
 

 

EnHMM: On the Use of Ensemble HMMs and 

Stack Traces to Predict the Reassignment of Bug 

Report Fields 

 

Md Shariful Islam 

Dept. Electrical and Computer Engineering 

Concordia University 

Montreal, QC, Canada 

mdsha_i@ece.concordia.ca 

Abdelwahab Hamou-Lhadj 

Dept. Electrical and Computer Engineering 

Concordia University 

Montreal, QC, Canada  

wahab.hamou-lhadj@concordia.ca 

Korosh Koochekian Sabor 

Dept. Electrical and Computer Engineering 

Concordia University, 

Montreal, QC, Canada 

k_kooche@ece.concordia.ca 

   

 Mohammad Hamdaqa 

Department of Computer and Software 

Engineering 

Polytechnique Montreal 

Montreal, QC, Canada 

mhamdaqa@polymtl.ca 

Haipeng Cai 

School of Electrical Engineering and 

Computer Science 

Washington State University 

Pullman, WA, USA 

haipeng.cai@wsu.edu 

 

Abstract— Bug reports (BR) contain vital information that 

can help triaging teams prioritize and assign bugs to developers 

who will provide the fixes. However, studies have shown that BR 

fields often contain incorrect information that need to be 

reassigned, which delays the bug fixing process. There exist 

approaches for predicting whether a BR field should be 

reassigned or not. These studies use mainly BR descriptions and 

traditional machine learning algorithms (SVM, KNN, etc.). As 

such, they do not fully benefit from the sequential order of 

information in BR data, such as function call sequences in BR 

stack traces, which may be valuable for improving the prediction 

accuracy. In this paper, we propose a novel approach, called 

EnHMM, for predicting the reassignment of BR fields using 

ensemble Hidden Markov Models (HMMs), trained on stack 

traces. EnHMM leverages the natural ability of HMMs to 

represent sequential data to model the temporal order of function 

calls in BR stack traces. When applied to Eclipse and Gnome BR 

repositories, EnHMM achieves an average precision, recall, and 

F-measure of 54%, 76%, and 60% on Eclipse dataset and 41%, 

69%, and 51% on Gnome dataset. We also found that EnHMM 

improves over the best single HMM by 36% for Eclipse and 76% 

for Gnome. Finally, when comparing EnHMM to Im.ML.KNN,  

a recent approach in the field, we found that the average F-

measure score of EnHMM improves the average F-measure of  

Im.ML.KNN by 6.80% and improves the average recall of 

Im.ML.KNN by 36.09%. However, the average precision of 

EnHMM is lower than that of Im.ML.KNN (53.93% as opposed 

to 56.71%).   

Keywords— Bug Report Field Reassignment, Stack Traces, 

Ensemble HMMs, Machine Learning, Mining Bug Repositories 

I. INTRODUCTION 

Bug reports (BRs) contain a wealth of information that is 
used by triaging and development teams to understand the 
causes of bugs in order to provide fixes. The problem is that, 
for various reasons, it is common to have BRs with missing or 

incorrect information, hindering the bug resolution process 
[1][19][21]. Xia et al. [30] showed that 80% of the BRs they 
analyzed (190,558 BRs in total) have their fields reassigned. 
Guo et al. [21] argued that the BR field reassignment problem 
is due to various factors including the difficulty to identify the 
root cause of a bug, ambiguous ownership of BR components, 
poor BR quality, difficulty to determine the proper fix, and 
workload balancing.  

To address the BR field reassignment problem, researchers 
(e.g., [1][30][37]) have turned to machine learning techniques. 
The common practice is to build models that leverage 
historical BRs (the ground truth) to automatically predict when 
a given BR field should be reassigned. Existing approaches 
have mainly relied upon classifiers that make use of natural 
language in the title and description of the BRs. For example, 
Xia et al. [30] trained a multi-label imbalanced KNN model 
(Im-ML.KNN) that is based on BR field metadata, BR 
descriptions and summaries, and a combination of both. 
Although these techniques have shown to be useful, they fail 
to take advantage of the richly detailed sequential information 
that is present in stack traces included in BRs. A stack trace 
contains a sequence of function calls that are in memory when 
a bug occurs, which may be a better characterization of a bug 
as opposed to BR description, which is prone to errors related 
to the use of natural language. 

In this paper, we propose an approach that uses sequences 
of function calls in stack traces and ensemble Hidden Markov 
Models (HMMs) to predict the reassignment of BR fields. 
HMM is a classification technique (more precisely a stochastic 
process) that is designed specifically to model sequential data 
[39]. HMMs are widely used in other areas such as intrusion 
detection [9][17][25], DNA processing [34], speech 
recognition [13], and image processing [40]. Our ensemble 
HMM approach, called EnHMM, combines multiple HMMs, 
trained by varying the number of hidden states, at the decision 
level. This design choice is inspired by prior studies in the field 



 

 

of anomaly detection (e.g., [17][27][28]), which showed 
evidence that the combination of multiple HMMs increases 
accuracy over a single HMM. We conjecture that a best-fit 
ensemble HMM model, trained on stack traces of reassigned 
and not reassigned BRs, would help predict the probability of 
an unknown BR field.  

We applied EnHMM to BRs from the Eclipse and Gnome 
systems. For Eclipse, our approach provides an average 
precision, recall, and F-measure of 54%, 76%, and 60%, 
respectively. For Gnome, we obtained about 41% precision, 
69% recall, and 51% F-measure.  We also found that EnHMM 
improves over the best single HMM by 36% for Eclipse and 
76% for Gnome. These results demonstrate that EnHMM, 
trained on BR stack traces, holds real promise for predicting 
BR field reassignments.  

However, not all BRs come with stack traces. In our case 
study, only 12.9% and 19.08% of the studied Eclipse and 
Gnome BRs have stack traces. This is mainly due to the fact 
that many bug tracking systems are still not equipped with 
adequate mechanisms for managing traces. The objective of 
this study is not to replace the use of BR descriptions, but rather 
to demonstrate the viability of using information contained in 
stack traces to help improve predictive models for BR 
reassignment. We anticipate that future techniques will 
combine BR descriptions with trace information. This study 
should be seen as a step towards achieving this goal.  

The remaining parts of the paper are as follows: In Section 

II, we provide background information on HMM and how to 

construct ensemble HMMs. In Section III, we present our 

approach to predict the reassignment of BR fields using stack 

traces and ensemble HMMs. In Section IV, we describe the 

experimental setup and results. In Section V, we discussed 

threats to validity, followed by related work in Sections VI, and 

finally, conclusion and future directions in Section VII. 

II. BACKGROUND  

A. Hidden Markov Models (HMM) 

HMM is a statistical Markov model that is particularly 
useful for modeling sequential data (e.g., time series data). Fig. 
1 illustrates a generic HMM model, λ = (A, B, π), using an 
example sequence of function calls. The matrix A represents 
the state transition probability distribution, the matrix B 
represents the probability distribution of observation 
sequences, and π represents the initial state probability 
distribution of each hidden state. Training an HMM using a 
discrete sequence of observations 𝒪-(𝒪0, 𝒪1, . . . , 𝒪𝑇−1) aims at 
maximizing the likelihood function 𝑃(𝒪| 𝜆)  over the 
parameter space represented by 𝐴, 𝐵, and 𝜋 [17].  

