Preprint — To appear at SOAP 2013

DUA-FORENSICS: A Fine-Grained Dependence Analysis
and Instrumentation Framework Based on Soot

Raul Santelices, Yiji Zhang, Haipeng Cai, and Siyuan Jiang

University of Notre Dame

e-mail: {rsanteli|yzhang20|hcail|sjiangl}@nd.edu

Abstract

We describe DUA-FORENSICS, our open-source Java-bytecode
program analysis and instrumentation system built on top of Soot.
DUA-FORENSICS has been in development for more than six
years and has supported multiple research projects on efficient
monitoring, test-suite augmentation, fault localization, symbolic
execution, and change-impact analysis. Three core features of Soot
have proven essential: the Java bytecode processor, the Jimple
intermediate representation, and the API to access and manipulate
Jimple programs. On top of these foundations, DUA-FORENSICS
offers a number of features of potential interest to the Java-analysis
community, including (1) a layer that facilitates the instrumentation
of Jimple code, (2) a library modeling system for efficient points-to,
data-flow, and symbolic analysis, and (3) a fine-grained dependence
analysis component. These features have made our own research
more productive, reliable, and effective.

Keywords Program Dependence, Instrumentation, Library Model,
Soot Analysis Framework

1. Introduction

Numerous tools have been developed over the years for the analy-
sis and instrumentation of Java programs. Many such tools target
Java bytecode, which for us is a convenient representation for three
reasons: (1) it breaks down programs into manageable small in-
structions, (2) those instructions retain high-level object-oriented
features, and (3) the source code of the program is not needed.

Only a few tools, however, offer the general infrastructure that
helps developers build program analyses efficiently and reliably.
Two main challenges have constrained these enabling tools. First,
the bytecode instruction set evolves over time as new versions of
Java are released. Second, the operand stack that the bytecode uses
makes long sequences of instructions very hard to understand and
correctly instrument. These challenges and, in many cases, the lack
of resources for maintenance, have affected the usability of such
tools. Examples are BCEL [9], JABA [6], and Insect] [31].

The Soot Analysis Framework [17, 32], in contrast, is a well-
maintained and actively supported system that provides essential
features for a variety of analysis tasks. Key features of Soot that
support the development of other analysis tools, in our experience,
are its Java-bytecode processor, the Jimple intermediate represen-

[Copyright notice will appear here once ’preprint’ option is removed.]

tation, data structures for accessing and manipulating Jimple pro-
grams, and core analyses for this representation.

In this paper, we describe DUA-FORENSICS, our Java-bytecode
program analysis and monitoring system built on top of these main
features of Soot.! DUA-FORENSICS has been in development for
more than six years and has supported our research on program-
analysis based tasks such as efficient monitoring [22], test-suite
augmentation [27], fault localization [28], symbolic execution [23],
and quantitative slicing for change-impact analysis [24, 30, 34].

DUA-FORENSICS offers various features of interest to Java
users and especially the Soot community. Its main features are:

1. A higher-level layer for easier instrumentation of Jimple code

2. A library-method modeling (summarizing) system for manual
specification of points-to, data-flow, and symbolic effects

3. A fine-grained dependence-analysis component for detailed
change-propagation analysis and program slicing

Together, these features have assured the productivity, reliabil-
ity, and effectiveness of our Java-bytecode technique implementa-
tions for research. Features 1 and 2 can be particularly useful to all
developers, whereas feature 3 provides advanced functionality for
those who wish to investigate program dependencies in detail.

In Section 2, we introduce an example and definitions used
throughout the paper. In Sections 3—6, we describe the architecture
and the three main features of DUA-FORENSICS. In Section 7, we
present our application of these features for a novel change-testing
approach. Finally, in Section 8, we conclude and discuss common
future challenges for DUA-FORENSICS and Soot.

2. Basic Definitions and Example

Figure 1(a) presents program E, which inputs integers x and y. In
statements 2 and 4, E increments or decrements y depending on
the value of x at statement 1. Then, E outputs 1 or O in statements 6
and 8, respectively, depending on the value of y at statement 5.
Figure 1(a) also shows a change chl in statement 1 of program
E, described by a comment in that line. When applied to E, chl
replaces the relational operator <= with > in that statement.

