
A Lightweight Approach of Human-Like Playtest
for Android Apps

Yan Zhao* Enyi Tang† Haipeng Cai‡ Xi Guo§ Xiaoyin Wang¶ Na Meng*
Virginia Tech* Nanjing University† Washington State University‡

University of Science and Technology Beijing§ The University of Texas at San Antonio¶

yanzhao@vt.edu eytang@nju.edu.cn haipeng.cai@wsu.edu xiguo@ustb.edu.cn xiaoyin.wang@utsa.edu nm8247@vt.edu

Abstract—A playtest is the process in which testers play video
games for software quality assurance. Manual testing is expensive
and time-consuming, especially when there are many mobile
games to test and every game version requires extensive testing.
Current testing frameworks (e.g., Android Monkey) are limited
as they adopt no domain knowledge to play games. Learning-
based tools (e.g., Wuji) require tremendous manual effort and
ML expertise of developers.

This paper presents LIT—a lightweight approach to generalize
playtest tactics from manual testing, and to adopt the tactics for
automatic testing. LIT has two phases: tactic generalization and
tactic concretization. In Phase I, when a human tester plays an
Android game G for a while (e.g., eight minutes), LIT records
the tester’s inputs and related scenes. Based on the collected
data, LIT infers a set of context-aware, abstract playtest tactics
that describe under what circumstances, what actions can be
taken. In Phase II, LIT tests G based on the generalized tactics.
Namely, given a randomly generated game scene, LIT tentatively
matches that scene with the abstract context of any inferred
tactic; if the match succeeds, LIT customizes the tactic to generate
an action for playtest. Our evaluation with nine games shows
LIT to outperform two state-of-the-art tools and a reinforcement
learning (RL)-based tool, by covering more code and triggering
more errors. LIT complements existing tools and helps developers
test various casual games (e.g., match3, shooting, and puzzles).

Index Terms—automated game testing, playtest, tactic gener-
alization, tactic concretization

I. INTRODUCTION

In the video game industry, playtest refers to the process
of exposing a game to its intended audience, so as to reveal
potential software flaws during the game prototyping, devel-
opment, soft launch, or after release. Game vendors often
hire human testers for game playing. Meanwhile, the mobile
gaming industry has been growing incredibly fast. According
to Sensor Tower, the worldwide spending in games grew
12.8% across the App Store and Google Play in 2019 [1].
By the end of 2019, 45% of the global gaming revenue came
directly from mobile games [2]. The booming mobile game
industry has led to a rapid growth in game testing demand,
although manual testing is always costly and time-consuming.

Researchers and developers proposed approaches to auto-
matically test Android apps and video games, but the tool sup-
port is insufficient. For instance, random testing [4] and model-
based testing [5] execute apps by generating various input

This work was supported by NSF Grants of US (CCF-1845446, CCF-
2006278, and CCF-2007718), Fundamental Research Funds for the Central
Universities of China (FRF-IDRY-19-023).

Fig. 1: A screenshot of the game Angry Birds [3]

events (e.g., button clicks). These approaches only recognize
the standard UI controls defined by Android, such as buttons
and checkboxes [6]. They cannot identify any customized UI
items (e.g., the birds and pigs shown in Fig. 1), neither do
they use any domain knowledge to effectively play games.
Some approaches use machine learning (ML) to test games
by training models [7], [8]. However, these approaches are
heavyweight: they require developers to learn to design, pro-
gram, and tune deep neural networks (DNN), which process
is challenging and time-consuming. More importantly, such
heavy workload must be repetitively fulfilled for each game,
as there is no universal DNN available to test multiple games.

To help general developers efficiently test Android games
without using ML, we created a lightweight game testing
approach—LIT. In our research, there are three challenges:

1) Different games define distinct rules and require users
to play games by taking specialized actions (e.g., “long
tap” or “swipe”). Our approach needs to mimic game-
specific user actions to test games like a human.

2) Games usually define various customized UI items or
game icons (i.e., pictures) which are not recognizable
by most automatic testing frameworks. To effectively
play games, our approach should identify those icons.

3) A game scene is an image to display different informa-
tion related to one program state (see Fig. 1). Scenes
can be generated non-deterministically, so our approach
should flexibly react to the changing program states.

To overcome all challenges, we developed LIT to have two

phases: tactic generalization and tactic concretization. Here, a
tactic describes in what context (i.e., program states), what
playtest action(s) can be taken and how to take those actions.

Phase I requires users to (1) provide snapshots of game
icons and (2) play the game G for awhile. Based on the
provided snapshots, LIT uses image recognition [9] to identify
relevant icons in a given scene. When users play G, LIT
recognizes each user action with respect to game icon(s) and
further records a sequence of 〈context, action〉 pairs. Here,
context removes scenery background but keeps all recognized
game icons. From the recorded pairs, LIT generalizes tactics
by (1) identifying abstract contexts AC = {ac1, ac2, . . .} as
well as action types AT = {at1, at2, . . .} and (2) calculating
alternative parameters and/or functions to map each abstract
context to an action type. Phase II takes in any generalized
tactics and plays G accordingly. Given a scene s, LIT extracts
the context c, and tentatively matches c with any abstract
context ac ∈ AC involved in the tactics. If there is a
match, LIT randomly picks a corresponding parameter and/or
synthesized function to create an action for game testing.

For evaluation, we applied LIT, two state-of-the-art testing
tools (i.e., Monkey [4] and Sapienz [10]), and a reinforcement
learning (RL)-based tool to a set of game apps. Our evaluation
shows that with an eight-minute user demo for each open-
source game, LIT outperformed all tools by achieving higher
test coverage and triggering more runtime errors. Specifically
for CasseBonbons [11] (a game similar to Candy Crush
Saga [12]), LIT achieved 79% branch coverage. On the other
hand, Monkey, Sapienz, and RL-based tool separately got 1%,
33%, and 58% branch coverage. LIT triggered two runtime
errors in tested games, while the other tools triggered none.
Our experiments show that LIT can effectively test three
categories of casual games: match3, shooting, and puzzles. As
there are hundreds of games belonging to these categories [13],
[14], we believe that LIT can tremendously help developers
test games and improve software quality.

To sum up, we made the following contributions:
• We designed and implemented a novel algorithm to gen-

eralize tactics from user-provided icons and short game-
playing demos. The algorithm identifies user actions,
records 〈context, action〉 pairs, and derives functions or
parameters to map game contexts to feasible actions.

• We designed and implemented a novel algorithm to test
games based on the generalized tactics. LIT reacts to any
randomly generated game scene by matching the scene
with contexts in tactics, and taking actions accordingly.

• We conducted a comprehensive evaluation, to empirically
compare LIT with two state-of-the-art tools and one RL-
based tool. LIT outperformed all tools.

At https://github.com/NiSE-Virginia-Tech/yzhao-Lit, we
open-sourced our program and data.

II. MOTIVATING EXAMPLE

This section uses an example to intuitively explain our
research. Archery [15] is an open-source Android game (see
Fig. 2). The game rule is to shoot a target board with a bow and

Fig. 2: A snapshot of the game Archery
X

Y

swipe
start
(x1, y1)

end
(x3, y3)

(x2, y2)

Fig. 3: Visualizing any 〈context, action〉 pair for Archery

arrows in order to make a great score. The game is challenging
because the target board is placed randomly after each target
hit. Suppose that a developer Alex wants to automatically test
this game. A record-and-replay approach does not quite help
as the game scenes are generated nondeterministically. Neither
random testing nor model-based testing works well for two
reasons. First, arrow and board are game-specific icons instead
of standard UI controls; existing tools cannot recognize the
icons. Second, a user scores only if s/he pulls the arrow, shoots
the arrow towards the board, and has the arrow hit the board;
existing tools blindly test games without following any rule.

