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Abstract—Dynamic impact analysis can greatly assist
developers with managing software changes by focusing their
attention on the effects of potential changes relative to
concrete program executions. While dependence-based dynamic
impact analysis (DDIA) provides finer-grained results than
traceability-based approaches, traditional DDIA techniques
often produce imprecise results, incurring excessive costs thus
hindering their adoption in many practical situations.

In this paper, we present the design and evaluation of a DDIA
framework and its three new instances that offer not only much
more precise impact sets but also flexible cost-effectiveness options
to meet diverse application needs such as different budgets and
levels of detail of results. By exploiting both static dependencies
and various dynamic information including method-execution
traces, statement coverage, and dynamic points-to data, our
techniques achieve that goal at reasonable costs according to
our experiment results. Our study also suggests that statement
coverage has generally stronger effects on the precision and
cost-effectiveness of DDIA than dynamic points-to data.

Keywords—Dependence analysis, dynamic impact analysis,
statement coverage, dynamic points-to, cost-effectiveness

I. INTRODUCTION

Analyzing the impacts of constant changes is crucial for
successful software evolution [1], even more so as modern
software is increasingly complex. Impact-analysis techniques
proposed to this date can be classified into two categories:
dependence-based and traceability-based [2]. In comparison,
dependence-based analysis produces finer-grained impact sets
(potentially affected entities), which are generally more useful
for understanding code-level changes [3], while for such tasks
traceability-based analyses are usually insufficient [4].

Furthermore, among the dependency-based techniques,
static approaches compute impact sets for all possible
executions that are often highly imprecise due to their
conservative nature [5], [6]. In contrast, dynamic impact
analysis produces more focused results by using runtime
information [7]-[9] that represents specific subsets of all
executions. For developers looking for concrete program
behavior or understanding the effects of potential code changes
relative to those specific subsets, impact sets given by dynamic
impact analysis are preferable. Therefore, we target in this
paper dependence-based dynamic impact analysis (DDIA).

For clients of impact analysis such as regression
testing [10], program comprehension [11], and change
understanding [3], imprecise impact sets are clearly
undesirable because developers using such results could
waste time and other resources on examining entities that are
falsely reported as impacted. Moreover, the imprecision can
adversely affect the effectiveness of application tasks. For
example, when used in program understanding, false-positive
impacts may suggest spurious complications that make the
program harder to understand than it should be. For another
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example, applying changes based on imprecise impact sets
could lead to severe consequences such as system failure.

Unfortunately, developing a DDIA technique of practical
cost and effectiveness, even on the method level, remains a
challenging problem. For instance, COVERAGEIMPACT [10]
is highly efficient but also very imprecise [9]. In contrast,
PATHIMPACT [12] is more precise yet less efficient than
COVERAGEIMPACT [9]. Since these two techniques, much
research focused on performance optimizations (e.g., [13])
while only a few invested on improving the precision (of
PATHIMPACT), yet their improvements were marginal only and
at much greater costs (e.g., [7]). To the best of our knowledge,
the most cost-effective method-level DDIA prior to our work
remains to be PATHIMPACT combined with its optimization
execute-after sequences (EAS) [13], which we call PI/EAS.
The slightly more precise technique is INFLUENCEDYNAMIC
[7] but it is much less efficient than PI/EAS.

Nonetheless, existing techniques can still suffer from great
imprecision. Our recent study [14] revealed that the mean
precision of PI/EAS was about 50% only. Although some
other techniques may provide better precision (e.g., [15]), they
are descriptive impact analyses [2] applicable only after actual
changes are made. However, for many software evolution
tasks, impact analysis needs be performed before making those
actual changes [1]. In software industry, it has been reported
that delayed impact analysis is among the highest-priority
issues that both organization and developers encountered [4].
Therefore, we focus on predictive impact analysis [2], which
predicts potential impacts of candidate changes.

In this paper, we present three cost-effective DDIA
techniques within a unified framework that are much more
precise than PI/EAS, called Trace Only (TO), Trace plus
statement Coverage (TC), and Full Combination (FC). While
all use the dependence graph of the target program [16],
they differ in the amount of dynamic data used for the
analysis. By leveraging different combinations of static and
dynamic program information, including statement coverage
and dynamic alias data, these techniques also offer multiple
levels of cost-effectiveness tradeoffs of DDIA, and thus
provide developers with flexible technical options, which are
in growing demand in practice nowadays [3], [4], [17].

