-write dependencies among state variables. It fulfills
our design target, as fuzzing is insensitive to the number
of seeds because of the high throughput. As long as the
expected seeds are added to the seed queue successfully,
fuzzers still have an opportunity to trigger the vulnerability
later.

4.3.3. Parallel Counting. We use N as the total thread
number. We have N bitmaps in total, denoted as b0 ...
bN−1. Each bitmap should be large enough to reduce the
hash collision rate. Thus, we count all bitmaps in parallel
to boost fuzzing.

First, we encode all bitmaps into an incremental bitmap
named virgin_bits [68], denoted as B. The byte (i.e.,
Bj) in virgin_bits represents whether the correspond-
ing branch has been explored by any thread yet or not.
Initially, the entire virgin_bits is fully masked, i.e.,
each byte value is 0xFF. We set Bj to zero if we found
the branch j was hit in thread i, i.e., bij ̸= 0. If Bj remains
0xff in the end, Evaluator deems the branch unexplored by
any seed.

Second, we split B and bi into ϵ
8 parts in eight bytes and

distribute each piece to one thread, where ϵ is the bitmap
size. We set the window size to eight bytes because the
GPU is 64bit. After the smart contract execution, we can
use additional ϵ

8 threads to encode b0 ... bN−1 to B. Each
thread i updates the portion of B starting from the index of
8i with a size eight bytes. The formal description is shown



below.

Bj ← Bj&¬bkj , 0 ≤ k < N, i ≤ j < i+ 8, 0 ≤ i <
ϵ

8

A seed is interesting if there are non-zero bytes counting in
the virgin_bits:

∑ϵ
i=0 Bi ̸= 0

4.4. Detecting Bugs

MAU replays seeds in the CPU environment to detect
bugs. To detect bugs in smart contracts, which do not
typically result in crashes, we require oracles. Below are
the design specifics for the four most prevalent bug types.
IB. Integer Bug (IB) is caused by integer overflows or under-
flows, making the arithmetic result become an unexpected
value. To detect it, we monitor the results of arithmetic
instructions (i.e., op). If the result value is outside the
expected range, we report a bug.
BD. Block state dependency (BD) occurs when a smart
contract uses the state of a block (i.e., getenv) to decide the
Ether transfer of a contract. Attackers can bypass the block
state checks to withdraw the victim’s cryptocurrency. To
detect it, we first track the data flow of block state variables
and then monitor if the operands of a call depend on the
block states.
RE. Reentrancy (RE) occurs when a re-entered vulnerability
leads to a race condition on state variables [63]. To detect
it, we monitor the invoked cross-contract calls (i.e., call)
and identify state variables that affect these calls. We report
a bug if such state variables are updated after the calls take
place.
ME. Mishandled Exception (ME) occurs when a contract
does not check the return value of a cross-contract call. We
detect it by observing the return value of the call; if it
remains unchecked by subsequent instructions, we flag a
bug.

4.5. Hybrid Mutation

Mutation introduces small changes to the incoming seed
that may still keep the input valid, yet exercise new smart
contract behavior. To reach high seed diversity, we design a
hybrid mutation mechanism on both CPU and GPU. On
the one hand, CPU-side mutation generates one seed to
GPU, while GPU-side mutation generates a batch of seeds
for all threads. GPU mutation is to avoid frequent data
transfers between CPU and GPU, which would otherwise
reduce throughput. On the other hand, we enable various
mutation strategies to mutate the seeds, such as bitflip and
havoc. CPU mutates both transaction sequence and argu-
ments, while GPU mutates arguments only. Note that GPU
does not change the transaction sequence for easing branch
divergence. Threads would execute different branches from
the start and cause overhead due to branch divergence, if
they run different smart contract functions together.

TABLE 3: The size of the two benchmarks.

#Cnt Src/LoC #Func Bytecode/KB
mean std. mean std. mean std.