Our insight is that when a user plays a game, user actions
reflect the gameplay tactics that are usable for automatic game
testing. Thus, we designed LIT to work in two modes: demo
mode and test mode. LIT monitors users’ playtest in the demo
mode and mimics game play in the test mode. To use LIT, Alex
should provide two inputs: (i) snapshots of all game icons
and (ii) a demo for a limited timespan. For the first input,
Alex can take a snapshot of the game and cut out images of
board and arrow (see regions marked with red rectangles in
Fig. 2); Alex may also specify the arrow to be actionable (i.e.,
manipulable) and the board to be target (i.e., unmanipulable).
For the second input, Alex can play the game in the demo
mode such that LIT records game scenes and traces Alex’s
finger gestures. This process continues until timeout.

Recognition of Contexts and Actions: Based on the
inputs and recorded data, LIT analyzes traces to identify
Alex’s action sequence and analyzes each scene snapshot to
identify the context. By indexing actions and contexts based on
their timestamps, LIT creates a sequence of 〈context, action〉
pairs P = {p1, p2, . . . , pn}. The information captured by a
〈context, action〉 pair pi (i ∈ [1, n]) is illustrated in Fig. 3.
Namely, every pixel of a display is represented with an xy-
coordinate. The location of each game icon o is represented
with the coordinate of o’s centroid, such as (x1, y1) for arrow

X

Y

start
(x1, y1)

end
(x3, y3)

(x2, y2)
di
st

𝑑𝑖𝑠𝑡 = 𝑥1 −𝑥3 2 + 𝑦1 −𝑦3 2

𝑓2 𝑥 = 𝑎𝑥2 +𝑏𝑥 + 𝑐

𝑓1 𝑥 = 𝑘𝑥 + 𝑏

Fig. 4: Tactic inference from any
〈context, action〉 pair

TABLE I: The inferred tactic for Archery
”Abstract Context”: Actionable (arrow)

Target (board)
”Action Type”: Swipe (actionable)
”Swipe Distance”: dist1, dist2, . . . , distn
”Swipe Direction”: Linear (k1, k2, . . . , kn)

Quadratic (a1, a2, . . . , an)
”Swipe Duration”: 0.26 (second), 1.26, . . . , 0.33

X

(x2’, y2’)

disti
(x1’, y1’)

(x’, y’)

Y

Fig. 5: Tactic application given a ran-
dom scene of Archery

and (x2, y2) for board. The swipe operation is represented
with a starting point (x1, y1) and an ending point (x3, y3), as
indicated by the red dotted directed edge. Our goal of tactic
inference is to generalize mappings from contexts to actions.

Tactic Inference: Based on recognized pairs, LIT ana-
lyzes three things for automated testing:
• What is the commonality between contexts?
• What kind of actions are frequently applied?
• How is each context mapped to the corresponding action?

LIT infers any common context by comparing collected con-
texts, and finds the board and arrow to always exist while
Alex plays the game. Similarly, LIT compares all identified
actions and recognizes arrow-swiping as the major action type.
In our research, we differentiate between two types of swipe
operations: target-oriented swipes and swipes without target.
Because board is specified as target, LIT infers all arrow-
swiping operations to be target-oriented.

LIT then characterizes three property parameters for each
target-oriented swipe: (i) distance dist, (ii) direction dir, and
(iii) duration dur. For simplicity, here we only explain the
calculation of parameters (i) and (ii) for any pair pi. As shown
in Fig. 4, LIT computes dist based on the coordinates of the
start and end points. LIT calculates dir by fitting functions
to the coordinates of all three points, because such functions
reflect Alex’s potential angles to shoot the arrow. Intuitively,
LIT fits a linear function f1(x) = kx + b to the coordinates;
it also fits a quadratic function f2(x) = ax2 + bx + c. For
each linear function, LIT records k as the inferred direction
parameter because k decides the slope of f1’s line. For each
quadratic function, LIT records a because a decides the width
and direction (up or down) of a parabola’s opening [16]. To
sum up, LIT generates a tactic from Alex’s inputs (see Table I).

Tactic Application: When testing Archery, given a ran-
domly generated scene, LIT first identifies all game icons. To
swipe an arrow towards the board, LIT needs to decide the end
point (x′, y′) for the swipe operation (see Fig. 5). To do that,
LIT randomly picks a distance disti, a direction parameter p,
and a duration durj from the inferred tactic. If p = kj , LIT
solves the equation group (1) shown below to get (x′, y′);
otherwise, if p = al, LIT solves the equation group (2).
Due to the random combination between inferred parameters
and uncontrollable equation-solving procedure, LIT does not
guarantee all arrows to hit the board. However, all generated
actions are valid arrow-shootings and some actions are highly

likely to score. By diversifying the generated actions, LIT can
test the game like humans, and save Alex significant amount
of time and effort for manual testing.{

(y′ − y′1)
2 + (x′ − x′

1)
2 = dist2i

y′1 − y′ = kj × (x′
1 − x′

1)
(1)

{
(y′ − y′1)

2 + (x′ − x′
1)

2 = dist2i
y′1 − y′ = al × (x′2

1 − x′2) + b× (x′
1 − x′)

y′2 − y′1 = al × (x′2
2 − x′2

1) + b× (x′
2 − x′

1)

(2)

III. APPROACH

As shown in Fig. 6, LIT consists of seven steps to implement
two phases. In this section, we will explain each step in detail.

A. Recording

To record the screenshots and traces while a user plays
game G, we used a command-line tool Android Debug Bridge
(adb) [18]. The tool provides access to a Unix shell that we
can use to run a variety of commands on an Android device.
Specifically through the adb shell, we issued the getevent

command [19], to collect human-computer interaction data
from an Android phone and to save the data to our computer.
Prior work also uses this command to collect traces [20], [21].

The length of demo time can influence both manual work-
load and automated testing effectiveness. Based on our experi-
ence, the impact of time length on testing effectiveness varies
from game to game. For games with simpler contexts (e.g.,
Open Flood [22]), 1-minute user demo can lead to comparable
testing coverage with a 10-minute demo. For games with
complex contexts (e.g., Angry Birds [3]), a longer user demo
(i.e., 16-minute long) is usually better. Due to the time limit
and with the consideration of differences among games, we
set the default length of demo time to eight minutes.

During the demo, in every nine seconds, LIT reads the
system time t, takes a screenshot, and saves it as “png.t”.
Depending on how complex a game scene is, LIT may spend
1–2 seconds creating an image file. Afterwards, LIT creates a
trace file “txt.t” to record finger movements. At a terminal,
LIT then prompts the user to taken an action and records
all corresponding input events in the trace file. In this way,
screenshots and trace files can be aligned based on their
common timestamps. We set the time interval to nine seconds
based on our observations of (1) users’ response time and (2)
the cost of automatic screenshot-taking.