Figure 1(b) shows the control-flow graph (CFG) [2] of method
E, where each node represents a statement or the entry or exit of the
method and the edges indicate which nodes succeed which other
nodes. For example, statement 1 succeeds the entry of the method
and can be succeeded by statement 2 or 4 at runtime. Labeled edges
represent branches or control decisions (e.g., T for true).

Figure 1(c) shows the Program Dependence Graph (PDG) [12,
13] for the example program E. The graph has a special node
START. Edges T from this node represent the decision to execute
the program. A solid edge in the PDG denotes the control depen-
dence [12] of the target node on the decision taken at the source

! Available at: http://nd.edu/~rsanteli/duaf

2013/5/25

http://nd.edu/~rsanteli/duaf

public void E(int x, int y) {
if (x <= 2) // chl:if (x> 2)
y++
else
y——
if (y > 2)
System.out.print (1)
else
System.out.print (0)

~ 0 J o U W N

(@) (b)

—— control dependence

-------> data dependence

©)

Figure 1. Simple example method E with a change ch1 (a), its control-flow graph (CFG) (b), and its program dependence graph (PDG) (c).

node. For example, in program E, statement 2 is control dependent
on statement 1 evaluating to frue. A dashed edge denotes a data
dependence [2] of the target node on the source node. For example,
statement 5 is data dependent on statement 2 for variable y because
2 defines y and that definition reaches the use of y in statement 5.

3. Architecture of DUA-FORENSICS

DUA-FORENSICS normally works in three phases. Figure 2 illus-
trates this process. The phases are, in order:

1. The static-analysis phase, which inputs the subject program and
analyzes this program to identify information such as control
and data dependencies. Typically, this phase also instruments
the subject to track this information at runtime.

2. The runtime phase takes this information and the instrumented
subject and, as the user runs the instrumented subject, collects
dynamic information that the instrumentation produces.

3. A post-processing phase, which is needed for non-trivial anal-
yses to obtain the desired results. This phase removes much of
the overhead burden from the runtime phase and makes it easier
to put together the results of multiple executions later.

Figure 3 shows the infernal architecture of the static phase,
which is the most important, and which relies heavily on Soot.
This diagram shows the instrumentation modules on the top left.
An abstraction called probe on the middle left adds a layer on top
of Soot to facilitate instrumentation for any purpose and for any
user. In DUA-FORENSICS, we exploit this abstraction to enhance
Soot’s API and implement three core instrumenters: branches, data
dependencies, and dependence chains (see Sections 4 and 6).

The instrumenters determine what to instrument by asking the
fine-grained dependence analysis module, which is shown on the
top right in Figure 3. This module takes advantage of the library-
call modeling feature (middle right of the figure) to skip the analy-
sis of libraries by Soot and DUA-FORENSICS and, thus, speed up
the overall dependence analysis (at the potential expense of some
accuracy). We discuss these modules in the next three sections.

4. Instrumentation Layer
4.1 Probe Abstraction

DUA-FORENSICS expands Soot’s Jimple instrumentation capabil-
ities with a higher-level feature called probe and new instrumen-
tation algorithms. A probe encapsulates all instructions that users
want to insert in a UnitGraph’s (CFG) entry, edge, or node (be-
fore the node’s Stmt executes). The layer ensures that all of the

inserted code in the probe executes at that point without break-
ing the control-flow graph of the program. The layer redirects all
UnitGraph edges that target a node to the beginning of the probe
for that node, so that the probe executes before the node.

Using probes, users can apply multiple types of instrumentation
while preserving, after each instrumentation pass, the distinction
between the original and the inserted code to allow subsequent
passes. Users can choose to insert new code at the top or bottom of
a probe to control the order in which events are reported at runtime.
We have used these abilities to mix branch, data dependence, and
dependence-chain instrumentation without conflicts [25, 26].