There exist several algorithms for learning the HMM 
parameters [12]. In our work, we use the Baum-Welch (BW) 
algorithm, which is the most commonly used Expectation-
Maximization (EM) algorithm [3]. The BW algorithm 
iteratively uses a Forward-Backward (FB) algorithm [16] at 
each iteration to efficiently evaluate the likelihood function 
𝑃(𝒪| 𝜆) , and then updates the model parameters until the 
likelihood function stops improving or a maximum number of 
iterations is reached. 

An HMM is a soft detector due to the fact that it gives a 
score (i.e., the likelihood probability) instead of a decision (in 

our case, a decision could be a specific BR field being 
reassigned or not). A soft detector can be converted into 
multiple crisp detectors (a detector in a binary classification 
problem that always gives a decision) by setting various 
thresholds on scores. We can then plot the performance of the 
crisp detectors, produced by one soft detector, into a Receiving 
Operating Characteristics (ROC) curve after setting various 
thresholds on scores. This way, a set of decisions produced by 
a crisp detector using a validation or a testing set is represented 
by a single point on the ROC curve where the x-axis represents 
the computed false positive rate (fpr) and the y-axis represents 
the true positive rate (tpr). 

 

Fig. 1. A generic HMM model in training a BR field. 

 
Fig. 2. An example of Boolean combination of HMMs. 

Fig. 2 shows two soft HMM detectors, D1 and D2, which 

have four corresponding crisp detectors (i.e., single points on 

the ROC curve), obtained by setting four different thresholds 

on scores computed by D1 and D2. The two soft detectors, D1 

and D2, produced two ROC curves where each has four 



 

 

candidate crisp detectors: D1(c1, c2, c3, and c4) and D2(p1, 

p2, p3, and p4). The Area Under the Curve (AUC) of the ROC 

curve produced by the soft detector D1 is 0.82, and D2 is 0.62, 

meaning that D1 performs better than D2. There is however a 

way to further improve accuracy by combining the decisions 

produced by both D1 and D2. This is the subject of the next 

subsection. 

B. Ensemble HMMs Using Boolean Combination 

Multiple HMMs can be generated by varying the number of 

hidden states. There exist various ways for combining 

classifiers (see [10]). In this paper, we focus on Boolean 

combination techniques. Barreno et al. [31] proposed an 

approach, called Pair-wise Brute-forces Boolean Combination 

(BBC2), for combining multiple detectors. BBC2 uses all 

possible combination pairs among all the available candidate 

crisp detectors. For example, in Fig. 2 the eight candidate crisp 

detectors (c1 to c4 and p1 to p4) produce 66 combination pairs. 

Each pair is then combined by ten different Boolean functions 

(a∧b, ¬a∧b, a∧¬b, ¬(a∧b),  a∨b, ¬a∨b, a∨¬b, ¬(a∨b), 

a⊕b, a≡b). Therefore, it produces 66x10=660 emerging 

responses on the ROC space, which are then turned into 660 

emerging points (e) on the ROC space. The points that have 

the highest AUC are then selected to compute the target 

composite ROC curve. In this example, two emerging points, 

e1 and e2 are used to compute the final composite ROC curve 

that improves the AUC.  

Though effective, the BBC2 approach suffers from 

scalability problems due to the large number of required 

combinations. To address this issue, Khreich et al. [28] 

proposed the Iterative Boolean Combination (IBC) approach. 

IBC combines all available soft detectors in an iterative 

manner. In the first iteration, IBC starts by combining the first 

two soft detectors. The resulting composite ROC curve is then 

combined with the third soft detector, and continues up to 

combine the last soft detector. The process is repeated 

iteratively until no further improvement is obtained. At the 

end, IBC computes the final composite ROC curve and stores 

all the sequences of Boolean combination rules that are used to 

reach each of the emerging points (e) on that composite ROC 

curve. The combination rules are then used during testing.  

Recently, Shariful et al. [17] proposed a new approach 

called Weighted Pruned Iterative Boolean Combination 

(WPIBC) that uses the Cohen’s kappa statistics to define the 

level of (dis)agreement between two combined soft or crisp 

detectors [4][26]. The goal is to ensure the diversity among the 

combined detectors [14][17]. WPIBC prunes redundant 

detectors to reduce the computation time and to improve 

scalability, especially with a large number of combined 

detectors. We leverage WPIBC, in this paper, to combine 

multiple HMM models.  

WPIBC works in three phases: Consider k HMMs (HMM1, 

… HMMk) soft detectors that produce Sk set of scores on the 

validation set, V. Assume the possible threshold on scores Sk, 

produced by the soft HMMk. is Tk. Phase 1 of WPIBC first 

selects l most diverse soft HMM detectors out of k HMMs 

detectors using the weighted kappa agreement coefficient. 

Phase 2 selects Cl complementary crisp detectors from Tk 

possible candidate crisp detectors using simple kappa 

agreement coefficient. At the end, Phase 3 constructs the 

Boolean combination rules by combining those selected base 

soft and complementary crisp detectors using the same IBC 

Boolean combination technique. We also applied these three 

phases to construct an ensemble HMM from multiple HMM 

models. More details are provided in the next section. 

III. ENHMM APPROACH 

Our approach for predicting the reassignment of BR fields 
consists of four phases as shown in Fig. 3: (1) preprocessing, 
(2) training, (3) validation, and (4) testing. In the preprocessing 
phase, we extract and profile sequences of function calls from 
stack traces of BRs. Note that not all BRs come with stack 
traces so we only include BRs with stack traces in our dataset. 
In the training phase, we use temporal sequences of function 
calls extracted from stack traces to train multiple HMMs for 
each BR field of interest (e.g., product, component, etc.). In the 
third phase, the validation phase, we select the most diverse 
detectors out of the available HMMs. For this, we use WPIBC 
[17], which ensures diversity among the combination of 
multiple detectors. The selected diverse detectors are used to 
construct the proposed ensemble HMMs. In the last phase, the 
testing phase, we use the constructed Boolean combination 
rules on each BR field of the testing set of BRs to predict 
whether it gets reassigned or not.  

 

Fig. 3. An overview of our  approach. 

A. Extracting and Profiling Sequences of Function Calls 
from Stack Traces 

A stack trace contains a sequence of function calls that are 
in memory when the crash occurs. In both Eclipse and Gnome 
bug tracking systems (used in this study), a BR submitter 
manually appends stack traces to BR descriptions and 
comments. To extract stack traces, we need to use regular 
expressions.  

Bettenburg et al. [20] implemented a tool (Infozila) to 
extract stack traces from Eclipse BR descriptions and showed 
that their regular expression can extract stack traces with 98% 
accuracy. Lerch et al. [11] improved the regular expression 
proposed by Bettenburg et al. [20] to detect stack traces with a 
higher accuracy and proposed the following regular 
expression, which we use in our study: 

[EXCEPTION] ([:][MESSAGE])? ([at][METHOD][(] 
[SOURCE] [)] )+ ( [Caused by:] [TEMPLATE] )? 