Recording
Game
Icons

Screenshots Trace

Recognition of
Contexts and Actions

<Context,
Action> Pairs

Tactic Inference Tactic(s)

Screenshot Taking

Screenshots

Context
RecognitionContexts

Context
Matching

Matched Objects

Tactic ApplicationRule Library

Phase I: Tactic Generalization Phase II: Tactic Concretization

Fig. 6: LIT consists of two phases: tactic generalization and tactic concretization
Fig. 7: A screenshot of An-
droidLinkup [17]

Fig. 8: An excerpt of a trace file

Fig. 9: Exemplar function icons in Angry Birds

Fig. 8 shows an excerpt of a trace file. In the file, the first
column lists the timestamps of events, although these times-
tamps cannot be mapped to the system-level timestamp t men-
tioned above. All ABS_MT events report details on how an object
(e.g., a finger) touches the screen and makes movements. Par-
ticularly, ABS_MT_POSITION_X and ABS_MT_POSITION_Y events
show the xy-coordinates of contact points in a temporal order.
When a finger moves on the screen, multiple xy-coordinates
are recorded for the trajectory.
B. Recognition of Contexts and Actions

LIT recognizes contexts based on user-specified game icons.
Currently, users are supported to specify three types of icons:
• Actionable—the icons that a user controls or manipulates

to score (e.g., arrow in Archery),
• Target—the icons that a user does not operate but are

helpful for the user to decide how to operate actionable
icons (e.g., board in Archery), and

• Function—the icons that a user manipulates to switch
major game phases, such as moving on to the next
difficulty level or retrying the current level. Fig. 9 lists
some function icons used in Angry Birds.

The user-specified categorized icons serve two purposes. First,
they enable LIT to generalize context-aware tactics. If no icon
is specified, LIT infers tactics solely based on traces. Second,
if the user demo presents only a subset of specified icons, the
category information allows LIT to generalize inferred tactics
from seen icons to unseen ones. For instance, suppose that
a demo only uses two of the four function icons shown in
Fig. 9. LIT generalizes any tactic inferred from these two
icons to other same-typed icons. This approach design enables
LIT to effectively infer tactics without requiring a long demo.
We expect the manual effort of specifying game icons to be
little, because game developers need to define icons anyway.
In many scenarios, they can simply reuse or tailor the icons
in their projects’ assets folder for inputs.

To recognize specified icons in given screenshots, we used
OpenCV (i.e., Open Source Computer Vision Library) [9]
for image recognition. Specifically, OpenCV offers a function
cv.matchTemplate(...) [23] to search for the location of a
template image in a larger image; we configured the function
to use TM_CCOEFF_NORMED as the comparison method. The
function can flexibly match similar but different images.
Such flexibility is important for LIT to locate game icons in
screenshots because the specified icons are sometimes rotated,
shadowed, or darkened in game scenarios. For each recognized
image, OpenCV outputs coordinates of the matched area.

A user action includes one or more touch gestures made
for a valid move in games (e.g., shooting an arrow towards
the board in Archery). Our research focus on two types of
gestures: taps (i.e., clicks) and swipes. To recognize user
actions in trace files, we took an intuitive approach. Namely,
we observed that the recorded event sequence for each ges-
ture always (i) starts with ABS_MT_TRACKING_ID 0000xxxx,
(ii) ends with ABS_MT_TRACKING_ID 0000, and (iii) has mul-
tiple ABS_MT_POSTION_X and ABS_MT_POSITION_Y events in
between to show xy-coordinates of contact points. Based
on this observation, LIT processes any given trace file to
identify all segments. Inside each segment, suppose that
the first xy-coordinate is (xf , yf), the last xy-coordinate is
(xl, yl), and their related timestamps are separately tsf and
tsl. LIT then calculates two properties: distance dist =√
(xl − xf)2 + (yl − yf)2 and duration dur = tsl − tsf ; it

derives a gesture using the following heuristics:

H1: If dist > 20 && dur > 0.2 second, a swipe was made.
H2: If dist ≤ 20 ‖ dur ≤ 0.2 second, a tap gesture was made.

We defined the two heuristics by experimenting with dif-
ferent gestures in several games, observing the recorded
traces, and summarizing gesture-trace mappings. Our heuris-
tics are similar to those of prior work [24]. This step outputs
〈context, action〉 pairs, with each pair for one timestamp t.

C. Tactic Inference

Given 〈context, action〉 pairs, LIT infers tactics by identi-
fying abstract contexts AC = {ac1, ac2, ...} as well as action
types AT = {at1, at2, ...}, and by calculating alternative pa-
rameters and/or functions to map contexts to actions. Namely,
each tactic consists of one abstract context, one action type,
and a set of parameters and/or functions.

s(i)

i == none

i == function

Icon-agnostic property
extraction for gestures

Icon-oriented property
extraction for gestures

i == actionable

Context has one or
more target icons

Target-oriented
trajectory fitting

No target icon, and
context is a matrix
of actionable icons

Action-oriented
submatrix
extraction

No target icon, and
actionable icons have
no matrix-like layout

Icon-oriented
property extraction
of gestures

R1

R2

R3 – R5

Fig. 10: Rules defined to infer parameters/functions for
context-action mappings

To identify abstract contexts, LIT clusters collected contexts
based on the number of icon types each context contains.
For the Angry Birds game shown in Fig. 1, some contexts
include two icon types: actionable (i.e., birds) and target (i.e.,
pigs), and some contexts include only one icon type: function
(i.e., “Next”). LIT considers each cluster to correspond to one
abstract context aci, and represents aci with the related icon
types, as shown in Table I.

To identify major action types, LIT compares the actions
related to each context cluster. If all or most of the actions are
composed of the same gesture sequence s (e.g., swipe), the
inferred action type is also represented with s. Here, “most”
means that a major action type corresponds to (i) at least 90%
of all actions, or (ii) at least 10 actions if the majority takes
up less than 90%. Furthermore, in each 〈context, action〉 pair,
LIT tentatively maps the starting coordinate of action to game
icons in the context; if the actions are always mapped to the
same icon type i, the inferred action type is refined to s(i), as
shown in Table I.

The major challenge for this step is: How do we calculate
concrete parameters and/or functions to map each abstract
context to an action type? To overcome this challenge, given
observed user actions and related contexts for each cluster, LIT
follows the rules in our predefined library (see Fig. 10) to infer
parameters and/or functions from 〈context, action〉 pairs. The
inferred data describes given certain contexts, what concrete
actions were taken by users. In later steps (Sections III-E
and III-F), LIT reuses such data to generate actions given a
new context. Namely, the inferred data establishes concrete
mappings from each abstract context to the related action type.

According to Influencer Marking Hub, in 2021, the casual
game genre is the most popular genre, with 78% of down-
loaded games falling into this category [25]. Casual games
often involve simple tactics and shorter sessions, requiring less
learned skills [26]. Typical casual games include match3 (e.g.,
Candy Crush), shooting (e.g., Angry Birds), word games, and
puzzles (e.g., 2048). We focus on casual games because of
their popularity and simplicity. Based on our experience with
casual games, we defined a library to include five rules (see
Fig. 10), which are used to infer frequently applied tactics.