Small 130 136 121.20 10 8.30 4.35 3897.15
Large 400 13099 2961.28 406 117.70 13.95 8328.88

4.6. Implementation

In order to evaluate the design of MAU, we implemented
a prototype using approximately 8,000 lines of C++ code
and 100 lines of Rust code. The prototype implementation
has been released.
Transformer. To align with EVM specification [64], we
configure µ⃗i as a 1024x32 bytes vector, set the size of v⃗i to
1448B, and establish the size of d⃗i to 2048B. Each abstract
storage is organized as an array with 32 slots. To support
SHA3 in GPU, we compile a Keccak256 algorithm from C
language to LLVM assembly and then link it with the smart
contract.
Vectorizer. To reduce the hash collision in bitmap, each
thread uses a 4KB bitmap. Users can configure the above
parameters to meet their requirements. We translate the
LLVM assembly to a 64-bit PTX binary through the LLVM
PTX backend with all optimizations rules enabled (i.e.,
clang -m64 –target=nvptx64-nvidia-cuda -O3).
Evaluator. We implemented a hybrid fuzzer based on
Ityfuzz [54]. The GPU extension is powered by the low-
level CUDA driver [48] (v11.3). For fuzzing, 1,024 threads
are executed on a single GPU card.

5. Evaluation

Our evaluations are driven by the following research
questions (RQs):

• RQ1: Does Transformer obtain the semantic correct-
ness in bytecode translation?

• RQ2: How effective is MAU compared to state-of-the-
art tools?

• RQ3: Do MAU’s components contribute in improving
performance?

• RQ4: Can MAU uncover new bugs in real-world smart
contracts?

5.1. Experiment Setup

Benchmarks. Our experiments run on two benchmarks,
including a large benchmark and a small one (see Table 3).
Here are the details of the benchmark construction. Before
January 2023, Etherscan had released 183,111 smart con-
tracts with verified source code [50]. To evaluate fuzzing
performance on complex smart contracts, we construct a
large benchmark consisting of smart contracts with more
than 10,000 lines of source code (LoC). After identifying
618 complex smart contracts, we removed duplicates, re-
sulting in a final set of 400 smart contracts for the large



benchmark. During the experiments, we found that the exist-
ing tools have scalability issues in the large benchmark. For
a fair comparison, we further construct a small benchmark
sourced from existing work, including 58 smart contracts
with assigned CVEs [56] and an additional 72 curated
from Smartbugs [15]. In particular, each smart contract in
the small benchmark is a ground truth for the following
bug types: integer bug (IB), block state dependency (BD),
mishandled exception (ME), or reentrancy (RE). We chose
these bug types because the state-of-the-art tools support
them.

The large dataset has 400 smart contracts with an av-
erage of 13,099 LoC, defining approximately 406 functions
each. In contrast, the small dataset consists of smart con-
tracts with an average of 136 lines of source code, defining
around ten functions per contract. The source code size of
the large benchmark is nearly 100 times greater than that
of the small benchmark. Note that we collect source code
for manual reasoning in case studies. MAU can test closed-
source smart contracts with only their bytecode and ABI [8].
Throughout the experiments, no tool relied on the source
code of smart contracts.
Baselines Setup. We first looked for open-source tools that
are published in top conferences and obtained Ityfuzz [54],
Smartian [11], ContractFuzzer [32], ILF [27], sFuzz [47],
Mythril [46], and EF\CF [52]. We excluded Harvey [66]
because its authors did not release the tool to the community.
Echidna [25] and ConFuzzius [62] were also omitted from
the experiments since they cannot analyze closed-source
smart contracts. We chose Ityfuzz, Smartian, ILF, and sFuzz
over ContractFuzzer based on the findings in [11], which
demonstrated their superior performance. Although EF\CF
aimed to enhance throughput, we opted for Ityfuzz for its
superior speed, and thus excluded EF\CF from considera-
tion. All baselines use the default setting provided by their
artifacts. To gain a better understanding of the contribution
of the GPU parallel mutation (GPM) and the stateful bitmap
feedback (SBF), we performed an ablation study by com-
paring MAU with MAU-G (MAU without GPM) and MAU-
S (MAU without SBF). More specifically, MAU-G mutates
seeds together on 32 CPU cores; MAU-S adds the seeds to
the corpus only when the execution hits new instructions.
Environment Setup. All experiments were conducted on a
server running Ubuntu 20.04 LTS equipped with dual Intel
Xeon Gold 6226R processors (32 cores), 512 GB RAM, 4T
HDD, and five NVIDIA RTX3090 graphic cards (10,496
CUDA cores and 24 GB VRAM for each GPU device).
We use instruction coverage (i.e., the number of distinct
instructions explored during the testing) as the metrics of
the code coverage. Instructions from the constructor and
view functions were not included in the coverage analysis
because of the following reasons. The constructor of the
smart contract is out of the attacker’s control, and the
view functions are designed to run locally on the callers’
side without causing any impact on the online blockchain
data. For the code coverage and bug detection experiments,
we ran all tools for one hour. This timeout is selected
because we observed that all tools can reach the maximum

code coverage within the first 20 minutes (see RQ2). Each
experiment set was run within a clean Docker container to
minimize environmental interference.