4.2 Branch Instrumenter

For branch (edge) coverage, the instrumenter in DUA-FORENSICS
offers two options to the user: instrument all branches directly
or the (theoretically) optimal branch-instrumentation algorithm of
Ball and Larus [7]. In practice, we found the runtime overhead of
both approaches to be the same in our benchmarks [22]. We have
not yet investigated the reasons for this phenomenon.

For efficiency at runtime, we used an array of bytes to represent
branch coverage. When a branch executes, the initial value of O for
that branch changes to 1. At the end of the subject’s execution, the
instrumentation reports the values in this array. To avoid missing
this report when the program ends early due to unhandled excep-
tions, our instrumentation wraps the entry method in a try-catch
block that redirects execution to this reporting code.

4.3 Data-Dependence Instrumenter

For data-dependence coverage, DUA-FORENSICS uses the last-
definitions approach [19, 22]. This approach maintains a table at
runtime that maps to each variable that has not been garbage-
collected the location of its last definition. When a use is reached,
the runtime monitor looks up the last definition for that variable—a
Local, a SootField, or a library-object abstraction (see Sec-
tion 5)—and reports the coverage of the corresponding data depen-
dence. We use WeakReferences to refer to those variables at
runtime to avoid interference with the garbage collector.

4.4 Discussion

All these instrumentation enhancements to Soot—probes, branch
instrumentation, and data-dependence instrumentation—should be
of interest to Java researchers and developers. These are also the
building blocks we used to develop more complex instrumentation
types, such as dependence chains, which we defer to Section 6.

2013/5/25

DUA-FORENSICS

DUA-FORENSICS

DUA-FORENSICS Analysis

Program Static

Runtime

Post-process Results

Instrumented
Program

Static Depen-
dence Data

Dynamic De-
pendence Data

Figure 2. Architecture of DUA-FORENSICS showing its three phases: static analysis and instrumentation, runtime, and post-processing.

DUA-FoRENsics — Static Phase

Data-flow
Instrumenter

Branch
Instrumenter

Dep. Chain
Instrumenter

Probes Abstraction

S

Soot Analysis Framework

Bytecode Parsing & Writing; Jimple Program Representation and Manipulation

~

Fine-grained
Dependence Analyzer

Library Abstraction

Figure 3. Internal architecture of the static phase of DUA-FORENSICS, highlighting its main components and Soot.

5. Library-Call Modeling

In our research, we focus on the behavior of the subject pro-
gram rather than the libraries it may (transitively) call. To avoid
the long processing times often required for whole-program anal-
ysis in Soot, while still capturing the effects of library calls, we
added to DUA-FORENSICS method-call abstractions (summaries)
for points-to-analysis, data-flow analysis, and symbolic execution.
These abstractions let users model instances of library classes as
special kinds of variables and encode the effects of method calls on
those objects and on regular Soot variables.

5.1 Points-to Analysis

For points-to analysis, instead of modifying the existing algorithms
in Soot, we decided to re-implement Andersen’s context- and flow-
insensitive algorithm [3] in a way that merges seamlessly with our
new library-call points-to effects abstraction. For this abstraction,
we defined the base class Abst ractP2Model:

public abstract class AbstractP2Model {
protected static List<Pair<Value,Value>> empty;
public List<Pair<Value,Value>>
getSeeds (InvokeExpr invExp) {return empty;}
public List<Pair<Value,Value>>
getTransfers (InvokeExpr invExp) {return empty;}

}

For an InvokeExpr that calls (or may call) a library method,
this class defines, as default behavior, that no seeds (object cre-
ations) and no transfers (assignments of points-to sets) occur. For
subclasses of AbstractP2Model, each pair of Soot Values re-
turned indicates that the points-to set of the first Value must be up-
dated with the points-to set of the second Value. For getSeeds,
the points-to set of the second variable is a new abstract memory

location. If the first value is null, the points-to set of the second
value is added to the points-to set of the left-hand-side variable
in the containing Stmt (if it is an assignment). Our subclasses of
AbstractP2Model cover the behavior of most library calls we
have found. Users can also add their own subclasses.