Similarly, we need to define a regular expression to extract 
stack traces from BR descriptions in the Gnome bug tracking 
system. We designed the following regular expression after the 
third author examined manually over 100 Gnome BRs: 



 

 

([#NUMBER] [HEX ADDRESS] [IN] [FUNCTION 
NAME] [(] [PARAMETERS] [)] ([FROM] | [AT]) 
([LIBRARYNAME] | [FILENAME]))* 

For each BR, we extract the sequence of function calls in its 
associated stack trace, which we will use to train multiple 
HMMs.  

B. Training an HMM 

Our approach is used to predict the reassignment of any BR 
field of interest (e.g., component, product, severity, OS, 
version, etc.) that we refer to as BR field, Fi.  

For a given Fi, we create an HMM by specifying the 
number of hidden states. The training phase consists of the 
following steps. We split the BRs into two sets: the BRs that 
have their field Fi reassigned (R) and those that have their field 
Fi not reassigned (NR). We use 70% of BRs from R to train the 
HMM. We use 10% of BRs from R and another 10% of BRs 
from NR to create the validation set. For testing (see the next 
subsection), we use 20% of BRs from R and the remaining 
90% of BRs from NR. This way of splitting the data is a 
common practice in machine learning. This said, a different 
splitting may yield different results, which constitutes an 
internal threat to validity of our approach. 

 
 
Fig. 4.  Splitting the training, testing, and validation sets from the Eclipse bug 

reports on field, Fi (i=Component) for HMM-RFi and HMM-NRFi models. 

The output of this phase is an HMM that learns the pattern 

of BR-associated stack trace for which field Fi is reassigned. 

We call this model HMM-RFi . This model can help predict for 

a new incoming BR whether field Fi would get reassigned or 

not. However, the limited number of trained reassigned BRs 

(i.e., observations from the rare class) on a specific field Fi 

causes a data imbalance problem as shown by Xia et al. [30]. 

Simply learning a model from the BRs for which Field Fi is 

reassigned will most likely increase the false positive rate. To 

address this, we need to create another model that is trained on 

the major class observations (meaning BRs for which Fi is not 

reassigned). We create another model, called HMM-NRFi to 

represent BRs in the historical data for which Fi is not 

reassigned. The idea is to combine multiple instances of each 

model by varying the number of hidden states (see next 

subsection) into a powerful detector that knows about both the 

rare and major class observations. HMM-NRFi is trained using 

the same process as HMM-RFi. We use 70% of NR for training, 

10% from R and another 10% from NR for validation. For 

testing, we use 90% of R BRs and 20% from NR.   Fig. 4 shows 

how the data is split for training, validation, and testing 

purposes for both HMM-RFi and HMM-NRFi with an example 

of 10,860 BRs collected from the Eclipse project on 

‘component’ field (given in Table I). 

C. Constrcuting Ensemble HMMs 

The proposed ensemble HMMs are composed of HMM-RFi 
and HMM-NRFi; each trained by varying the number of hidden 
states from N=10, 20…200. As a result, for each field Fi, we 
will have 20 HMM-RFi and 20 HMM-NRFi models combined. 
To our knowledge, there is no work that precisely defines how 
many hidden states we should have for best accuracy. Most 
studies (e.g., [28]) vary the number of hidden states as we 
propose in this paper.  

The combination of these multiple HMM-RFi and HMM-
NRFi soft detectors works at the decision label (i.e., ‘0’ for not 
reassigned and ‘1’ for reassigned). A decision is made by a 
crisp HMM-RFi or HMM-NRFi detector with a predefined 

threshold, . Assume, in the validation set, we have n BRs for 
Field Fi. We therefore obtain n scores (Sn) computed by a 
trained soft HMM-RFi / HMM-NRFi detector. We obtain n 

responses {Rn: 1 if Sn >, otherwise 0}, which also represents 
the number of crisp detectors. Our HMM decision-level 
combination technique is based on WPIBC and consists of 
three steps (as shown in the Background section): (a) selecting 
base soft detectors, (b) selecting complementary crisp 
detectors, and (c) constructing Boolean combination rules. 

 

Fig. 5.  Example of selected six diverse base HMM-RFi and HMM-NRFi soft 

detectors after pruning all the redundant ones under the ROC space using the 

validation set.  

Selecting Base Soft Detectors: Suppose, there are k trained 
HMM-RFi and HMM-NRFi soft detectors and each one 
produces a set of scores ( Sk ) of size |V|, where V is the 
validation set. We use Tk  to refer to all possible thresholds on 
scores. Therefore, we have k ROC curves (Sk, Tk) with k AUC 
values. Initially, we select a base soft detector k∗ =
max [AUC(k)]  for which the AUC is the highest. Then we 



 

 

compute agreement coefficients between the base soft detector 
(k∗ ) and all the other soft detectors. We set an agreement 

threshold  to 90% as a default value. This means that soft 
detectors that agree 90% with scores computed by the base soft 
detector (k∗) are considered redundant, and therefore should be 
pruned. Assume, we found k~  redundant copies of the base 
detector k∗. So, we select the base k∗ and prune k~ redundant 
ones. The process is repeated with the remaining (k − k~ − k∗) 
soft detectors and continues until we are left with only one base 
soft detector. At the end, we obtain a total of l << k diverse 
base soft detectors. 

Fig. 5 shows an example with k=40 trained soft detectors 
(i.e., 20 HMM-RFi and 20 HMM-NRFi) using the validation set. 
We can see that only six (i.e., l=6, three from HMM-RFi and 
three from HMM-NRFi) soft detectors are selected as diverse. 
All the other ones are pruned because they are redundant. The 
resulting l=6 base soft detectors are then used to select the final 
complementary crisp detectors.  

Selecting Complementary Crisp Detectors: Suppose we 
have 𝑇𝑙  possible thresholds on scores computed by a base soft 

𝐻𝑀𝑀 − 𝑅𝐹𝑖
𝑙  or 𝐻𝑀𝑀 − 𝑁𝑅𝐹𝑖

𝑙  detector (l). We therefore 

obtain 𝑇𝑙  candidate crisp 𝐻𝑀𝑀 − 𝑅𝐹𝑖
𝑙 (𝑇𝑙)  or 𝐻𝑀𝑀 −

𝑁𝑅𝐹𝑖
𝑙 (𝑇𝑙) detectors. Then, we compute kappa (kp) agreement 

coefficients between each crisp detector’s decisions and 
decisions from the ground truth. The accurate crisp detectors 
should be close to 𝑘𝑝 ≈ 𝑘𝑝𝑚𝑎𝑥 and their complementary crisp 
detectors should be close to 𝑘𝑝 ≈ 𝑘𝑝𝑚𝑖𝑛.  Assume the number 
of selected crisp detectors is D and the ratio between accurate 
and their complementary crisp detectors is 50%, we sort 
candidate crisp detectors in a descending order based on their 
kp agreement coefficients. Then, we select the top D/2 (i.e., 
50% of total) as accurate crisp detectors and the bottom D/2 as 
their complementary ones, respectively. 