5.2. Correctness Verification

Transformer is essential to code translation. To deter-
mine that the PTX code remains consistent with the original
EVM smart contract, we employ a differential testing involv-
ing, collecting ground truth test cases that can trigger IB,
running test cases on both CPU and GPU, and comparing
the bug locations between EVM bytecode and PTX code.
To enable the PTX code in GPU to output the bug location
to CPU’s stdout, we import an IB sanitizer to Transformer.
Thanks to the IB sanitizer released in the LLVM ecosystem,
we can import it without introducing bias due to hand-
crafted sanitizers. The generated LLVM assembly of Trans-
former is translated to PTX here, skipping both code vec-
torization and instrumentation. We only choose IB, because
RQ1 aims to assess translation accuracy, not oracles. We
use the oracle only to record smart contract outputs for
validation against the ground truth, focusing solely on IB
since Verismart’s ground truth pertains to IB. In the end,
we use 58 smart contracts with assigned CVE identifiers
and collect 317 test cases from [56] for verification.
Results. Among the 58 smart contracts, Transformer can
successfully translate 100% of them. The PTX code passes
all test cases and outputs the expected program points where
an IB has been triggered. This experiment has also been
used to improve our implementation. When the input buffer
(e.g., calldata) of the GPU was initially set to 128B, 65 test
cases from 17 smart contracts failed because 128B is too
small to store the input coming from the CPU. We solve this
issue by configuring the input buffer length to 2048 bytes.
In the following experiment, we keep this setting. Note that
we did not guarantee 100% correctness for the translation of
all smart contracts. During fuzzing, Evaluator will replay
all interesting seeds found in GPU on CPU for verification.

Answer to RQ1: Transformer can achieve high se-
mantic correctness in translating EVM bytecode.

5.3. Comparison against Existing Tools

To assess the effectiveness of MAU, we apply it along
with all baselines to analyze both the large and small bench-
marks and then measure code coverage, the number of de-
tected bugs, throughput, economy, and power consumption.

Firstly, to measure code coverage in terms of instruction
coverage, we replay all interesting seeds on an instrumented
CPU-end EVM. Secondly, fuzzing typically has no false
positives, but the insufficient rules in oracles may lead
to incorrect reports. In the large benchmark, we manually
verify the bug alarms and classify them as true positives (TP)
and false positives (FP). To minimize bias during manual
verification, we first locate potential bug locations in the
source code based on the fuzzer’s concrete exploits; then
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Figure 6: Comparison against state-of-the-art tools on both
large and small benchmarks.

identify TP at the source code level if the exploit indeed can
cause the bugs defined in § 4.4. The source code traceback
is feasible because the Solidity compiler can generate a
mapping from the bytecode to the range in the source code
that generated the instruction. As for the small benchmark,
we report TP if the tool can pinpoint the exact program
address for the assigned bug. Each bug in the small bench-
mark has a ground truth label indicating the bug location.
Thirdly, we evaluate MAU’s parallel ability by measuring its
throughput, specifically using seed throughput, which is the
number of seeds evaluated within one second. Finally, we
further estimate the cost effectiveness and energy efficiency
of all tools, showing MAU can achieve a greater efficiency—
evaluating the same number of seeds using fewer resources.
We accomplish this using throughput per dollar, cost per
bug, and power consumption.
Code Coverage. MAU outperformed all baselines in terms
of code coverage, exploring 23.36%-371.43% more distinct
instructions than different baselines. Figure 6 illustrates the
overall results on both small and large benchmarks. The x-
axis represents the fuzzing time in minutes, and the y-axis
represents the cumulative instruction coverage.

In the large benchmark, MAU surpassed Ityfuzz and
Mythril by covering 33.86% and 75.56% more distinct in-
structions, respectively. In particular, Ityfuzz, the best base-
line in the large benchmark, explored 880.52k instructions
before the timeout. In terms of the time to code cover-
age, MAU is 20.9X faster than Ityfuzz, reaching Ityfuzz’s
maximum code coverage in just 40 seconds. We did run
both sFuzz and Smartian on the large benchmark, however
they yielded extremely low code coverage (e.g., 0 and 125
instructions per contract, respectively). sFuzz failed to gen-
erate fuzz drivers for the complex smart contracts. Smartian
analyzes transaction dependencies from the bytecode’s CFG
and DFG before launching fuzzing on transaction sequences.
However, its static analysis fails due to path explosion in
extensive benchmarks. Although we could run Smartian in
a dummy mode (static analysis disabled) or allocate more
RAM/Time, it would be unfair to other tools.