An important feature of this system is the ability to define ab-
stract fields, such as the field of a container (e.g., a List) that rep-
resents all elements in it. For other containers, such as Map, we use
two abstract fields—one to represent keys and another to represent
values. Although we do not analyze the contents of libraries—and
these fields most likely do not exist in their implementations exactly
as we model them—these constructs let us propagate points-to sets
among real variables in the program through library-object models
that the program uses as intermediaries.

Our points-to analysis is completed by a table that maps fully-
qualified method signatures to the model classes that match their
behavior. We have filled this table manually with the most common
library calls we have found. A current list of supported library calls
can be found in class dua.global.p2.P2ModelManager.'
In the near future, we plan to add automatic support to fill this table
to avoid the costs and risks of manual modeling.

5.2 Dependencies and Symbolic Execution

For dependence analysis and symbolic execution, we model the ef-
fects of library calls in a similar way. For data-dependence analy-
sis, overridable methods for library-call models are offered which,
given a Soot InvokeExpr, return the variables—Values or ab-
stract library objects—definitely or possibly defined and used dur-
ing the call. For symbolic execution, the model returns (possibly
conditional) symbolic expressions for updated variables based on
the InvokeExpr and the path condition for reaching that call.

2013/5/25

5.3 Discussion

The trade-offs between precision and speed of using library mod-
els still need to be formally studied. However, we have seen
strong indications that these trade-offs, at least for our fine-
grained dependence-based research tasks, are quite useful—our
research techniques have proven scalable. For instance, for XML-
security [4], one of our typical subjects which has about 20 KLOC,
our points-to analysis takes just a few seconds, whereas Soot’s
default analysis takes several minutes on a modern machine.

6. Fine-Grained Dependence Analyzer

Soot and our instrumentation and library-modeling features are
the foundations for our fine-grained dependence analyzer. DUA-
FORENSICS started as a DUA (Definition-Use Association) moni-
toring and inferencing tool that speeds up data-flow coverage and
approximates it from branch coverage for testing [22]. This infer-
encing ability is the reason for our tool’s name. We also added to
this component a fault-localization module that simultaneously ex-
ploits coverage information for statements, branches, and data de-
pendencies (precise or inferred) [28]. Later, we extended DUA-
FORENSICS to analyze and monitor the chains (sequences) of data
and control dependencies that propagate the effects of changes in
software [25, 27, 29] and to quantify those effects [24, 30, 34].

In 2006, Soot did not yet provide control-dependence analysis.
Therefore, one of our first tasks in DUA-FORENSICS was to im-
plement an intra- and inter-procedural control-dependence analysis
for Soot. For dependencies created by virtual calls, we used class-
hierarchy analysis [10]. In addition, we extended the existing intra-
procedural analyses to identify inter-procedural data dependencies.
Then, using these dependencies, we implemented reachability anal-
yses in our inter-procedural dependence graph. As our goals have
been to statically analyze short sequences of dependencies [23, 27]
and to dynamically analyze longer sequences [25, 26, 29], we have
not yet made our static reachability algorithms context-sensitive.
For such sequences, there is little or no loss of precision.

Given the ability to perform transitive closures on the static and
dynamic dependence graphs, the users of DUA-FORENSICS can
perform (context-insensitive) static slicing and dynamic slicing. Of
all granularities of dynamic slicing [1], DUA-FORENSICS uses the
finest-grained version which distinguishes among occurrences of
dependencies. Also, our tool identifies which occurrences connect
with which other occurrences. For our research, this is crucial as we
can obtain not only dynamic slices, but also dynamic dependence
paths—chains (sequences) of dependencies which correspond to
the paths that can propagate the effects of errors and changes.

For a simple example, consider the PDG of the example pro-
gram E in Figure 1. A fine-grained forward analysis of the poten-
tial effects of change ch1l in statement 1 shows that there are four
dependence chains along which the change can propagate to the
output statements 6 and 8:

~

NN DN DN
~

o o Oor 1
~

o 0 o1 1
~

0 oY 0 O

~

This is, however, a trivial example. In general, the number of chains
can grow exponentially with the size of the program. For programs
with loops or recursion, that number can be infinite. Hence, we
allow length and iteration limits when analyzing these chains.