Constructing Boolean Combination Rules: We combine 
decisions/responses (0/1) produced by each selected 
complementary crisp detector by leveraging the WPIBC 
Boolean combination technique [17]. WPIBC uses the same 
Boolean operators as previous approaches, namely IBC [28], 
except that it uses only base soft detectors with their selected 
complementary crisp detectors instead of all available 
candidate soft and crisp detectors (as it is the case of IBC). We 
also use ten different Boolean combination functions to 
combine two crisp detectors’ decisions on the ROC space. 
Initially, we combine the first two base soft detectors and then, 
the resulting emerging responses are combined with the next 
base one and so on. We repeat this combination process 
iteratively until no further improvement is reached. The 
composite ROC curve (red curve in Fig. 5) with the AUC about 
93% is the combination of selected complementary crisp 

HMM-RFi/HMM-NRFi detectors produced by six selected base 
soft HMM-RFi/HMM-NRFi detectors using the validation set 

and  as a threshold. The constructed Boolean combination 
rules are then used during testing. 

IV. CASE STUDY SETUP AND RESULTS 

This case study aims to answer the following questions: 

 

• RQ1: How does EnHMM perform in terms of its ability 

to predict BR field reassignment? 

• RQ2: How does EnHMM perform in comparison to a 

single HMM when predicting BR field reassignment? 

• RQ3: How does EnHMM compare to Im.ML.KNN, a 

leading technique?  

A. Datasets 

We use Eclipse and Gnome bug repositories to assess the 
performance of our approach. Eclipse and Gnome are two open 
source software systems and their bug repositories are publicly 
available through Bugzilla bug tracking system. We only 
consider BRs with status “resolved”, “closed”, “verified”, and 
“fixed”. For Eclipse, we collected 83,984 BRs that were 
submitted between January 2008 to July 2011, which is the 
same period that was used in other studies (e.g., Im-ML.KNN 
[30], ML.KNN [18]).  The number of Eclipse BRs with stack 
traces is 10,860, which accounts for 12.9% of the total number 
of BRs. For Gnome, we collected 55,438 BRs from December 
2007 to July 2011, among which 10,579 (19.08%) have stack 
traces. This dataset was used by the authors in other studies. 
(We are currently building larger datasets on which we intend 
to replicate this work.) 

Table I shows the distribution of reassigned and not 
reassigned BRs for eight BR fields: Product, Component, 
Version, OS, Priority, Severity, and Status. As expected, the 
number of BRs for which field Fi is not reassigned is much 
higher than the number of BRs that are reassigned, which 
shows a clear imbalance of the data. As we explained in 
Section III.B, we address this by creating a model for each 
class, HMM-RFi and HMM-NRFi, and combine them. 

B. Training HMMs for Field Fi 

As discussed in Section III, to train an HMM, we split the 
BRs associated with field (Fi) into two groups: BRs that have 
Fi reassigned, and those that have Fi not reassigned. Each group 
is then divided into three sets: training (70%), validation 
(10%), and testing (20%). The 10% validation set contains BR 
traces from each group. For testing, we use 20% of BR traces 
from the training class and 90% from the other group of BR 
traces. For example, in Eclipse, the number of stack traces used 
for training, validation, and testing one HMM-NRFproduct 

TABLE I.  STATISTICS ON BRS (BR) WITH STACK TRACES COLLECTED FROM ECLIPSE AND GNOME BUG REPOSITORIES. 

Dataset Class Label Assignee Product Component Version OS Priority Severity Status 

#BR % #BR %  #BR % #BR % #BR % #BR % #BR % #BR % 

Eclipse 

 

Not-Reassigned 3,566 33 9,156 84 8,081 74 8,875 82 10,194 94 9,702 89 9,593 88 9,451 87 

Reassigned 7,294 67 1,704 16 2,779 26 1,985 18 666 6 1,158 11 1,267 12 1,409 13 

Gnome Not-Reassigned 3,752 73 8,813 83 7,930 75 6,612 63 10,471 99 9,404 89 9,317 88 9,736 92 

Reassigned 6,827 27 1,766 17 2,649 25 3,967 37 108 1 1,175 11 1,262 12 843 8 

 



 

 

model, given that the number of BRs with stack traces that 
have the product field reassigned and not reassigned is 1,704 
and 9,156, respectively (see Table I) is as follows: 

- Training set contains 6,409 traces (=9,156*70%) 

- Validation set contains 1,086 traces (9,156*10% + 
1,704*10%) 

- Testing set contains 3,365 traces (=9,156*20% + 
1,704*90%) 

We apply the same process to HMM-RFproduct and also to 
construct HMM-RFi and HMM-NRFi for every other field Fi. In 
addition, for each field Fi, we train 20 HMM-RFi and HMM-
NRFi by varying the number of hidden states (N), from 10 to 

 
Assignee Component  OS  Priority 

 

 
Product   Severity  Version    Status 

 

Fig. 6 Results on the testing set for Eclipse bug report fields 

 
Assignee  Component  OS  Priority 

 
 Product  Severity  Version  Status       

 
Fig. 7 Results on the testing set for Gnome bug report fields. 



 

 

200 with bonds of 10. In total, we built 280 (=40*7) different 
HMM models for the prediction of the seven BR fields shown 
in Table I. Note that not all of these HMM models are used in 
the actual prediction since the WPIBC (the selected HMM 
combination approach) prunes the redundant ones. 

C. Evaluation Metrics 

In addition to the ROC curve that we discussed in Section 
III, we also use precision, recall, and F-measure to measure the 
performance of EnHMM to predict BR field reassignment. 
These metrics are used in the literature to evaluate the accuracy 
of a classifier [1][8][18][21].  

 
Precision and recall are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                      (2) 

 
TP: True Positives; FP: False Positives; FN: False 

Negatives.  

Precision is the ratio of the number of BRs that we correctly 
predicted that their field (Fi) is reassigned (TP) to the total 
number of BRs for which we predicted that their field (Fi) is 
reassigned (TP+FP). Recall is the ratio of the number of BRs 
that we correctly predicted that their field (Fi) is reassigned 
(TP) to the total number of BRs that actually have their field 
(Fi) reassigned (TP+FN). To have a better perception of the 
result, we also use F-measure, a harmonic mean of precision 
and recall and is defined as follows: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒   =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
          (3) 

D. Experimental Results 

We use the ROC curves (see Fig. 6 and Fig. 7) to show the 
effectiveness of EnHMM in predicting whether a BR field of a 
new incoming BR would be reassigned or not by addressing 
RQ1, RQ2, and RQ3.   

 
TABLE II. ACCURACY OF ENHMM 

BR Field Datasets Precision Recall F-measure 

Assignee Eclipse 80.15% 97.12% 87.82% 

Gnome 82.69% 95.91% 88.82% 

Component Eclipse 62.50% 67.87% 65.00% 

Gnome 45.61% 100.0% 62.65% 

OS Eclipse 36.82% 100.0% 53.83% 

Gnome 28.71% 100.0% 55.81% 

Priority Eclipse 54.75% 75.63% 63.52% 

Gnome 26.32% 55.56% 35.71% 

Product Eclipse 57.57% 98.90% 72.78% 

Gnome 45.61% 40.63% 42.98% 

Severity Eclipse 21.04% 72.87% 32.66% 

Gnome 22.17% 65.15% 33.08% 

Version Eclipse 61.19% 72.00% 66.16% 

Gnome 50.88% 58.00% 54.21% 

Status Eclipse 57.41% 26.72% 36.47% 

Gnome 28.57% 34.78% 31.37% 

Average Eclipse 53.93% 76.39% 59.78% 

Gnome 41.32% 68.76% 50.59% 

 

RQ1.  How does EnHMM perform in terms of its ability to 
predict BR field reassignment? 