The further comparison of MAU with baselines in

TABLE 4: Bug detection on the small benchmark.

Bug MAU Smartian sFuzz Mythril
TP FP TP FP TP FP TP FP

IB 56 0 53 0 8 0 7 0
BD 10 0 11 0 10 0 8 0
ME 47 0 48 0 29 6 46 0
RE 15 1 19 0 5 20 19 38

TABLE 5: Bug detection on the large benchmark.

Bug MAU Mythril MAU-G MAU-S
TP FP TP FP TP FP TP FP

IB 112 0 46 0 104 0 103 0
BD 54 0 28 0 54 0 28 0
ME 108 0 59 0 108 0 99 0
RE 11 3 1 12 10 3 7 3

the small benchmark revealed that MAU covered 4.67%,
300.00%, 55.56%, and 53.42% more distinct instructions
than Ityfuzz, sFuzz, Mythril, and Smartian, respectively.
While the performance improvement of MAU diminished in
the small benchmark compared to the large benchmark, we
attribute this to the GPU boost being particularly effective
in fuzzing complex smart contracts. Small programs with
limited input space still allow conventional tools running on
CPUs, like Ityfuzz, to achieve high code coverage. Never-
theless, MAU has demonstrated its effectiveness in testing
complex smart contracts.

We evaluated the additional time required for these tools
to achieve new coverage, running tests on both benchmarks
for 12 hours. On the small benchmark, both MAU and
Ityfuzz need more time to achieve new coverage. On the
large benchmark, MAU obtains higher code coverage after
about 6h57m whereas Ityfuzz needs more time.
Bug Detection. MAU outperforms baseline methods in de-
tecting bugs with greater accuracy. Table 4 presents the
bugs detected by tools in the small benchmark. Ityfuzz is
excluded from the comparison because it requires developers
to implement bug oracles at the source code of the target
smart contract. The experimental results show MAU found
1.01X, 2.5X, and 1.65X more bugs than Smartian, sFuzz,
and Mythril, respectively. In terms of discovery speed, MAU
is faster than the baselines. During testing, MAU detected
128 TPs after just one minute of fuzzing. In contrast, Smar-
tian and sFuzz find fewer bugs (112 and 46, respectively)
within the same timeframe. Table 5 illustrates the results on
the large benchmark. We exclude Smartian and sFuzz here
as they both fail to analyze the complex examples. MAU
found 2.2X more bugs than Mythril. All bugs detected by
the Mythril can be found by MAU.
Bug Analysis. All these tools, including MAU, missed the
detection of CVE-2018-13325 and CVE-2018-13695. CVE-
2018-13695 has an integer bug in the function mint(address

receiver, uint amount). To trigger the bug, the input must
ensure the argument receiver is equal to the specific ad-
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Figure 7: MAU’s throughput over the number of GPU cores.
The dashed line indicates the throughput when running the
small benchmark. The bold line indicates the throughput
when running the large benchmark.

TABLE 6: Comparison against state-of-the-art fuzzers on
the aspects of financial expense and power usage. For each
benchmark, there are three columns, such as throughput,
throughput per dollar, and power consumption.

small benchmark large benchmark

103exec/s 106exec/$ J 103exec/s 106exec/$ J

Smartian 0.66 16.97 461.71 N/A N/A N/A
Ityfuzz 21.33 548.49 14.30 18.68 480.34 16.31
MAU 328.06 4724.06 7.90 162.37 2338.13 16.02

dress. One potential solution is a dictionary-based mutation,
which collects magic numbers/constants from the smart
contract bytecode and then uses this corpus to construct new
seeds. CVE 2018-13325 has a bug in transfer(address

this, uint256 _value). It requires the exploit to have a
hard-to-resolve transaction sequence. Its transfer() func-
tion can call two sub-functions such as _sell and _transfer

depending on its first function parameter, i.e., this. To
trigger the bug, the attacker has to first execute transfer

to use _transfer to set state variables, and then execute
transfer again but to use _sell with expected function
arguments to trigger an integer overflow. In other words,
we must invoke transfer twice and control the parameter
to execute the expected sub-functions in sequence. MAU
incurs this false negative due to the overlap of the stateful
bitmap. It may fail to identify some valuable transaction
sequences.