To determine the coverage of chains, the chain instrumentation
is activated every time the change point (e.g., statement 1 in E) is
reached. At that point, the occurrence of this node is marked as
an open source-node occurrence from which one or more depen-

dencies might be covered. When covered, each such dependence is
recorded and the occurrence of its target node is marked as open.
Because tracking all links among dependence occurrences at run-
time is taxing, we only record coverage and opening events. Later,
at post-processing (Figure 2), we determine the covered chains.

Finally, DUA-FORENSICS allows to collect the values com-
puted at each dependence node. This is achieved by identifying,
for each node, the variables (real or abstract) defined by a node
and logging their values along with each dependence event. This
information is necessary to determine whether there is a semantic
dependence [21, 29] of a node on a change at runtime. A node in a
chain depends semantically on a change if its execution history or
values change. If that dependence is observed, then the change has
propagated along that chain to that node.

7. Application: Change Testing

Testing a program change involves obtaining a picture as complete
as possible of how the change affects the behavior of the program.
This is akin to shining a light on an object (the change) and looking
at the projected shadows. To that end, with the help of Soot, DUA-
FORENSICS implements MATRIX, a set of static and dynamic
analyses for identifying (abstractions of) the effects of a change
and for exercising those effects [5, 25-27].

test cases that
simply cover
the change

test cases satisfying
chain conditions for
increasing distances

universe of
all possible
test cases

difference '\ *°
revealing

Figure 4. Intuitive view of how MATRIX increasingly approxi-
mates the ideal solution with each distance.

7.1 The MATRIX Technique

Figure 4 gives an intuitive view of how MATRIX works. MATRIX
computes testing requirements (conditions) for the subset of tests
that change some state or path in the program after it is modified.
The goal is to make this change observable at the output. This
subset is first approximated by the tests that cover the change and
then is increasingly better approximated by the tests that cover
propagating dependence chains of increasing distances from the
change. The greater the distance is, the closer the tests get to the
output-difference revealing subset (but the greater the cost is).

Our latest approach to MATRIX is dynamic and demand
driven [25, 26]. Instead of computing all test requirements before-
hand, DUA-FORENSICS identifies the unsatisfied requirements at
the frontier of the requirements already satisfied. Given a test suite
TS, a frontier test requirement is a dependence chain that is cov-
ered by TS up to, but excluding, its last dependence. A frontier
test requirement for 7S includes the propagation conditions along
the corresponding chain. Consequently, the set of unsatisfied test
requirements for test suite 7S is the union of the frontier test re-
quirements for 7S and every other test requirement whose chain
extends the chain of a frontier test requirement.

2013/5/25

Figure 5. Chain trees for satisfied and frontier test requirements (shaded solid and unshaded dashed circles, respectively) for program E of
Figure 1. In steps (a), (b), and (c), the new test cases ¢1, t2, and ¢3 incrementally expand the chain tree for that program and its test suite.

To illustrate, we use chain trees to denote satisfied and frontier
test requirements for changes. The root node of a change tree
represents the change and each other node pairs a dependence and
its propagation condition. Each such pair is either part of a satisfied
test requirement or the end of a frontier test requirement. A node at
the end of a frontier test requirement is called frontier node and
is a leaf in the chain tree. The root node is annotated with an
identifier for the change and every other node is annotated with
the corresponding dependence. Each edge (u,v) in a chain tree
indicates that the dependence and propagation condition for node
v (or the change, if u is the root) are followed by the dependence
and propagation condition for node v in some test requirement.
Therefore, the target statement of the dependence for tree node w is
the source statement of the dependence for tree node v.