1 1 1
2 3 4
3 5 2
1 4 5

tap tap

Fig. 11: The numeric repre-
sentation of Fig. 7

1 1 1
0 0 0
0 0 0
1 0 0

1 1

(a) (b)

1 1

Fig. 12: Normalized context
and extracted submatrix

a1 a2 a3
a5 a6 a7
a9 a10 a11

Fig. 13: Neighbors of a
matrix element

2 5 2
2 2 2
5 3 4
1 4 2

Fig. 14: LIT creates an
action for a new context

R1 targets the puzzle games that require users to make tap
or swipe gestures; users can score even if they blindly take ac-
tions without recognizing any icon. LIT extracts properties of
gestures for each action. Particularly, for any tap, LIT extracts
two parameters: the starting coordinate (xf , yf) and duration
dur. For any swipe, LIT extracts three parameters: distance
dist, duration dur, and angle φ = arcsin((yl − yf)/dist)).

R2 infers the tactics that (i) start a game or (ii) switch game
phases (i.e., difficulty levels). It describes that if an action
was applied to a function icon (i.e., i == function), LIT
extracts gesture properties with respect to that icon. Namely,
for any tap, LIT extracts one property—dur; for any swipe,
LIT extracts three properties: dist, dur, and φ.

R3 is defined for swipe-based shooting games [14], in which
users swipe an actionable icon (i.e., i == actionable) and
the context has one or more targets (see Fig. 2). In such
scenarios, LIT extracts three swipe-related properties for each
gesture (dist, dur, and φ), and synthesizes linear and quadratic
functions to fit any potential curves between the swiped icon
and a target. In the scenarios where multiple target icons
coexist (see Fig. 1), it is hard to guess at which target a
user aims; thus, LIT randomly picks a target to synthesize
functions. In our implementation, LIT adopts SciPy [27] to
fit both linear and quadratic functions to given coordinates.
Although SciPy can synthesize arbitrarily complex functions,
based on our experience, the generated linear and quadratic
functions are very effective for LIT to test games. Finally, one
coefficient of each synthesized function is saved for later use.

R4 focuses on match3 games [13], which lay actionable
icons in matrix-like structures and match identical icons in cer-
tain places. As shown in Fig. 7, the AndroidLinkup game puts
fruits in a matrix, and a user needs to tap two fruits of the same
type to eliminate them both and earn points. If we use different
numbers to refer to different fruits, a 〈context, action〉 pair
can be visualized as Fig. 11. We decided not to use such
context as is in the inferred tactic for two reasons. First,
randomly generated scenes can put fruits in arbitrary ways
and the reusability of such context is limited. Second, not all
elements in the matrix help explain the user action. Thus, we
developed an action-oriented submatrix extraction algorithm
to facilitate tactic inference and application.

Algorithm 1: R4–action-oriented submatrix extraction
Input: context matrix c (identified by LIT), matrix elements (i.e.,

actionable icons) involved in the action E = {e1, e2, . . .}
Output: The extracted submatrix m

1.1 Initialize sc = Rectangle(minX,minY,maxX,maxY) to cover
all elements in E

1.2 Normalize c to another matrix c1 based on E
1.3 q.enqueueAll(E)
1.4 while q 6= ∅ do
1.5 e = q.dequeue()
1.6 for each unprocessed neighbor n of e do
1.7 if n has the value “1” then
1.8 q.enque(n)
1.9 Enlarge the rectangle sc as needed to cover n

1.10 return the submatrix of c1—m—that is covered by sc

Based on our experience, icons in matrices are manipulated
usually because they are identical to some surrounding icons.
Thus, we designed Algorithm 1 to extract an action-relevant
submatrix (i.e., pattern) that reflects the commonality. In this
algorithm, LIT first initializes a rectangle sc based on the lay-
out of c to cover all elements in E. Secondly, LIT normalizes
c to another matrix c1 as follows: if an element is identical
to any member e ∈ E, the element is converted to “1”; if the
element is different from all members in E, it is converted to
“0”; otherwise, if a grid in c has no element, “-1” is used. For
instance, Fig. 12 (a) shows the normalized representation for
the matrix of Fig. 11. Thirdly, LIT enqueues all elements in
E. For each dequeued element e, LIT examines the neighbors
(see Fig. 13). If an unprocessed neighbor n corresponds to
“1” in c1, LIT enqueues n. LIT also checks whether sc is
large enough to cover n; if not, sc is enlarged. This process
continues until the queue is empty and sc becomes stabilized.

Our algorithm returns m—the submatrix in c1 covered by
sc. Fig. 12 (b) shows the submatrix derived from Fig. 12
(a). LIT then infers a function map(m) = E from each
〈context, action〉 pair. As what LIT does for R2, LIT also
conducts icon-oriented property extraction for gestures. There-
fore, the derived tactic includes map functions and icon-
related gesture property parameters.

R5 is defined for some puzzle games, where actionable
icons are specified but context has no target or matrix-like
structures. Similar to what it does for R2, LIT simply extracts
gesture properties with respect to the manipulated icons.

D. Screenshot Taking & Context Recognition

These two steps reuse part of the implementation of Steps 1–
2. Specifically, given game G, LIT periodically takes snapshots
via adb, relying on OpenCV and user-specified game icons to
identify contexts. Because context is represented by the game
icons extracted from a screenshot, when developers specify no
game icon, LIT recognizes no context.

E. Context Matching

Given an identified context c′, LIT tries to match c′ with
the abstract context ac of any derived tactic based on (1) icon
types and/or (2) matrix layouts. According to our experience,

such tentative matching often succeeds. This is because LIT
extracted at most dozens of abstract contexts from each demo;
these contexts can be efficiently enumerated for matching
trials. In the worst case where context matching fails, LIT
randomly generates an action to proceed ignoring the context.

F. Tactic Application

Intuitively, this step is the reverse process of tactic inference.
Given a demo, tactic inference characterizes game contexts and
derives a set of features to describe user actions. Correspond-
ingly, this step leverages context characterization and derived
features to randomly generate actions, and uses adb to issue
those actions for playtest. Therefore, depending on the rules
adopted for tactic inference, LIT applies tactics differently.

With more details, if R1 is used for inference, LIT applies
tactics by generating actions based on arbitrary parameter
combinations between observed gestures. For instance, if a tap
action is needed, LIT randomly picks a recorded coordinate
(xf , yf) and a duration dur to create a tap. Similarly, if a
swipe is needed, LIT creates the gesture by randomly picking
dist, dur, and φ from its parameter sets. LIT similarly applies
tactics if R2 or R5 is in use. When R3 is used for tactic
inference, as illustrated by Section II, LIT randomly picks
dist, direction parameter p, and dur to decide how to swipe
an actionable icon with respect to a target icon.

When R4 is used for inference, to apply tactics to the
given context c′, LIT tentatively matches c′ with any extracted
submatrix m. If there is a submatrix m′ in c′ such that
(i) the elements matching 1’s have the same icon index i
and (ii) the elements matching 0’s have indexes other than
i, then LIT identifies elements for operation and creates an
action by randomly mixing collected gesture properties. For
instance, Fig. 14 presents a new context of AndroidLinkup
that is totally different from the original context in Fig. 11
(a). When matching this context with the s in Fig. 11 (b), LIT
can locate two icons and generate two taps accordingly.

IV. EVALUATION

There are two research questions in our evaluation:
• RQ1: How effectively can LIT test game apps?
• RQ2: How does LIT compare with widely used tools?
This section first presents our dataset and evaluation metrics.