MAU also incurs false positives due to the insuffi-
cient rules in the RE oracle. In the contract with address
0x05be...9583f, a function is used to initiate itself, config-
uring the Ether router. To hit the bug, we have to set the
router to a specific contract address to control Ether transfer
and launch the reentrancy attack. However, the router can
only be configured at the initiation function, which cannot
be executed by the attacker.
Throughput. As shown in Table 6, MAU achieved an over-
all throughput of 162.37K execs/sec and 328.06K execs/sec
in the large dataset and small dataset, respectively. This is
8.69X and 15.38X faster than Ityfuzz. When being compared
with Smartian, which achieves 0.66K execs/sec on the small
benchmark, MAU is 497.06X faster. Even when run in a

TABLE 7: The pure execution time of tools in evaluating
1024*32 random seeds. We measure the average time used
for all smart contracts in each benchmark.

small benchmark large benchmark

Smartian 37143.7ms N/A
Ityfuzz 1212.4ms 1605.6ms
MAU 121.6ms 156.8ms

single thread, MAU outperforms Smartian with a throughput
of 2.04K execs/sec, which is approximately 3.09X faster.

Since our goal is to accelerate Step ➁ of fuzzing (i.e.,
seed evaluation), we measure the pure program execution
time for each tool running 1024*32 random seeds (See
Table 7). In the small benchmark, MAU spends 121.6ms
in running 1024*32 random seeds, significantly outpacing
both Smartian and Ityfuzz. In the large benchmark, MAU
remains more efficient than the best baseline, i.e., Ityfuzz.
The results show that we successfully improved throughput
by boosting Step ➁.

M. Böhme and B. Falk found that finding new bugs
with fuzzing needs an exponential increase in the number
of computation resources, i.e., CPU cores [6]. To investigate
the relationship between cores number and throughput, we
configure MAU to use different numbers of cores from 1
to 214. In Figure 7, we show the average throughput of
MAU over the number of GPU cores. The dashed and solid
lines illustrate the increase in throughput when testing the
small and large benchmarks, respectively. By exponentially
increasing the number of GPU cores, the throughput has a
semi-linear increase over the number of GPU cores. It shows
a potential improvement in throughput by increasing the
core number. For example, we can launch MAU on multiply
GPU cards together to boost the throughput further.
Throughput per Dollar. In Google-Cloud, 1,024 GPU-
cores on a Tesla-T4 ($0.11/h; 70W) are more cost-effective
than one CPU core ($0.14/h; 9.3W). As RTX3090 is un-
available in Google Cloud, we use Tesla-T4 to estimate the
throughput per dollar (exec/$). In both benchmarks, MAU is
more cost-effective than Smartian and Ityfuzz. In the small
benchmark, compared to Ityfuzz and Smartian, MAU packs
8.6X and 278.45X more throughput-per-dollar, respectively.
In the large benchmark, MAU is 4.9X more efficient than
Ityfuzz. Smartian is excluded from the large benchmark
evaluation due to its scalability issues.
Cost per Found Bug. We also compare the cost per
found bug. On the small benchmark, MAU needs around
$0.25 to detect one bug, which has no distinguish improve-
ment against Smartian ($0.14), sFuzz ($0.35), and Mythril
($0.22). On the large benchmark, MAU is 52% cheaper than
Mythril.
Power Consumption. We require each tool to run 1024*32
random seeds and we estimate their end-to-end power con-
sumption. As shown in Table 6, although MAU requires
an additional GPU device, it is more energy-efficient than
baselines.



Answer to RQ2: MAU outperformed state-of-the-art
tools in terms of performance, power consumption,
and economy.

5.4. Ablation Study

To gain a better understanding of the contribution of
GPM and SBF, we compare MAU with MAU-G and MAU-
S on the large benchmark.
Results. As shown in Figure 6, MAU finds 3.83% and 1.74%
more instructions than MAU-G and MAU-S, respectively.
Compared to MAU, MAU-G requires more time for seed
mutation because of the slow seed transfer between CPU
and GPU. As for MAU-S, it tends to test duplicate seeds
for more mutations, because without SBF the fuzzer is
less effective in identifying transaction dependencies and
thus misses valuable seeds. In terms of bug detection (see
Table 5), MAU found more bugs than MAU-G and MAU-S.