We implemented this framework and its three instances
above for Java, and evaluated them using seven subjects of up
to 220K lines of code in size.! Our results show that these
new analyses are generally all cost-effective, with continuous
and significant precision gains over the baseline approach
PI/EAS at reasonable costs. In addition, among the three
instances, TC attained the best cost-effectiveness in most cases
as regards the overall analysis time overhead, which implies

'The download is publicly available at http://nd.edu/~hcai/diver.



that statement coverage can play a strong role in general DDIA
design. The study also suggests that more precise points-to
data may not translate to significant gains in the precision or
cost-effectiveness of DDIA, akin to previous such findings in
the context of program slicing [18]. In comparison, statement
coverage mostly leads to greater precision improvements at
costs that are better paid off than do dynamic points-to data.

Beyond these three instances, more others can be
instantiated from our framework as well. To differentiate those
from the three we study here, and also for brevity, we hereafter
refer to as IAPRO any of 7O, TC, and FC, or them together.
Note that IAPRO only prunes dependencies (and consequent
impacts) that it ascertains are not exercised by the employed
dynamic data, with 70, TC, and FC incrementally doing so in
a conservative manner. Thus, we regard IAPRO as safe with
respect to the execution set it utilizes. Under this assumption
about recall, we express the precision as the impact-set size
ratio of IAPRO to the baseline, which is appropriate at least
for evaluating relative precision gains as we focus on [9], [13].

The main contributions of this paper include:
e A unified framework that incorporates multiple types

of program information to support multiple levels of
cost-effectiveness tradeoffs of DDIA (Section IV-A).

e A suite of three new DDIA techniques that instantiate the
framework and provide flexible options to meet various
cost-effectiveness needs for impact analysis (Section IV).

e An extensive empirical study that demonstrated the cost
and effectiveness of the proposed techniques and their
superiority over existing options (Section V).

e An analysis of the effects of various dynamic data on the
cost-effectiveness of DDIA that can inform future design
of more advanced dynamic impact analysis (Section V-C).

II. MOTIVATION

One important application of DDIA is regression testing,
for which developers use the results of impact analysis to
guide regression test selection and prioritization [10], [19]. For
test selection, only test cases that cover at least one impacted
entity need be executed; for test prioritization, test cases that
cover more impacted entities can be given higher priority.
However, imprecise (potentially large) impact sets can lead
to unnecessary test cases selected or prioritized, apparently
reducing the effectiveness of these techniques in practice.

Since DDIA analyzes the relationships among program
components, it is naturally suitable to assist developers with
such tasks as program comprehension [11] and change-risk
estimation [20]. For example, a new development team
member can anchor one particular method and use the impact
sets of the method to get a quick picture of the interactions
between that method and impacted ones. Also, potential
impacts of a set of methods can provide a project manager
with necessary information for estimating the risks of changing
those methods. However, producing very imprecise and large
impact sets can greatly hinder the adoption of impact analysis
due to the large cost of careful impact-set inspection, which is
required indeed in these usage scenarios.

When studying the accuracy of PI/EAS [14], one of
our insights was that the main cause for the imprecision of
PI/EAS is its using the execution order of methods only
for impact computation, whereas in general not all methods
executed after a method m are affected by m. We believe that
static dependence analysis can help guide using the execution

trace to produce more precise results, and that propagating
impacts across and through methods is necessary for excluding
false positives. INFLUENCEDYNAMIC did utilize such static
information yet ignored impact propagation through the insides
of methods. We also believe, as previous studies showed, that
developers need flexible cost-effectiveness options with impact
analysis, for which other types of dynamic information beyond
method execution traces could be exploited.

Although our previous study also revealed recall issues
with existing DDIA [14], we chose to focus on the precision
problem first at our current step. For one thing, while recall
is of no less importance than precision in general, for impact
analysis highly imprecise impact sets may not be worthy of
inspection even if they are safe (of 100% recall). For another,
although DDIA may suffer from imperfect recall with respect
to actual impact sets, for which actual changes must be known
thus two program versions are needed, it is safe with respect to
the execution sets utilized for tasks involving a single program
version only, such as program understanding and debugging.