It then explains the evaluation results for LIT and other tools.

A. Dataset

We included nine Android games into our evaluation set (see
Table II): three closed-source games and six open-source ones.
These games were chosen because they present diverse context
characteristics and require users to take various actions. With
more details, users need to prescribe at least one function icon
in each game so that LIT infers how to enter those games.
Users need to specify actionable icons for some games (e.g.,
CasseBonbons), and specify both actionable and target icons
for some other games (e.g., Archery). Each game requires for
user actions like taps or swipes. In Table II, column LOC
shows the number of lines of code for each open-source game.

TABLE II: The nine Android games used in our evaluation

Game Type (Open or
Closed source) Category LOC Player’s Actions Context Characteristics

Angry
Birds [3]

C Shooting - Fling (or swipe) multiple colored birds to defeat green-colored pigs in
a structure or tower.

With actionable icons (i.e., birds) and
target icons (i.e., pigs)

Ketchapp Bas-
ketball [28]

C Shooting - Swipe the ball towards the basketball hoop. With actionable icons (i.e., balls) and
a target icon (i.e., hoop)

Star Pop
Magic [29]

C Match3 - Tap two or more adjacent identical stars to crush them. With actionable icons (i.e., stars) or-
ganized in a matrix

2048 [30] O Puzzle 1,692 Swipe any point up/down/left/right to move the tiles. When two tiles
with the same number touch, they merge into one.

Without actionable or target icon

Apple
Flinger [31]

O Shooting 14,085 Shoot (to swipe) apples towards the enemy’s base With actionable icons (i.e., apples),
but not organized in a matrix

AndroidLinkup [17] O Match3 2,102 Tap two identical items to connect them with three or fewer line
fragments and to crush them.

With actionable icons (i.e., fruits) or-
ganized in a matrix.

Archery [15] O Shooting 2,833 Shoot (or swipe) arrows towards a board. With actionable icons (i.e., arrows)
and a target icon (i.e., board)

CasseBonbons [11] O Match3 2,549 Swipe colored pieces of candy on a game board to make a match of
three or more of the same color.

With actionable icons (i.e., candies)
organized in a matrix

Open
Flood [22]

O Puzzle 1,659 Start in the upper left corner of the board. Tap the colored buttons along
the bottom of the board to flood all adjacent filled cells with that color.

With actionable icons (i.e., buttons),
but not organized in a matrix

“-” means the data is unavailable.

B. Metrics

Similar to prior work [32], [33], we measured code cov-
erage of execution by different testing tools to assess their
effectiveness. Theoretically, the more code is executed by a
testing tool, the better. We adopted two coverage metrics:

Line Coverage =
of lines of code covered

Total # of lines
× 100%

Branch Coverage =
of code branches covered

Total # of branches
× 100%

In our implementation, we used JaCoCo [34] to collect cover-
age information. Because JaCoCo uses the ASM library [35]
to modify and generate Java byte code for instrumentation
purpose, the above-mentioned metrics are only computable
for open-source games. Code coverage is not computable
for closed-source software because we have no access
to the codebases. To compare tools based on closed-source
software, we adopted two additional metrics: Game Score
and Game Level. Game Score reflects the points earned
by a testing tool after it plays a game for awhile. We believe
that the higher score a tool earns, the more likely that the tool
covers more code. Similarly, Game Level shows at which
difficulty level a testing tool is when the allocated testing time
expires; the higher level, the better.

C. The Effectiveness of LIT

Given a game G, the first author manually played G for
eight minutes in LIT’s demo mode, and then switched to LIT’s
test mode to automatically play G for one hour. Because there
is randomness in the test inputs generated by LIT, we ran LIT
to play each game five times so that each test run lasted for one
hour. In Table III, the LIT columns show average results of
our tool across five runs. The Demo columns show the results
by manual testing. In this table, “-” means that the data is
not available. Three reasons explain such data vacancy. First,
some games do not show game scores (i.e., AndroidLinkup and
Open Flood). Second, some games have a single difficulty
level instead of multiple (e.g., Apple Flinger and Archery).
Third, some tools do not test the three closed-source games.

By comparing the Demo and LIT columns in Table III, we
observed LIT to consistently outperform user demos by ac-
quiring higher scores and passing more levels. For instance, in
Angry Birds, Demo acquired 179,394 points and stopped at the
2nd level; LIT obtained 1,147,827 points and stopped at the 7th

level. This means that LIT did not simply record or repeat what
users did. Instead, it effectively inferred tactics from demos,
and applied those tactics in reaction to randomly generated
scenes. Our observation also indicates that with LIT, users do
not need to manually test all games comprehensively. They
can test the games for only a short period of time, and rely
on LIT to spend more time similarly testing those games. The
LIT columns in Table IV present code coverage measurements
for our tool. Among the six open-source games, LIT achieved
50–81% Line Coverage and 37–79% Branch Coverage.

Finding 1: Based on eight-minute user demos, LIT ef-
fectively earned game scores, passed difficulty levels, and
executed lots of code within one-hour playtest.

D. Effectiveness Comparison Among Tools

To assess how well LIT compares with prior work, we also
applied two state-of-the-art tools to our dataset: Monkey [4]
and Sapienz [10]. Monkey implements the most basic ran-
dom strategy; it treats the app-under-test as a blackbox and
randomly generates UI events (e.g., by tapping or swiping
a random pixel). Sapienz uses multi-objective search-based
testing to automatically explore and minimize test sequences,
while maximizing coverage and fault revelation. Three reasons
explain why we chose these two tools for experiments. First,
Choudhary et al. [32] conducted an empirical study by running
multiple automatic testing tools on the same Android apps,
and revealed that Monkey outperformed the other tools in
terms of code coverage and runtime overhead. Second, Mao
et al. [10] conducted a more recent study and showed that
Sapienz worked even better than Monkey. Third, similar to
LIT, neither tool uses any machine learning technique.

Reinforcement learning (RL)-based tools were proposed to
test games [7], [8], [36], but none of the tools is publicly
available or executable with Android apps. To ensure the
comprehensiveness and representativeness of our empirical

TABLE III: The comparison of Game Score and Game Level among user demos, LIT, Monkey, Sapienz, and RLT
Game Score Game Level

Game Demo LIT Monkey Sapienz RLT Demo LIT Monkey Sapienz RLT

Angry Birds 179,394 1,147,827 35,546 - - 2 7 0 - -
Ketchapp Basketball 2 37 0 - - 1 3 0 - -

Star Pop Magic 695 2,805 225 - - 1 2 1 - -
2048 332 2,212 586 600 2,492 - - - - -

Apple Flinger 38,290 83,718 0 0 14,290 4 6 0 0 3
AndroidLinkup - - - - - 2 5 0 1 1

Archery 180 493 0 0 20 - - - - -
CasseBonbons 4,050 21,270 0 15 2,110 2 7 0 1 1
Open Flood - - - - - 1 6 0 1 3

“-” means that the data is unavailable. For each game, we bolded the highest game score and highest game level.