Answer to RQ3: Both GPM and SBF contribute to
MAU in improving performance.

5.5. Identified New Bugs

To demonstrate the capability of MAU in uncovering
new vulnerabilities, we use MAU to test all 183,111 real-
world smart contracts. The timeout is set to ten minutes
to ensure that we can complete this experiment within
a reasonable time. To identify new bugs, we exclusively
enable the fund-leaking oracle while disabling all other
bug detection oracles, because the fund-leaking oracle can
automatically detect bugs that can result in financial loss.
Specifically, MAU executes the seeds identified as interesting
by the GPU on the CPU to check against the fund-leaking
oracle. This oracle flags bugs when the attacker’s balance
increases post-seed execution. Any seed triggering the oracle
represents a transaction sequence that can potentially siphon
cryptocurrency from a victim in EVM.
Results. MAU successfully detected vulnerabilities in 548
projects, identifying potential exploits in cryptocurrency as-
sets worth over $172K3. MAU uniquely identified 119 bugs
that were not detected by any of the baseline tools. Ityfuzz
identified 423 bugs, requiring a 12.7% longer fuzzing dura-
tion to do so. Ityfuzz missed 122 bugs even after a 24-hour
timeout. Smartian failed to find 413 bugs identified by MAU.
Mythril and sFuzz did not detect any bugs that can cause
Ether leaks.

Out of 548 bugs, 93 victims contain a public method
that can initiate themselves. Attackers can front-run the vic-
tim’s creator to obtain sensitive permission for a successful
exploit. We performed a detailed manual investigation on a
random subset of 50 contracts selected from the remaining
455 reported alarms. There are 21 Ponzi games and 20
lottery projects in which attackers can gain more cryp-
tocurrency than what they invested. In addition, MAU can

3. cryptocurrency price is from Etherscan ($2374/Ether)

trigger arbitrary external calls and arbitrary ERC20 token
burning in nine smart contracts. To estimate the potential
damage, we compile comprehensive statistics on affected
entities, including project names, creator addresses, and each
victim’s total assets. Estimating the risk to the assets requires
manual analysis, which is part of our future work. The
detailed statistics can be found in artifact.

Due to the anonymity of Ethereum, tracing smart con-
tract creators is often infeasible, which complicates bug
reporting to the respective developers. Therefore, we have
submitted these issues to the CVE database for further con-
firmation. Two CVE identifiers have been assigned, such as
CVE-2024-28260 and CVE-2024-28261. Next, we present
case studies to illustrate the bugs.
Arbitrary Transfer. In the smart contract with address
0xCE5093Dd7cf90699Bba881af8f2c8aD0A7066dC5, the
attacker can execute the public function multiTransfer()

to transfer an arbitrary amount of Ether from the victim
to anyone. To confirm the bug, we launch the attack in
a forked chain and successfully obtain the victim’s entire
balance.
Ownership Backdoor. In the smart contract with
address 0x24a7de87b3bd7298bbf8966fdf170c558d69ecc4,
MAU discovered a backdoor that allows an attacker to
change the victim’s ownership to an arbitrary address. Fig-
ure 8 shows the simplified source code of the victim, META-
DOLLAR. Owned library is utilized for ownership man-
agement, and METADOLLAR inherits from Owned. Con-
sequently, METADOLLAR’s constructor is automatically
executed with Owned to initialize the owner as its creator.
However, owned() is not the constructor of Owned because
the Solidity v0.4.18 compiler requires the constructor func-
tion to have exactly the same name as the contract name. In
L5, the function owned() has a case mismatch with Owned,
thus owned() becomes a public function that anyone can
invoke. Once the ownership is obtained, the attacker can
withdraw all the victim’s funds by executing collect().
ERC721 Reentrancy. The smart contract in
0x4aeaf7ddb924bfb19d7ff205de7893c5dd429288 is an
NFT market for users to mint and transfer tokens in the
ERC721 standard. The function createVestForDeposit()
mints an NFT ( safeMint) and sends a reward to the caller
based on the current NFT supply; However, the supply
amount is updated after the safeMint(), which incurs an
external call under the sender’s control. The attacker can
reenter to mint another NFT, but the reward between the
two remains the same, thus the attacker can receive more
reward than expected to make a profit.

Answer to RQ4: MAU found 548 new bugs alive in
real-world smart contracts, holding assets valued at
over $172K.