Consider program E and change ch1 from Figure 1. Before any
test cases execute, the chain tree for chl in E consists of only one
node—the frontier node for change ch1l in statement 1. Figure 5
shows this chain tree growing as three different test cases are added,
one after another. The first tree results from adding test case t1,
which traverses chain ((1,2), (2,5), (5,8)) in E. The nodes belonging
to this satisfied test requirement are shown as shaded solid circles.
The frontier nodes, for dependencies (1,4) and (5,6), are shown as
unshaded dashed circles. These dependencies, which succeed the
change chl and dependence (2,5), respectively, are identified by
DUA-FORENSICS as the next targets—any chain covered next will
have chain ((1,4)) or {(1,2), (2,5), (5,6)) as a prefix.

In the middle and on the right, Figure 5 shows the results
of adding two more test cases. Test case t2 expands the chain
tree via frontier node (1,4) by covering chain ((1,4), (4,5), (5,6)).
Because this chain includes dependence (1,4), (1,4) is no longer
a frontier node. Instead, node (5,8) becomes a frontier node that
succeeds (4,5) in the tree because, after covering dependence (4,5),
to continues to its other successor—dependence (5,6). Then, test
case t3 covers dependence (5,6) after ((1,2), (2,5)). Thus, (5,6) on
the bottom left is no longer a frontier node after adding t3.

7.2 Empirical Evaluation

We evaluated this demand-driven approach for change testing using
DUA-FORENSICS. Our goal was to determine whether, and by how
much, MATRIX increases the chances of success when testing
a change with respect to RAND (just covering the change), BR
(covering affected branches), and DU (covering affected du-pairs).

7.2.1 Subjects and Methodology

Our subjects are listed in the first column of Table 1. We chose Java
programs for which a large number of test cases are available so

we could simulate the creation of tests under various techniques.
The first five subjects are from the Siemens suite [14], which
we translated from C to Java. We also obtained three releases of
NanoXML from the SIR repository [11]. For each subject, we
obtained between six and nine changes, for a total of 62 changes.

Table 1. Average ratios at which the studied change-testing tech-
niques revealed output differences per added test.

subject RAND Br | DU CHAINg | PrOPy
Tot_info 0.31 | 0.23 | 0.27 0.35 0.51
Schedulel 0.06 | 0.09 | 0.08 0.10 0.30
Schedule2 0.23 | 0.19 | 0.15 0.17 0.33
Print_tokens1 0.19 | 0.30 | 0.29 0.48 0.57
Print_tokens2 038 | 049 | 0.47 0.53 0.57
NanoXML v1 045 | 0.37 | 0.42 0.45 0.54
NanoXML v2 0.53 | 0.56 | 0.53 0.55 0.55
NanoXML v3 0.53 | 0.37 | 0.55 0.59 0.69

For each change in each subject and for each technique, we
performed multiple test-suite augmentations by adding tests from
the pool, including two versions. For MATRIX, we included all
distances d from 1 to 10 and studied two variants: CHAINg (just
chain coverage, without propagation conditions) and PROP, (the
full technique). After performing all augmentations, for each tech-
nique, we divided the number of tests that succeeded at causing
output differences by the total number of tests added. Each result is
a number in [0,1] indicating the ratio of success.

The runtime overhead of using MATRIX was about 600% on
average, which is not much higher than the typical 100%-200%
overhead incurred by data-dependence monitoring.

7.2.2 Results and Analysis

Table 1 shows the ratios at which each technique found output dif-
ferences per added test for each subject. For CHAIN, and PROP,,
we report the average ratios for distances 1 to 10. The best result
per subject is highlighted in bold.

For seven out of eight subjects, PROP; was the best technique.
For the other subject, PROP; was almost as good as the best. A
Wilcoxon signed-rank test [33] suggests that the superiority of MA-
TRIX (especially PROPg) over the other approaches is significant
with 99.9% confidence. Also, CHAINg seems an acceptable alter-
native to PROP, that avoids the cost of collecting runtime values.

In all, the variety of features that DUA-FORENSICS offers, in-
cluding fine-grained dependence and propagation analysis, allowed
us to validate this novel and detailed technique for testing changes.