 
We can easily compute the best precision, recall, and F-

measure for each predicted BR field Fi from the corresponding 
ROC curve shown in Fig. 6 and Fig. 7. Each point (fpr, tpr) on 
the final composite ROC curve produced by EnHMM 
represents the predicted responses (i.e., the decisions whether 
the testing BRs will be reassigned (i.e., 1) on field Fi or not 
reassigned (i.e., 0) on field Fi. We used this set of predicted 
responses (i.e., a set of points) on the composite ROC curve for 
Field Fi to compute a set of precisions, recalls, and F-measures 
using Equations (1), (2), and (3). Finally, a point (i.e., the tpr 
and fpr of the responses or predicted outcomes) out of all the 
points on the ROC curve produced by EnHMM (red one with 
star marker points) that give the maximum F-measure is 
selected as the best predictor with a best precision, recall, and 
F-measure for each BR field Fi. 

Table II shows the best F-measure of the proposed 
ensemble HMMs for each field Fi from the corresponding ROC 
curve shown in Fig. 6 for Eclipse and Gnome datasets. Overall, 
EnHMM performs relatively well for most cases, with some 
noticeable exceptions. For example, it only detects the 
“severity” field with a precision of 21% for Eclipse and 22% 
for Gnome (the lowest precision obtained). We also notice that 
for the “status” field, EnHMM achieves a low recall for both 
Eclipse and Gnome (27% and 35% respectively). This may be 
due to the low number of BRs for which this field is reassigned 
as shown in Table I. On the other hand, we notice a very high 
precision and recall for fields that contain a large number of 
BRs for which the respective field is reassigned very often. For 
example, the “assignee” field, which is reassigned in 68% of 
the BRs for Eclipse and 27% BRs in Gnome can be predicted 
with 80% precision and 97% recall for Eclipse and 83% 
precision and 96% recall for Gnome. We need to conduct more 
studies to understand the reasons behind the performance of 
EnHMM by examining various factors including the impact of 
the size of the dataset on the approach, as well as the size and 
content of the BR stack traces. For now, we state the following 
finding: 

 

Finding 1:   
 
EnHMM achieves an average precision, recall, and F-measure 
of 54%, 76%, and 60% on Eclipse dataset and 41%, 69%, and 
51% on Gnome dataset. 
 

  
RQ2. How does EnHMM perform in comparison to a single 

HMM when predicting BR field reassignment? 
 
From Fig. 6 and Fig. 7, we can see that EnHMM 

(represented with the red curve in the figures) always gives a 
better accuracy than the best selected single HMM detector 
(the blue/pink curves) for all BR fields for both datasets.  The 
ensemble HMMs significantly improves the AUC, while 
reducing the false positive rates compared to the best single 
HMM (the ROC curve in blue or pink depending on the field, 
which is the closest to the EnHMM red curve). For example, 
for the “assignee” field in Eclipse data (see Fig. 6 Assignee), 



 

 

the AUC of the ROC curve corresponding to the three selected 
HMM-NRassignee is 0.645, the AUC of the three selected HMM-
Rassignee is 0.628, and the AUC of EnHMM (composite ROC 
curve) = 0.718. This also shows that the rules constructed by 
the ten different Boolean combination functions yields good 
results.   

To dig deeper, we analyzed each ROC curve shown in Fig. 
6 and Fig. 7 on Eclipse and Gnome testing datasets to find the 
maximum tpr at the y-axis against a maximum tolerable fpr 
(MTPR) at the x-axis for each BR field using EnHMM and a 
single HMM. We measure the improvement as follows: 

Improvement = (TPREnHMM – TPRsingleHMM) / TPRsingleHMM 

Table III shows the results. For example, for the “assignee” 
field in Eclipse data, the maximum tolerable FPR (MTFPR) is 
12%, the TPR obtained using EnHMM that corresponds to 
MTFPR in the ROC curve is 32% and that of a single HMM is 
26%, which shows that EnHMM results in 23% (i.e., (32%-
26%)/26%) improvement over the best single HMM.   

TABLE III. IMPROVEMENT OF ENHMM OVER A SINGLE HMM 

BR Field Datasets MTFPR TPR 
EnHMM 

TPR 
Single 
HMM 

Improvement 

Assignee Eclipse 12% 32% 26% 23% 

Gnome 11% 34% 27% 26% 

Component Eclipse 5% 24% 14% 71% 

Gnome 1% 19% 4% 375% 

OS Eclipse 22% 51% 47% 9% 

Gnome 12% 43% 43% 0% 

Priority Eclipse 2% 30% 22% 36% 

Gnome 8% 47% 42% 12% 

Product Eclipse 2% 19% 12% 58% 

Gnome 14% 49% 42% 17% 

Severity Eclipse 12% 29% 20% 45% 

Gnome 12% 38% 20% 90% 

Version Eclipse 10% 41% 30% 37% 

Gnome 5% 26% 15% 73% 

Status Eclipse 16% 44% 39% 13% 

Gnome 6% 44% 39% 13% 

Average Eclipse 10% 34% 26% 36% 

Gnome 9% 38% 29% 76% 

 
In addition, Fig. 6 and Fig. 7 show the number of selected 

detectors out of the 40 detectors (20 HMM-RFi and 20 HMM-
NRFi) used initially for each field. For example, for the 
“product”, “component”, “severity” and “assignee” fields in 
Eclipse dataset, our approach only needed 6 detectors (3 
HMM-RFi and 3 HMM-NRFi) out of 40 to provide optimum 
AUC (=0.734). The maximum number of selected detectors 
(i.e., after the pruning step) independently from any field is 8. 
We needed a maximum of 5 HMM-RFi and 3 HMM-NRFi to 
attain best accuracy for the prediction of the OS and Priority 
fields. Similarly, we needed 3 HMM-RFi and 3 HMM-NRFi to 
predict the “component”, “OS”, “product”, “priority” and 
“severity” fields for the Gnome dataset. In other words, our 
approach only needed a maximum of 8 out 40 initial detectors 
(20%) to predict any of the fields, which suggests that it is not 
only effective for predicting the reassignment of these fields, 
but also scalable with the growing number of detectors.  

 
 
 

Finding 2:   

EnHMM improves over a single HMM by 36% for Eclipse and 
76% for Gnome. In addition, EnHMM requires at most 20% of 
the initial detectors thanks to the Kappa-based pruning 
approach used to prune redundant detectors.  

 
RQ3: How does EnHMM compare to existing techniques? 