5.6. Threats to Validity

Our work faces several limitations. First, potential in-
accuracies in code translation may cause ineffectiveness: a)

https://etherscan.io/
https://figshare.com/s/2fd3f1616a17e78ffee7


storage size. MAU utilizes a hash table to model EVM stor-
age. If the smart contract’s storage exceeds the default size
(i.e., 32 slots), storage data on the GPU may be overwritten
unexpectedly. To solve it, we can choose a larger parameter.
b) cross-contract calls. MAU uses function calls to model
cross-contract interactions. Like CPU-based fuzzers, MAU
faces limitations with unknown callee addresses and resorts
to dummy calls in such cases. A potential solution is to
convert cross-contract calls into cross-function calls by (1)
identifying the cross-contract call and its callee address; (2)
obtaining the bytecode of the callee’s address and translating
it into an individual PTX library; (3) converting the smart
contract calls to library calls. c) contract creation. EVM
smart contracts can generate new contracts with designated
bytecode. As GPUs cannot execute bytecode, MAU converts
contract creation into a dummy instruction by only making
the stack balance, thereby disabling the actual creation of
new smart contracts within the GPU context. To fix it, we
can statically identify and translate the smart contracts to
PTX format, then call their constructors during GPU exe-
cution. Nonetheless, MAU retains its efficacy in fuzzing by
providing full EVM support on the CPU side and leveraging
the GPU’s high throughput to identify bugs faster compared
to baselines.

Second, manual verification in the evaluation may intro-
duce bias. As we aforementioned before, we confirm true
alarms by matching the tool’s report with the source code. In
addition, we curated a ground truth benchmark from existing
work, in which all bugs are marked with program points. In
the future, we will extend the benchmark to evaluate MAU
using a larger benchmark with a wider variety of bugs.

Third, one oracle was used in RQ4. We only enable
fund-leaking oracle because it can automatically detect bugs
that can result in financial loss. Expanding oracle support
is achievable through additional engineering. Since MAU
is based on LibAFL [17], we offer LibAFL-compatible
interfaces for developers to easily add new oracles.

While increasing CPU resources can enhance fuzzing
efficiency [67] as well, hardware constraints cap the poten-
tial gains. The basic unit of parallelization is the computing
core. A single GPU, typically with thousands of cores,
provides more parallelism than several CPUs, which usually
have only 8 cores each. MAU is more cost-effective and
energy-efficient than baseline methods in terms of both
financial expense and power usage (See RQ2). Effective
parallel fuzzing is difficult due to the need for periodic syn-
chronization between fuzzing instances. CPU fuzzers often
pause to synchronize and negotiate a global seed pool. MAU
overcomes this by simultaneously collecting bitmaps from
all instances and identifying interesting seeds in parallel.
Moreover, MAU can incorporate fuzzing strategies available
in existing smart contract fuzzers, achieving a better result.
MAU is built on top of LibAFL [17], and we enabled various
mutation strategies (e.g., bitflip and havoc), seed scheduling,
and guiding metrics (i.e., code coverage and dataflow). To
integrate MAU with other fuzzing techniques for a better
result, users only need to implement a fuzzing stage in Rust
using the LibAFL APIs and add the created stage into the

main fuzzing loop.
Although GPU can boost parallel execution, there exist

some downsides of GPU fuzzing. 1) The GPU’s inability to
natively execute system calls complicates the conversion of
general programs to GPU applications. MAU circumvents
this by emulating a blockchain environment on the GPU
for EVM instruction support, though this can result in some
redundant seeds due to execution inaccuracies on the GPU.
2) The data transfer overhead between CPU and GPU can
decrease throughput. MAU minimizes this by embedding
mutation and feedback mechanisms directly into the GPU.

In the future, we will explore the feasibility of fuzzing
general applications on GPUs. There is still a gap in running
general programs on GPUs since GPU applications cannot
invoke system calls provided in the CPU host. Nevertheless,
MAU took the first step toward GPU-accelerated fuzzing.

6. Related Work

6.1. SIMD on GPU

SIMD (Single Instruction, Multiple Data) vector orga-
nizations in that a single instruction controls a group of
processing units named warp. In CUDA, a warp contains
32 threads, which always run together. In every GPU cycle,
the same instruction is executed in the 32 threads in the same
warp. The GPU maintains an execution state per thread, such
as a program counter, operand stack, and local memory,
and can yield execution at a per-thread granularity, either
to make better use of execution resources or to allow one
thread to wait for data to be produced by another.