2013/5/25

8. Conclusion and Future Directions

We presented DUA-FORENSICS, a system that exploits core fea-
tures of Soot to offer detailed instrumentation, modeling, and anal-
ysis of dependencies in Java programs. This tool has supported our
research by assuring the reliability of our technique implementa-
tions. DUA-FORENSICS is open source and available online.’

The technical challenges of integrating DUA-FORENSICS into
Soot depend on each feature. The instrumentation and dependence-
analysis layers are built on top of Soot, which facilitates this task.
The library-call models can also be fully integrated as soon as the
existing analyses in Soot support these new kinds of variables.

In the future, more work is needed to better exploit all features
of Soot in DUA-FORENSICS, such as object-sensitive points-to
analysis [18] and the new inter-procedural framework [8]. We ex-
pect to remove the redundancies that exist with the latest versions
of Soot and offer our system as a proper extension of Soot.

We expect that DUA-FORENSICS will continue to improve in
performance and features to cater to the analysis community and
to support our ongoing efforts to quantify the effects of changes.
DUA-FORENSICS could become the reference implementation for
dependence- and change-analysis applications. We also intend to
study and connect with WALA [15], Chord [20], and Indus [16],
which share common goals with Soot and DUA-FORENSICS.

Acknowledgments

We thank Mary Jean Harrold for her support over many years,
which allowed us to create DUA-FORENSICS. We also thank the
Soot team for creating and supporting the Soot framework.

References

[1] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In Proc. of
ACM Conference on Programming Language Design and Implemen-
tation, pages 246-256, June 1990.

[2] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques and Tools (2nd Ed.). Sept. 2006.

[3] L. O. Andersen. Program analysis and specialization for the C pro-
gramming language. Ph.D. Thesis, DIKU, U. of Copenhagen, May
1994.

[4] Apache Santuario project. Apache XML Security for Java. Apache
Software Foundation. http://santuario.apache.org/.

[5] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and M. J.
Harrold. Matrix: Maintenance-oriented testing requirement identifier
and examiner. In Proc. of TAIC-PART, pages 137-146, Aug. 2006.

[6] Aristotle Research Group. JABA: Java Architecture for Bytecode
Analysis. Georgia Institute of Technology. http://pleuma.cc.
gatech.edu/aristotle/Tools/jaba.html.

[7]1 T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Trans. Program. Lang. Syst., 16(4):1319-1360, 1994.

[8] E. Bodden. Inter-procedural data-flow analysis with ifds/ide and soot.
In Proc. of ACM SIGPLAN Int’l Workshop on State of the Art in Java
Program analysis, SOAP *12, pages 3-8, June 2012.

[9] M. Dahm. Byte Code Engineering. In In Java-Informations-Tage,
pages 267-277, Sept. 1999.

[10] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proc. of ECOOP,
pages 77-101, Aug. 1995.

[11] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact. Emp. S. Eng., 10(4):405-435, 2005.

[12] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence
graph and its use in optimization. TOPLAS, 9(3):319-349, July 1987.

[13] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-
pendence graphs. ACM Trans. on Prog. Lang. and Systems, 12(1):26-
60, Jan. 1990.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments
of the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proc. of Int’l Conf. on Softw. Eng., pages 191-200, May
1994.

[15] IBM T.J. Watson Research Center. T.J. Watson Libraries for Analysis
(WALA). IBM. http://wala.sourceforge.net.

[16] G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: Delivering
the Indus Java program slicer to Eclipse. In In Proc. of FASE, pages
269-272, Apr. 2005.

[17] P.Lam, E. Bodden, O. Lhotdk, and L. Hendren. Soot - a Java Bytecode
Optimization Framework. In Cetus Users and Compiler Infrastructure
Workshop, Oct. 2011.

[18] O. Lhotdk and L. Hendren. Context-sensitive points-to analysis: Is
it worth it? In Proc. of Int’l Conf. on Compiler Construction, pages
47-64, Mar. 2006.

[19] J. Misurda, J. Clause, J. Reed, B. R. Childers, and M. L. Soffa.
Demand-driven structural testing with dynamic instrumentation. In
Proc. of Int’l Conf. on Softw. Eng., pages 156-165, May 2005.