 
We compare our approach to a recent approach proposed 

by Xia et al. [29], called the imbalanced multi-label k-Nearest 
Neighbors (Im-ML.KNN). The authors proposed a machine 
learning method that is a composite classifier where each 
classifier uses the same multi-label KNN (ML.KNN) machine 
learning algorithm [18] to train the model. The main novelty 
of Im-ML.KNN is the combination of three classifiers that are 
built on top of three separate features types: BR field metadata, 
BR description and summary, and a mix of both. When applied 
to four large BRs datasets (OpenOffice, Netbeans, Eclipse, and 
Mozilla) containing a total of 190,558 BRs, the authors showed 
that their approach achieves an average F-measure score of 
56%-62%. They also showed that Im-ML.KNN improves on 
average the F-measure scores by 119.69%, 9.11%, and 
161.08% when compared with past methods namely the 
method proposed by Lamkanfi et al. [1], ML.KNN [30], and 
HOMER-NB [8], respectively. 

The authors, however, did not provide a reproduction 
package, which made it challenging for us to reuse their 
approach. Reimplementing Im-ML.KNN would require 
resources and even if we succeeded to do so, it would have 
been difficult to reproduce their experiments on our datasets 
because of the number of parameters that we needed to 
provide, which we could not find (at least explicitly) in the 
corresponding papers. In addition, the only common dataset 
between their approach and ours is the Eclipse dataset.   

Despite these challenges, we attempt, in this paper, to 
provide a baseline comparison by comparing the results of our 
approach when applied to the Eclipse BRs with stack traces 
(this represents only 12.9% of BRs of the entire Eclipse 
dataset) to the results obtained by Im-ML.KNN applied to the 
entire Eclipse dataset as reported in their respective papers. We 
want to note that in their paper [29], the authors reported that 
they collected 50,639 BRs for almost the same period (i.e., Jan 
2008 to July 2011), whereas we found that during this period 
there are 83,984 BRs with status “fixed”. This discrepancy 
may be due to the fact that we included BRs with status 
“verified”. We do not think that this has an impact on the 
comparison since we are using BRs with stack traces, which is 
a small subset of the entire BR space anyway.  

Table IV shows the best F-measures of EnHMM for each 
BR field and that of Im.ML.KNN. We also measure the 
improvement. As we can see that, although EnHMM is tested 
on far fewer data points than Im.ML.KNN, the average F-
measure score of EnHMM improves the average F-measure 
score of Im.ML.KNN by 6.80% (this is calculated as follows: 
(59.78%-55.97)/55.97%).  

 
 
 
 



 

 

The EnHMM F-measure score is higher than that of 
Im.ML.KNN for five fields out of eight. Major improvements 
are observed for the “priority”, “severity”, and “status” fields 
(between 17.35% to 147.25%).  Slight improvements can be 
seen for the “assignee”, “component”, and “version” fields 
(between 1.33% and 4.34%). For the “OS” field, we observe 
that EnHMM F-measure score is considerably lower than that 
of Im.ML.KNN (improvement of -18.51%), possibly because 
of the low number of reassigned BRs used for training (only 
6% as shown in Table I). This also suggests that having more 
BRs with stack traces may improve the accuracy of the 
proposed solution. We intend to conduct more studies to 
understand the underlying reasons behind the performance of 
EnHMM across these BR fields. We need to examine in more 
depth how the size of the dataset, the quality of the traces, and 
the use of a particular learning algorithm impact the results.  

Table V shows a comparison of both approaches using the 
average precision and recall. Xia et al. [29] did not report the 
precision and recall obtained by applying Im.ML.KNN to each 
field. They only included the averages shown in Table V. We 
can see that, on average, EnHMM has a much higher recall 
(76.39% compared to 56.13%), but a lower precision (53.93% 
compared to 56.71%).   

TABLE V. COMPARISON BETWEEN ENHM AND IM.ML.KNN 

Approach Average Precision Average Recall 

EnHMM 53.93% 76.39% 

Im-ML.KNN 56.71% 56.13% 

Improvement -4.90% 36.09% 

 

Finding 3:   
 
The average F-measure score of EnHMM, trained on 12.9% of 
Eclipse BRs, improves the average F-measure of Im.ML.KNN 
when trained on the entire dataset described in [29] by 6.80%. 
EnHMM improves the average recall of Im.ML.KNN by 
36.09%. The average precision of EnHMM is lower than that 
of Im.ML.KNN by an improvement of -4.90%.  
 

E. Discussion  

On the performance of EnHMM: The appealing results 

obtained by EnHMM are attributable to the power of HMMs 

in modeling sequential data as opposed to traditional machine 

learning techniques, which do not take full advantage of 

sequential data. Moreover, fusing weak and best classifiers 

using 10 different Boolean functions maximizes the diversity 

between two combined detectors. In fact, it is the most 

important ground truth for any ensemble approach [14][17].  

On the use of stack traces: Our findings clearly demonstrate 
the viability of the use of stack traces in predicting bug report 
fields. This confirms the need to better collect, store, and 
manage stack traces whenever a bug report is submitted. For 
the present time, both Eclipse and Gnome rely on stack traces 
that are copied and pasted in BR descriptions by end users. 
This process is error-prone and may result in the presence of 
noise. Bug report tracking systems must be equipped with 
powerful mechanisms for managing historical traces that can 
later be used for all types of applications including the 
prediction of BR field reassignment.  

Precision vs Recall: As we mentioned earlier, EnHMM 

improves recall significantly but does not necessarily improve 

precision. In other words, with EnHMM, we can predict BR 

fields better than Im.ML.KNN, with a risk of having higher 

rate of false positives (number of correct BR fields that are 

predicted as possible reassignments). A high positive rate may 

not be desirable since users may lose trust in the system when 

they see many false alarms. The low precision may be due to 

many factors including the small size of BRs with stack traces, 

the fact that EnHMM relies solely on stack traces unlike 

Im.ML.KNN, which combines BR field metadata, BR 

description and summary, and a mix of both. We should also 

consider in practice to implement a feedback loop that can help 

our prediction algorithm to learn new cases so as to prevent 

from misclassifying newer and similar cases. Finally, we can 

also work on improving the algorithmic part of EnHMM by 

combining heterogenous classifiers.  

On the use of heterogenous detectors: EnHMM is based on 

a combination of multiple HMM homogenous classifiers, 

trained by varying the number of hidden states. This said, the 

combination process itself is not linked to the sole use of  

HMM. It can, for example, be used to combine decisions from 

other types of classifiers such as those built using SVM, KNN, 

etc. as discussed by Khreich et al. [38]] in their anomaly 

detection approach. We believe that this can further improve 

the diversity aspect of the combination process (which is now 

supported through the use of the Kappa coefficient).  

V. THREATS TO VALIDITY 

Threats to external validity: Our approach is evaluated 
against two open source datasets. We need to experiment with 
more datasets that contain a large number of stack traces to 
generalize the results. We also need to use other features such 
as BR descriptions, summaries, and so on to assess the 

TABLE IV. COMPARISON  BETWEEN ENHMM AND IM.ML.KNN BASED ON F-MEASURE 

F-measure Average Assignee Component OS Priority Product Severity Version Status 

EnHMM 59.78% 87.82% 65.00% 53.83% 63.52% 72.78% 32.66% 66.16% 36.47% 

Im-ML.KNN 55.97% 86.67% 63.65% 66.06% 54.13% 73.34% 25.77% 63.41% 14.75% 

Improvement 6.80% 1.33% 2.12% -18.51% 17.35% -0.76% 26.74% 4.34% 147.25% 

 



 

 

effectiveness of EnHMM on these features in situations where 
one cannot rely on stack traces. In addition, the comparison 
section is based on two different sets of BRs from Eclipse bug 
reports that were submitted between Jan 2008 and July 2011. 
It is provided here as a baseline comparison to position our 
approach with respect to the literature. A fair comparison must 
be based on the exact datasets. 