TABLE IV: Code coverage comparison based on open-source games
among user demos, LIT, Monkey, Sapienz, and RLT

Line Coverage (%) Branch Coverage (%)

Game
Demo LIT

Mon-
key

Sapi-
enz RLT Demo LIT

Mon-
key

Sapi-
enz RLT

2048 74 81 80 77 81 63 68 65 62 67
Apple Flinger 50 53 19 9 49 50 52 17 7 50
AndroidLinkup 70 77 63 58 70 63 72 41 32 61

Archery 63 72 66 20 33 33 49 39 6 22
CasseBonbons 60 77 4 50 64 52 79 1 33 58
Open Flood 36 50 32 42 49 33 37 20 28 37

Average 59 68 44 43 58 49 60 30 28 49

Game
Environment (E)

Agent (A)

Reward r (line coverage)

state s

Observed state s (screenshot)

Take action a

Policy 𝜋!(s, a)DNN

Parameters 𝜃

Fig. 15: Overview of RLT—a testing tool based on RL

comparison, we built a vanilla RL-based tool and refer to
it as RLT (see Section IV-D1). Among the three baseline
tools, Monkey can test all games. Sapienz only tests apps
installed on the Android Emulator [37]. As the three closed-
source games are not installable on the emulator, Sapienz
could not test them. RLT was built to use line coverage values
as rewards (see Section IV-D1), so it is inapplicable to close-
source games. Finally, we conducted two experiments with all
four tools. In the first experiment, we applied each tool to
every game five times, with each test run lasting for one hour;
we then compared the average coverage measurements across
tools. Second, we used each tool to run every game for five
hours, and compared the number of runtime errors triggered.

1) RLT: We built RLT on top of Gym [38]—a toolkit for
creating RL algorithms. Because the nine games have distinct
icon sets and icon positions, it is infeasible to program a single
universal RL agent for all games. Thus, we programmed an
RL agent for each game by hardcoding the icon set, icon
positions, and specialized ways to click function icons.
As shown in Fig. 15, a typical RL agent (e.g., intelligent
gameplayer) interacts with the environment in discrete time
steps. At each time t, the agent A receives the current state st
and reward rt; it then chooses an action at from the action set
either randomly or based on its deep neural network (DNN),
and sends at to the environment E. In our implementation,
a state is a game screenshot automatically captured by A,
a reward is the line coverage computed by JaCoCo, and an
action is a tap or swipe applied to an actionable icon. The
goal of A is to learn a policy from 〈state, action〉 pairs that
produces actions to maximize the line coverage.

To achieve the goal, we encoded a uniform action set into
A for all games. The action set includes two types of actions:
tap and swipe. To randomly generate an action, RLT first

generates a random number. If the number is odd, it creates
a tap; otherwise, it produces a swipe by further randomly
generating (1) the end position/coordinate and (2) duration
of the swipe gesture. RLT then invokes adb to interact with
the tested app accordingly. Additionally, we programmed A to
iteratively learn a DNN that outputs actions given game scenes.
Intuitively, in the first iteration, A randomly picks actions in
the encoded action set, and sends actions in sequence to E to
observe the corresponding states and rewards.

In the second iteration, A trains a policy based on observed
data; it then uses the trained policy together with a random-
based strategy to generate actions and to interact with E. In
the third iteration, A refines its policy based on the observed
data in the second iteration, and continues generating actions
for interactions. Such iterative learning continues until timeout
(e.g., after eight minutes). We implemented our DNN by
following the architecture design of prior work [39], [40]. The
architecture has (1) a stack of three convolution layers with
a ReLU activation and followed by max-pooling layers, and
(2) three fully connected layers followed by a softmax layer.
The first two convolution layers separately use 32 3×3 filters;
the third convolution layer uses 64 3× 3 filters. The pool size
in max pooling is 2× 2. The first two fully connected layers
separately have 24 and 48 neurons; the number of neurons in
the third fully connected layer is equal to the number of valid
actions in a game. The batch size in each iteration is 16.

2) Comparison Based on Game Score and Game Level:
As shown in Table III, LIT outperformed Monkey and Sapienz
by always acquiring higher scores and passing more lev-
els. For instance, when testing Apple Flinger, LIT obtained
83,718 points and arrived at Level 6 with one-hour playtest.
Meanwhile, neither Monkey nor Sapienz earned any point or
passed any level. Among the six open-sourced games, LIT

outperformed RLT when testing five games (except for 2048).
Two reasons can explain why Monkey and Sapienz worked

much worse than LIT. First, both tools do not know how to
enter the game, and spent lots of time clicking random pixels
on the display before accidentally hitting the “Play” button.
Second, Apple Flinger requires players to swipe certain icons
to hit targets. Because neither tool has the domain knowledge,
they cannot properly generate swipe actions for scoring. RLT
outperformed Monkey and Sapienz because in each agent,
we hardcoded the game-specific icon set, icon positions, and
tapping actions for function icons; we also defined a universal
action set for all agents. Such coded domain knowledge
enables RLT to iteratively try different actions, observe the
reward outcomes, and refine its policy.

RLT worked worse than LIT in most scenarios for two
reasons. First, RLT derives and refines policies based on
actions randomly applied to icons, while LIT infers tactics
from user demos that indicate not only contexts and actions,
but also winning strategies of developers. Namely, there is
more domain knowledge manifested by user demos than that
hardcoded into agents; to learn the unspecified knowledge,
RLT has to go through many iterations to well train its policy.
Second, the DNN architecture in RLT is very complex; it
repetitively processes large images of screenshots and op-
timizes hundreds of parameters before being stabilized. As
we trained RLT for only eight minutes (i.e., the same length
with the demo time), it is possible that RLT was not trained
sufficiently and it worked less effectively than LIT.

3) Comparison Based on Coverage Metrics: According to
Table IV, LIT achieved 68% line coverage and 60% branch
coverage on average; Monkey got 44% and 30% on average;
Sapienz’s values are 43% and 28%; RLT acquired 58% and
49%. LIT achieved higher coverage measurements than other
tools; it worked similarly to RLT for 2048 and Open Flood.

Two reasons can explain the observation. First, 2048 and
Open Flood are relatively simple and require for tap gestures;
even Monkey and Sapienz could smoothly test those games
by randomly clicking pixels on screens. Second, the other
four games have more complex contexts (e.g., by including
target icons or organizing actionable icons in a matrix), and/or
require for carefully planned swipe gestures. LIT managed
to infer the tactics, and adopted those tactics to generate
high-quality swipe gestures. Nevertheless, with in eight-minute
training, RLT was unable to create a policy smart enough to
generate as many meaningful actions as LIT does.

4) Comparison Based on Triggered Errors: In our exper-
iments, LIT revealed one runtime failure in Archery and one
program crash in CasseBonbons. However, none of the other
tools triggered any runtime error. We reported the revealed
two issues to developers by filing pull requests, but have not
received any response yet.

Finding 2: On average, LIT outperformed Monkey and
Sapienz by playing games more smartly; it outperformed
RLT although RLT has a complex DNN design and the agent
programming hardcodes a lot more domain knowledge.

Discussion. LIT outperformed RLT, although we pro-
grammed nine specialized agents inside RLT to separately
test the nine games. By improving agent programming and
optimizing hyperparameter settings, AI experts may be able
to create better RL-based tools to outperform LIT. However,
LIT can serve as a better tool in the following circumstances.
First, developers have little or no expertise in artificial intelli-
gence, and cannot program or optimize agents independently.
Second, developers have insufficient computing resources to
thoroughly train a deep-learning model for each game app.