[20] M. Naik. Chord: A Versatile Platform for Program Analysis. In
Tutorial at ACM Conference on Programming Language Design and
Implementation, June 2011.

[21] A. Podgurski and L. Clarke. A formal model of program dependences
and its implications for software testing, debugging, and maintenance.
IEEE Transactions on Software Engineering, 16(9):965-979, 1990.

[22] R. Santelices and M. J. Harrold. Efficiently monitoring data-flow test
coverage. In Proc. of Int’l Conf. on Automated Softw. Eng., pages
343-352, Nov. 2007.

[23] R. Santelices and M. J. Harrold. Exploiting Program Dependencies
for Scalable Multiple-path Symbolic Execution. In Proc. of ACM Int’l
Symp. on Softw. Testing and Analysis, pages 195-206, July 2010.

[24] R. Santelices and M. J. Harrold. Probabilistic slicing for predictive
impact analysis. Tech. Rep. CERCS-10-10, Georgia Tech, Nov. 2010.

[25] R. Santelices and M. J. Harrold. Applying Aggressive Propagation-
based Strategies for Testing Changes. In Proceedings of Int’l Confer-
ence on Softw. Testing, Verif. and Valid., pages 11-20, Mar. 2011.

[26] R. Santelices and M. J. Harrold. Demand-driven Propagation-based
Strategies for Testing Changes. J. of Software Testing, Verification
and Reliability, 2013. To appear.

[27] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold. Test-suite augmentation for evolving software. In Proc. of
Int’l Conf. on Autom. Softw. Eng., pages 218-227, Sept. 2008.

[28] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight Fault
Localization Using Multiple Coverage Types. In Proc. of Int’l Conf.
on Softw. Eng., pages 56-66, May 2009.

[29] R. Santelices, M. J. Harrold, and A. Orso. Precisely detecting runtime
change interactions for evolving software. In Proc. of Third IEEE Int’l
Conf. on Softw. Testing, Verif. and Valid., pages 429-438, Apr. 2010.

[30] R. Santelices, Y. Zhang, S. Jiang, H. Cai, and Y. jie Zhang. Quanti-
tative Program Slicing: Separating Statements by Relevance. In Proc.
of Int’l Conf. on Softw. Eng., New Ideas and Emerging Results, pages
1269-1272, May 2013.

[31] A. Seesing and A. Orso. InsECTJ: A Generic Instrumentation Frame-
work for Collecting Dynamic Information within Eclipse. In Proc.
of Eclipse Technology eXchange (eTX) Workshop at OOPSLA, pages
49-53, Oct. 2005.

[32] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a Java Bytecode Optimization Framework. In Proc. of
Conference of the Centre for Advanced Studies on Collaborative Re-
search, pages 13-23, Nov. 1999.

[33] R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye. Probability
and Statistics for Engineers and Scientists (9th Edition). Prentice Hall,
Jan. 2011. ISBN 978-0321629111.

[34] Y. Zhang and R. Santelices. Predicting Data Dependences for Slice
Inspection Prioritization. In Proc. of IEEE Int’l Workshop on Program
Debugging, pages 177-182, Nov. 2012.

2013/5/25

http://santuario.apache.org/
http://pleuma.cc.gatech.edu/aristotle/Tools/jaba.html
http://pleuma.cc.gatech.edu/aristotle/Tools/jaba.html
http://wala.sourceforge.net

	Introduction
	Basic Definitions and Example
	Architecture of DUA-Forensics
	Instrumentation Layer
	Probe Abstraction
	Branch Instrumenter
	Data-Dependence Instrumenter
	Discussion

	Library-Call Modeling
	Points-to Analysis
	Dependencies and Symbolic Execution
	Discussion

	Fine-Grained Dependence Analyzer
	Application: Change Testing
	The MaTRIX Technique
	Empirical Evaluation
	Subjects and Methodology
	Results and Analysis

	Conclusion and Future Directions