Threats to internal validity: In our approach, the way we set 
the hyperparameters A and B, conditional probability matrices, 
to construct HMM could be a threat to internal validity. We 
used the validation set to optimize A and B. A different 
validation set could result in a different initialization of A and 
B, which my produce another model. However, to our 
knowledge there is no clear solution to this problem and most 
studies that use HMM follow random initialization of A and B 
and repeat this process several times until a satisfactory model 
is obtained. In addition, we chose to build 40 HMMs for each 
BR field by varying the number of hidden states. A different 
configuration may yield other results. Another threat may be 
with respect to the use of regular expressions to extract stack 
traces from BR descriptions. Our regular expression may have 
missed some stack traces, which may impact the accuracy of 
our approach. In addition, we implemented many scripts to 
extract data, build HMMs, etc. Although care was exercised 
when writing these scripts, errors may have occurred.  

Threats to construct validity: The construct validity shows 
how the used evaluation measures could reflect the 
performance of our predictive model. In this study, we used 
precision, recall, F-measure, ROC curves, and AUC. These 
measures are widely used in similar studies to assess the 
accuracy of machine learning models. 

VI. RELATED WORK 

There exist many studies that mine BRs for various 
purposes (e.g., [7][22]). The closest work to our study is that of 
Xia et al. [29]. The authors built a model to predict 
reassignment of BR fields using multi-label learning algorithm 
(ML.KNN). Their method (Im-ML.KNN) combines three 
different classifiers based on BR field metadata, BR 
descriptions and summaries, and a combination of these 
features. Their approach achieved an accuracy (F-measure) 
ranging from 56% to 62%. Bettenburg et al. [19] conducted a 
survey among developers and users of Apache, Eclipse, and 
Mozilla to understand what makes a good BR. They showed 
that since users are not primarily technical domain experts, they 
cannot choose BR fields correctly. They found that the steps to 
reproduce and stack traces are the most useful fields in BRs. 
Incomplete information in BRs appears to be one of the 
problems encountered by developers to fix the bugs.  

Guo et al. [21] showed that there are five main reasons for 
BR field reassignment: Finding the root cause, determining 
ownership, identifying the root cause (proper fix 
determination), poor BR quality (incorrect or incomplete BRs), 
and workload balance. They showed that imprecise BR fields 
lead to the BR being transferred between development teams. 
They referred to this fact as the bug pong concept. They also 
showed that the incorrect selection of BR fields, increases the 
bug fixing time. Breu et al. [23] showed that BR questions can 
be categorized into eight groups: Missing information, 

clarification of information provided, information for triaging, 
information needed for debugging, information on how to 
provide corrections, status inquiry, resolution, and 
administration questions. They also showed that incorrect 
information is the main cause of triaging uncertainties.  

Shihab et al. [5][6] showed that BRs that are reassigned take 
in average two times longer to be fixed. Sureka [2] showed that 
the Assignee field is the most reassigned field in the bug 
repositories. He applied a probabilistic model to the title and 
description of BRs to predict faulty component fields. The 
approach could be used to predict faulty component field of 
BRs with 42% accuracy. Lamkanfi et al. [1] showed that faulty 
component field of Eclipse and Mozilla BRs are frequently 
reassigned. They trained a Naïve Base classifier to predict 
reassignment of the component field of BRs in Eclipse and 
Mozilla based on BR component, reporter, operating system, 
version, severity, and summary. They showed that their 
approach achieves an accuracy of 44% for predicting if a bug 
will be reassigned and 83% if a bug will not be reassigned. 

Several studies focused on using stack traces to detect 
duplicate BRs [11][33]. These studies build feature vectors 
based on the functions in stack traces. They showed that 
predictive models built based on stack traces can detect 
duplicate BRs with an accuracy of up to 90%. Other studies 
focused on using stack traces to predict BR fields including BR 
severity. Sabor et al. [32][35][36][37] built feature vectors 
based on the functions in stack traces. They showed that traces 
and BR categorical feature provide good accuracy.  

VII. CONCLUSION 

In this paper, we proposed an effective approach for 
predicting the reassignment of BR fields to help improve the 
bug fixing process, and hence contributing to alleviate the 
costly burden of software maintenance activities [15]. Our 
approach, EnHMM, combines multiple HMMs using WPIBC, 
an anomaly detection algorithm that uses Boolean combination 
of classifiers, pruned using the Kappa coefficient. When 
applied to the Eclipse and Gnome BR repositories, EnHMM 
achieves an average precision, recall, and F-measure of 54%, 
76%, and 56% on Eclipse dataset and 41%, 69%, and 51% on 
Gnome dataset. A preliminary comparison study shows that 
EnHMM achieves on average a better recall than im.ML.KNN, 
a leading BR field reassignment prediction method, but a lower 
precision. We can enhance precision in various ways: (a) 
increase the size of the training set by having more BRs with 
stack traces, (b) add other features such as BR field metadata 
and/or BR descriptions and summaries (if deemed of good 
quality), (c) implement a feedback loop to prevent 
misclassifying newer and similar cases, and (d) combining 
other types of classifiers such as SVM, KNN, etc. In the future, 
we aim to investigate how other sequential learning methods 
such as Long Short-Term Memory networks (LSTM) can be 
applied. We also aim to investigate other ensemble methods 
beyond those based on Boolean combination (see [10] [24]) and 
assess their impact on predicting BR field reassignments. In 
addition, the improvement obtained by EnHMM varies from 
one field to another.  We need to dig deeper to understand what 
are the most important factors that affect accuracy for each 
field. Finally, an important future work is to apply EnHMM to 
larger datasets including datasets from the industry.  



 

 

REFERENCES 

[1] A. Lamkanfi and S. Demeyer, “Predicting reassignments of BRs an 
exploratory investigation,” in Proc. of  the 17th European Conference on 
Software Maintenance and Reengineering, 2013, pp. 327–330. 

[2] A. Sureka, “Learning to classify BRs into components,” in Proc. of the 
50th International Conference on Objects, Models, Components, 
Patterns, 2012, pp. 288–303. 

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood 
from incomplete data via the EM algorithm,” Journal of the Royal 
Statistical Society. Series B (Methodological), vol. 39, no. 1, 1977, pp. 
1-38. 

[4] C. A. M. Valiquette, A. D. Lesage, and C. Mireille, “Computing Cohen's 
Kappa coefficients using SPSS MATRIX,” Behavior Research Methods, 
Instruments, & Computers, vol. 26, no. 1, 1994, pp. 60-61. 

[5] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams, A. 
E. Hassan, and K.-I. Matsumoto, “Predicting re-opened bugs: A case 
study on the eclipse project,” in Proc. of the 17th Working Conference 
on  Reverse Engineering, 2010, pp. 249–258. 