V. THREATS TO VALIDITY

Threats to External Validity: All inferred tactics and
empirical findings mentioned in this paper are limited to
our experiment dataset. Our rule library for tactic inference
currently focuses on three major types of games: (1) basic
puzzle games that require no specialized consideration for
context (e.g., 2048), (2) shooting games (e.g., Archery), and
(3) match3 games (e.g., CasseBonbons). We noticed that prior
work on automatic game testing evaluates each tool with only
1–3 games [7], [8], [36], so our dataset is much larger than the
state-of-the-art research. In the real world, we found hundreds
of games belonging to (2) and (3) [13], [14], which fact implies
the wide application scope of LIT.

To better understand LIT’s potential application scope in the
real world, we examined the most popular 20 games listed on
Google Play [41]. 11 games fall into the categories LIT focuses
on; the remaining 9 games belong to 4 categories: adventure
(e.g., Roblox [42]), race (e.g., Subway Surfers [43]), pet (e.g.,
Pou [44]), and educational (ABCya! [45]).

The four extra categories mentioned above cannot be tested
by LIT for various reasons. First, adventure games have
maps/tracks for players to explore. The scenery and paths
along different tracks can be very different from each other,
so it is difficult for LIT to infer tactics from the user demo
with part of a track and to apply those tactics for playtest
on other tracks. Second, race games usually switch scenes so
fast that LIT cannot capture screenshots in a timely manner.
Third, pet games (e.g., Pou) provide natural-language hints to
players, guiding them to look after pets. Currently LIT does
not have any natural-language processing capability. Fourth,
educational games (e.g., ABCya!) require players to answer
questions based on their knowledge background (e.g., word
spelling skills). LIT needs to be integrated with some databases
of knowledge (e.g., dictionary) to test such games.

VI. RELATED WORK

The related work of our research includes automated testing
for Android apps, empirical studies on automated testing for
Android apps, and automated game testing.

A. Automated Testing for Android Apps

Various tools were proposed to automate testing for Android
apps [4], [5], [10], [20], [46]–[54].

Random-based tools test apps by generating random UI
events and system events [4], [48]. Given an app to test,
model-based tools use static or dynamic program analysis to

build a model for the app as a finite state machine (FSM) [5],
[49], [52]. An FSM represents activities as states and models
events as transitions. The built model is then used to generate
events and explore program behaviors. Since random-based
and model-based tools cannot trigger the program behaviors
that require for specific inputs, systematic exploration tools
were proposed to reveal such hard-to-trigger behaviors in
order to increase test coverage [46], [50], [54]. In particular,
ACTEve [46] is a concolic-testing tool that symbolically tracks
events from the point where they originate to the point where
they are handled, infers path constraints, and creates test inputs
based on the inferred constraints. However, these approaches
do not recognize customized UI items, neither do they observe
domain-specific rules to test games.

Record-and-replay tools record inputs and program exe-
cution when users manually test apps, and then replay the
recorded data to automatically repeat the testing scripts [20],
[51]. The record-and-replay methodology assumes that GUIs
are always organized in a deterministic way and UI items are
always put at fixed locations. However, when game scenes
are randomly generated and game icons randomly move, the
above-mentioned assumptions do not hold. Humanoid [53]
is closely relevant to LIT. It uses deep learning to train a
model with the recorded human-computer interaction traces
from lots of existing apps. To test a new app A based on
the model, Humanoid generates input events depending on (1)
A’s similarity with existing apps and (2) the frequent actions
users take given similar GUIs. However, Humanoid cannot test
games when there is no Android widget (e.g., buttons); it is
insensitive to any app-specific interaction modes because the
trained model focuses on the commonality between apps.
B. Empirical Studies on Android App Testing

Researchers conducted studies on automated testing for An-
droid apps [32], [55]–[58]. Specifically, Choudhary et al. [32]
studied test-input generation tools for Android. Among the
seven tools explored, Monkey [4] was found to execute or
test most code. Based on the study, Zeng et al. [55] applied
Monkey to WeChat—a popularly used Android app, and
revealed two limitations of Monkey. First, Monkey generated
many redundant events. Second, Monkey is oblivious to the lo-
cations of widgets (e.g., buttons) and GUI states. Mohammed
et al. [57] recruited eight users to test five Android apps,
and also applied Monkey to the same apps. They revealed
that Monkey could mimic human behaviors, when apps have
UIs full of clickable widgets to trigger logically independent
events. However, Monkey was insufficient to test apps that
require information comprehension and problem-solving skills
like games. Our idea was stimulated by prior work. Some of
our observations and experience corroborate prior findings.
C. Automated Game Testing

Several approaches were introduced to automate game test-
ing [7], [8], [36], [59]–[61]. Specifically, online testing (e.g.,
TorX [59] and Spec Explorer [60]) is a form of model-based
testing. With online testing, testers use a specification (or
model) M of the system’s expected behavior to guide testing,

and to detect any discrepancy between the implementation
under test (IUT) and M . Both IUT and M are viewed as
interface automata to establish formal conformance relations
between them. However, these testing methods require users to
use domain-specific languages to prescribe models. Sikuli [62]
is an open-source GUI based test automation tool. It uses
techniques like “Image Recognition” and “Control GUI” to in-
teract with elements of web pages and windows popups. Sikuli
requires users to script the testing procedure for automation.
In comparison, LIT does not require users to prescribe any
model or script; it infers playtest tactics from user demos and
uses the tactics to automate testing.

Deep learning-based approaches train models with lots of
playtest data and use those models to predict the most “human-
like” action in a given game scene [7], [8], [36]. For instance,
Wuji [7] is the state-of-the-art tool that uses evolutionary
algorithms, deep reinforcement learning, and multi-objective
optimizations to perform automatic game testing. When testing
a game, Wuji intends to balance between winning the game
and exploring the space. Since we were unable to execute
Wuji even though we contacted the authors for help, we
could not compare LIT with it empirically. These learning-
based approaches usually (1) consume lots of computing time
and resources for game-specific training, and (2) require users
to build DNN architectures and tune hyperparameters. When
developers cannot afford the time, resource, or effort required
by the usage of learning-based tools, LIT can serve as a
lightweight alternative that generates human-like inputs to test
games efficiently and effectively.

VII. CONCLUSION

As the mobile game market grows rapidly, there is an
increasing demand for advanced testing methods to efficiently
test games. Manual testing is expensive and time-consuming,
and existing automatic tools are either too simple to test games
or too complex for general developers to use. When developers
have little domain knowledge of ML and limited resources
(i.e., time and computation), we believe lightweight testing
methods based on user demos to be more cost-effective. Thus,
in this paper, we introduced a novel approach LIT to achieve
a better trade-off between the two factors of game testing:
the testing effectiveness and the technical complexity. To test
a game app, LIT takes in user-specified game icons and a
demo; it then infers tactics from the demo and applies those
tactics to automatically test the same game. Our evaluation
shows exciting results of LIT; it also evidences the strength
of rule-based tactic inference. In the future, we will conduct
a larger-scale evaluation of LIT, and include more inference
rules into LIT to further improve the tool capability.

ACKNOWLEDGMENT

We thank reviewers for their valuable feedback. We also
thank Weihao Zhang for his involvement in the project.

REFERENCES

[1] “The mobile games market is getting bigger – and not
just for the top ten,” https://www.gamesindustry.biz/articles/
2020-02-03-the-mobile-games-market-is-getting-bigger-and-not-just\
-for-the-top-ten, 2020.