6.2. Smart Contract Fuzzing

Fuzzers execute the target program with the inputs
created in a mutational manner, such as blackbox, white-
box, and greybox. As the first-generation fuzzer in detect-
ing vulnerabilities in Ethereum smart contracts, Contract-
Fuzzer [32] used a blackbox mutation to create random
test inputs. Although it found several bugs, it failed to
explore complex branches and cover more code because
blackbox fuzzers easily evaluate a lot of redundant seeds.
To search the solution of the complex branch, whitebox
fuzzers [27] use symbolic/concolic executor to generate
new input seeds systematically. They build a sequence of
symbolic bytes as the seed and execute the smart contract
to construct the symbolic constraints from the path branches.
An SMT solver solves the path constraints and then maps the
SMT solution to the seed bytes. However, SMT solving is
time-consuming and causes low throughput. Greybox (a.k.a.
feedback-guided) fuzzers are another option. [47], [66], [25],
[54], [52], [11] defined a fitness function to evaluate seeds
and mutate the ones with higher value.

6.3. Binary Translation

Binary translation is one common technique to migrate
applications from one ISA (Instruction Set Architecture)



to a new one without affecting its functionality. Dynamic
translators such as QEMU [3] and Rosetta2 [2] transform
source binaries into different target native code, enabling
users to run emulators in many different ISA. Dynamic
binary translators can easily handle both the code discovery
and the code location problems [55], while it introduces
some runtime overhead. On the contrary, researchers have
designed some static translators for higher throughput. There
are also some open-source translators [44], [5], [14], [1]
based on LLVM IR.

7. Conclusion

We designed and developed MAU, a highly parallel
fuzzer that tests a smart contract on the GPU by convert-
ing the EVM bytecode to PTX assembly. We conducted
extensive experiments to evaluate MAU, and the experi-
mental results show that the throughput of MAU can reach
162.6K seeds/sec and 328.06K seeds/sec on the large and
small benchmark, respectively, which exceeds the state-of-
the-art tool with an 8.69X and 15.38X improvement. The
exponential improvement enables MAU to detect 1.01-2.50x
more bugs and explore 1.03-4.71X more code coverage than
baselines.
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1 pragma solidity ˆ0.4.18;
2 contract Owned{
3 address public owner;
4 // fake constructor
5 function owned(){
6 owner = msg.sender;
7 }
8 modifier isOwner {
9 assert(msg.sender == owner);

10 _;
11 }
12 function transferOwnership(address newOwner)

;
13 }
14 contract METADOLLAR is Owned {
15 function STARTMETADOLLAR() {
16 tokenBalanceOf[this] += _totalSupply;
17 }
18 /// @notice owner withdraw all
19 function collect() isOwner {
20 withdraw(this.balance);
21 }
22 }

Figure 8: The source code at
0x24a7de87b3bd7298bbf8966fdf170c558d69ecc4.

Appendix A.
Overhead due to the Big Jump Table

We found that the jumps resolving (see § 4.1.3) only
brings an approximately 8% overhead in terms of execution
time.

The largest jump table that MAU creates has 2,093 desti-
nations (0x447b8d7ef5aef428d49cd1fd8968c4a63b04c070).
By default, LLC (IR-to-PTX) converts the table jump to nest
jumps. To investigate the overhead, we curated two PTX
applications:

A does a conditional jump once, representing MAU fully
recovers the jump destinations.

B does a table jump once which contains 2,093 potential
destinations. It jumps randomly.

A needs 12.29 us while B needs 13.31 us, which introduces
about 8% overhead.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper develops a GPU-based smart contract fuzzer.
By converting the smart contract to programs executable on
GPU and exploiting GPU’s advantages in parallel process-
ing, it achieves significant improvements in fuzzing through-
put and shows a better bug-finding capability, compared to
the state-of-the-art.

B.2. Scientific Contributions

• Creates a new tool to enable future science.
• Provides a valuable step forward in an established field.

B.3. Reasons for Acceptance

1) This paper creates a new tool to enable future science.
MAU is a novel smart contract fuzzer that utilizes GPU
to test smart contracts in parallel, yielding a higher
throughput and better performance.

2) The paper provides a valuable step forward in an
established field. Smart contract security is critical and
attracts many research efforts, including fuzzing-based
vulnerability detection. Compared to existing smart
contract fuzzers, the paper explores utilizing GPU’s
powerful parallel processing capability to accelerate
smart contract fuzzing and achieve promising results,
which is a valuable advancement.
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