[6] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams, A. 
E. Hassan, and K.-I. Matsumoto, “Studying re-opened bugs in open 
source software,” Springer Journal on Empirical Software Engineering, 
2012, pp. 1–38. 

[7] G. D. Lucca, M. Di Penta, S. Gradara “An approach to classify software 
maintenance requests,” in Proc. of the International Conference on 
Software Maintenance (ICSM’02), 2002, pp. 93–102. 

[8] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient 
multilabel classification in domains with large number of labels,” in 
Proc. of the Workshop on Mining Multidimensional Data (MMD’08), 
2008, pp. 30–44. 

[9] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection 
system: A comprehensive review,” Journal of Network and Computer 
Applications, vol. 36, no. 1, 2013, pp. 16–24. 

[10] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining 
classifiers,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 20(3), 1998, pp. 226–239. 

[11] J. Lerch and M. Mezini, "Finding duplicates of your yet unwritten BR," 
in Proc. of the 17th European Conference on Software Maintenance and 
Reengineering (CSMR’13), 2013, pp. 69–78. 

[12] L. E. Baum, G. S. Petrie, and N. Weiss, “A maximization technique 
occuring in the statistical analysis of probabilistic functions of Markov 
chains,” The Annals of Mathematical Statistics, vol. 41, no. 1, 1970, pp. 
164–171. 

[13] L. R. Rabiner, “A tutorial on Hidden Markov Models and selected appli- 
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, 
1989, pp. 257–286. 

[14] L. I. Kuncheva, “A bound on kappa-error diagrams for analysis of 
classifier ensembles,” IEEE Transsactions on Knowledge and Data 
Engineering, vol. 25, no. 3, pp. 494–501, 2013. 

[15] M. Newman, “Software errors cost us economy $59.5 billion annually,” 
NIST Assesses Technical Needs of Industry to Improve 
SoftwareTesting, 2002. 

[16] M. Stamp, “A Revealing Introduction to Hidden Markov Models,” 2018, 
Available online: http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf 

[17] M. S. Islam, W. Khreich and A. Hamou-Lhadj, "Anomaly Detection 
Techniques Based on Kappa-Pruned Ensembles," IEEE Transactions on 
Reliability, vol. 67, no. 1, 2018, pp. 212-229. 

[18] M.L. Zhang and Z.H. Zhou, “ML-KNN: A lazy learning approach to 
multi-label learning,” Pattern Recognition, vol. 40, no. 7, 2007, pp. 
2038–2048. 

[19] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. 
Zimmermann, “What makes a good BR?” in Proc. of the 16th ACM 
SIGSOFT International Symposium on Foundations of Software 
Engineering (FSE’06), 2008, pp. 308–318.  

[20] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting 
structural information from BRs,” in Proc. of the International Working 
Conference on Mining Software Repositories (MSR’08), 2008, pp. 27–
30. 

[21] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,““not my bug!” 
and other reasons for software BR reassignments,” in Proc. of the 
Conference on Computer Supported Cooperative Work (CSCW), 2011, 
pp. 395–404. 

[22] S. Mani, S. Nagar, D. Mukherjee, R. Narayanam, V. S. Sinha, and A. 
Nanavati, “Bug resolution catalysts: Identifying essential non-
committers from bug repositories,” in Proc. of the 10th Working 
Conference on Mining Software Repositories (MSR’13), 2013, pp. 193–
202. 

[23] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Frequently asked 
questions in BRs,” University of Calgary, Technical Report, 2009. 

[24] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. of 
the 1st International Workshop on Multiple Classifier Systems, 2000, pp. 
1–15. 

[25] V. Chandola, A. Banerjee, V. Kumar, “Anomaly Detection: A Survey” 
ACM Computing Surveys, vol. 41, no. 3, 2009, pp. 1-58. 

[26] W. W. Cohen, “Fast effective rule induction,” in Proc. of the 12th Inter- 
national Conference on Machine Learnin, 1995, pp. 115–123. 

[27] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining Hidden 
Markov Models for anomaly detection,” in Proc. of the International 
Conference on Communications (ICC’09), 2009, pp. 1–6. 

[28] W. Khreich, E. Granger, A. Miri, and R. Sabourin, "Iterative Boolean 
Combination of Classifiers in the ROC Space: An Application to 
Anomaly Detection with HMMs," Journal of Pattern Recognition, vol. 
43, no. 8, 2010, pp. 2732-2752. 

[29] X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated BR field 
reassignment and refinement prediction,” IEEE Transactions on 
Reliability, vol. 65, no. 3, 2016, pp. 1094–1113. 

[30] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study of 
BR field reassignment,” in Proc. of the 2014 Software Evolution Week - 
IEEE Conference on Software Maintenance, Reengineering, and Reverse 
Engineering (CSMR/WCRE), 2014, pp. 174–183. 

[31] M. Barreno, A. Cardenas, and D. Tygar, “Optimal ROC curve for a 
combination of classifiers,” in Advances in Neural Information 
Processing Systems (NIPS), 2008, pp. 57-64.  

[32] K. K. Sabor, M. Nayrolles, A. Trabelsi, and A. Hamou-Lhadj, “An 
Approach for Predicting BR Fields Using a Neural Network Learning 
Model,” in Proc. of the IEEE International Symposium on Software 
Reliability Engineering Workshops (ISSREW), 2018, pp. 232-236.  

[33] K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “DURFEX: A Feature 
Extraction Technique for Efficient Detection of Duplicate BR,” in Proc. 
of the IEEE International Conference on Software Quality, Reliability 
and Security (QRS’17), 2017, pp. 240-250. 

[34] Z. Xing, J.  Pei, E. Keogh, “A Brief Survey on Sequence Classification,” 
ACM SIGKDD Explorations Newsletter. 2010, pp. 40-48.  

[35] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic prediction 
of the severity of bugs using stack traces,” in Proc. of the 26th Annual 
International Conference on Computer Science and Software 
Engineering (CASCON), 2016, pp. 96–105. 

[36] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, "Automatic prediction 
of the severity of bugs using stack traces and categorical features," 
Elsevier Journal on  Information and Software Technology, vol. 123, 
2020. 

[37] K. K. Sabor, A. Hamou-Lhadj, A. Trabelsi, and J. Hassine. “Predicting 
BR fields using stack traces and categorical attributes,” in Proc. of the 
29th Annual International Conference on Computer Science and 
Software Engineering (CASCON’19), 2019, 224–233. 

[38] W. Khreich, S. S. Murtaza, A Hamou-Lhadj, C Talhi, "Combining 
heterogeneous anomaly detectors for improved software security," 
Elsevier Journal of Systems and Software, vol. 137, 2018, pp. 415-429. 

[39] Y. Bengio, “Markovian Models for Sequential Data,” Neural Computing 
Surveys, vol. 2, 1996, pp. 129-162. 

[40] G V Vstovsky, G. V. Vstovsky, "A class of hidden Markov models for 
image processing," Pattern Recognition Letters, vol. 14, no 5, 1993, pp. 
391-396. 

 

javascript:void(0)
javascript:void(0)