[2] “Mobile gaming is a $68.5 billion global business, and
investors are buying in,” https://techcrunch.com/2019/08/22/
mobile-gaming-mints-money/, 2019.

[3] “Angry Birds,” https://www.angrybirds.com, 2020.
[4] “Monkey,” https://developer.android.com/studio/test/monkey, 2020.
[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 258–261.

[6] “Android - UI Controls,” https://www.tutorialspoint.com/android/
android user interface controls.htm, 2020.

[7] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 772–784.

[8] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-like playtesting with
deep learning,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), 2018, pp. 1–8.

[9] “OpenCV,” https://opencv.org, 2020.
[10] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated

testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, pp.
94–105. [Online]. Available: https://doi.org/10.1145/2931037.2931054

[11] “casseBonbons,” https://github.com/IsmaelCussac/casseBonbons, 2020.
[12] “Candy Crush Saga,” https://king.com/game/candycrush, 2020.
[13] “Match 3 games,” https://www.match3games.com, 2021.
[14] “Shooting Games,” https://www.crazygames.com/c/shooting, 2021.
[15] “Archery,” https://github.com/kalina2002/Archery, 2020.
[16] “The graph of y = ax2 + bx + c,” https://www.

mathplanet.com/education/algebra-1/quadratic-equations/
the-graph-of-y-ax-2-plus-bx-plus-c, 2020.

[17] “AndroidLinkup,” https://github.com/csuyzb/AndroidLinkup, 2020.
[18] Google, “Adb, https://developer.android.com/studio/command-line/adb.”
[19] “Getevent,” https://source.android.com/devices/input/getevent, 2021.
[20] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing- and

touch-sensitive record and replay for android,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13.
IEEE Press, 2013, pp. 72–81.

[21] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and
reproducing event-based races in android apps,” in Proceedings
of the 25th International Symposium on Software Testing and
Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 377–388. [Online]. Available:
https://doi.org/10.1145/2931037.2931069

[22] “open flood,” https://github.com/GunshipPenguin/open flood/, 2020.
[23] “Template Matching,” https://docs.opencv.org/4.x/d4/dc6/tutorial py

template matching.html, 2021.
[24] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based

approach to automated black-box android app testing,” 2020.
[25] “20 Mobile Gaming Statistics That Will Blow You Away —

Mobile Gaming Industry Stats,” https://influencermarketinghub.com/
mobile-gaming-statistics/, 2021.

[26] “GDC ’08: Are casual games the future?” https://www.cnet.com/tech/
gaming/gdc-08-are-casual-games-the-future/, 2018.

[27] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy
1.0–Fundamental Algorithms for Scientific Computing in Python,” arXiv
e-prints, p. arXiv:1907.10121, Jul. 2019.

[28] “Ketchapp Basketball,” https://play.google.com/store/apps/details?id=
com.ketchapp.ketchappbasketball&hl=en US, 2020.

[29] “Star Pop Magic,” https://play.google.com/store/apps/details?id=in.
game.starmagic, 2020.

[30] “2048,” https://github.com/gabrielecirulli/2048, 2020.
[31] “apple-flinger,” https://github.com/ar-/apple-flinger, 2020.
[32] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input

generation for android: Are we there yet?” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov 2015, pp. 429–440.

[33] C. Zhang, H. Cheng, E. Tang, X. Chen, L. Bu, and X. Li, “Sketch-guided
gui test generation for mobile applications,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2017, pp. 38–43.

[34] “JaCoCo,” https://www.eclemma.org/jacoco/.
[35] “ASM,” https://asm.ow2.io, 2020.
[36] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing

using synthetic and human-like agents,” IEEE Transactions on Games,
pp. 1–1, 2019.

[37] “Run apps on the Android Emulator,” https://developer.android.com/
studio/run/emulator, 2021.

[38] “Gym,” https://gym.openai.com, 2021.
[39] “Building powerful image classification mod-

els using very little data,” https://blog.keras.io/
building-powerful-image-classification-models-using-very-little-data.
html, 2016.

[40] “Reinforcement learning – Part 2: Getting started with Deep
Q-Networks,” https://www.novatec-gmbh.de/en/blog/deep-q-networks/,
2018.

[41] “games - Android Apps on Google Play,” https://play.google.com/store/
search?q=games&c=apps&hl=en US&gl=US, 2021.

[42] “Roblox,” https://play.google.com/store/apps/details?id=com.roblox.
client&hl=en US&gl=US, 2021.

[43] “Subway Surfers,” https://play.google.com/store/apps/details?id=com.
kiloo.subwaysurf&hl=en US&gl=US, 2021.

[44] “Pou,” https://play.google.com/store/apps/details?id=me.pou.app&hl=
en US&gl=US, 2021.

[45] “ABCya! Games,” https://play.google.com/store/apps/details?id=com.
abcya.android.games&hl=en US&gl=US, 2021.

[46] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2393596.2393666

[47] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’13. New York,
NY, USA: Association for Computing Machinery, 2013, pp. 641–660.
[Online]. Available: https://doi.org/10.1145/2509136.2509549

[48] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation
system for android apps,” in ESEC/FSE 2013, 2013.

[49] S. Hao, B. Liu, S. Nath, W. Halfond, and R. Govindan, “Puma:
programmable ui-automation for large-scale dynamic analysis of mobile
apps,” 06 2014.

[50] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: segmented evolu-
tionary testing of android apps,” in FSE 2014, 2014.

[51] Z. Qin, Y. Tang, E. Novak, and Q. Li, “Mobiplay: A remote exe-
cution based record-and-replay tool for mobile applications,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), 2016, pp. 571–582.

[52] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[53] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2019, pp. 1070–1073.

[54] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
481–492. [Online]. Available: https://doi.org/10.1145/3377811.3380402

[55] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and
T. Xie, “Automated test input generation for android: Are we really
there yet in an industrial case?” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 987–992. [Online]. Available:
https://doi.org/10.1145/2950290.2983958

[56] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie, “An
empirical study of android test generation tools in industrial cases,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2018, pp. 738–748.

[57] M. Mohammed, H. Cai, and N. Meng, “An empirical comparison
between monkey testing and human testing (wip paper),” Proceedings
of the 20th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, 2019.

[58] S. Paydar, “An empirical study on the effectiveness of monkey testing
for android applications,” Iranian Journal of Science and Technology,
Transactions of Electrical Engineering, vol. 44, no. 2, pp. 1013–1029,
2020. [Online]. Available: https://doi.org/10.1007/s40998-019-00270-y

[59] G. Tretmans and H. Brinksma, “Torx: Automated model-based testing,”
in First European Conference on Model-Driven Software Engineering,
A. Hartman and K. Dussa-Ziegler, Eds., 12 2003, pp. 31–43.

[60] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing
with model programs,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,
p. 273?282, Sep. 2005. [Online]. Available: https://doi.org/10.1145/
1095430.1081751

[61] M. Veanes, P. Roy, and C. Campbell, “Online testing with reinforcement
learning,” in Formal Approaches to Software Testing and Runtime
Verification, K. Havelund, M. Núñez, G. Roşu, and B. Wolff, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 240–253.

[62] “Sikuli,” https://www.softwaretestinghelp.com/sikuli-tutorial-part-1/,
2021.