III. BACKGROUND

This section presents necessary background with an
example program used for illustration purposes. In Figure 1,
program I inputs two integers a and b in its entry method
MO, manipulates them via M1 and M4 and prints their return
values concatenated. M2 updates the static variable g used
by M4 later on. M3 and M5, invoked by M1 and M2, include
field accesses, conditionals, and arithmetics. In this paper, we
addresses predictive impact analysis [12] which assumes no
knowledge about actual changes to programs. Such analysis
takes a program P, a test suite 7', and a set of methods M and
outputs an impact set containing the methods in P potentially
impacted by M when running 7.

One example technique is PATHIMPACT [12], which
collects runtime traces of executed methods. For each method
m in M that is queried for its impacts, PATHIMPACT uses
the method execution order found in the runtime traces of P
for T'. The analysis identifies as impacted m and all methods
executed in any trace after m.

Figure 1 shows an example trace of E for PATHIMPACT
(bottom left), where r is a method-return event and x the
program-exit event. The remaining marks are the entry events
of methods. Suppose M={M2}, PATHIMPACT first finds {M5,
M3, M4} as impacted because they were entered after M2
was entered and then finds {MO, M1} because these methods
returned after M2 was entered. Thus, the resulting impact set is
{M0, M1, M2, M3, M4, M5} for this trace. For multiple traces,
PATHIMPACT takes the union of all per-trace impact sets.

The execute-after sequences (EAS) optimization [13] came
later to reduce the space costs of PATHIMPACT without losing
precision. This approach exploits the observation that only the
first and last occurrence of each method in a trace are needed.
The resulting technique, PI/EAS, keeps track at runtime
of those two events per method without tracing all method
occurrences as PATHIMPACT did.

INFLUENCEDYNAMIC [7] tries to improve the precision
of EAS by considering method dependencies in addition to
method traces. It models interface-level data dependencies
via parameter passing and returns between methods, using an
influence graph on which impacts are computed with impact
propagation through intraprocedural dependencies ignored. For
an example, given the same query set {M2}, example program



1public class A {

16 public class B {

31 public class C {

2 static int g; public int d; 17 static short t; 32 static boolean M5(A q) {
3 String M1(int f, int z) { 18 int M3(int a, int b) { 33 long y = q.d;
4 int x=f+2z y=2h=1; 19 int j =0; 34 boolean b =B.t > y;
5 if (x >y) 20 t=-4, 35 qd=-2;
6 M2(x, y); 21 if(a<b) 36 return b;}
7 int r = new B().M3(, g); 22 j=b-a; 37 public static void
8 String s = "M3val: ” + 13 23 return j;} 38 MO(String[] args) {
9 return s;} 24 static double M4() { 39 int a=0,b = 3;
10 void M2(int m, int n) { 25 int x=A.g i=75; 40 A 0 = new A();
11 A a2 = _trans(this); 26 try { 41 String s = 0.M1(a, b);
12 C.M5(a2); 27 i=x/(@G+1t); 42 double d = B.M4();
13 int w=m - d; 28 new A().MI(, t); 43 String u = s + d;
14 if (w < 0) 29 } catch(Exception e) { } 44 System.out.print(u); }
15 g=m/w;}} 30 return x;}} 45 }

PATHIMPACT: MO M1 M2 M5 rrM3rrM4rrx ‘ ‘IAPRO: MO, M1. M2, M5, M2; M1; M3. M1; MO; M4, M4; MO; x ‘

Fig. 1: The example program E and its execution traces used by PATHIMPACT and IAPRO for illustration.

E, and execution trace as used above, the resulting impact set
will be the entire program as PI/EAS produced.

However, INFLUENCEDYNAMIC is marginally (3—-4%)
more precise only, yet much (10x) more expensive, than
PI/EAS [7]. Thus, regardless of its age, PI/EAS remains the
most cost-effective technique to compare with ours. Note that
while dynamic slicing is even more precise, it would be overly
heavyweight for impact analysis at method level.

IV. TECHNIQUE

To prune false-positive impacts given by PI/EAS or
INFLUENCEDYNAMIC, we need more precise information
than both the execute-after sequences of PI/EAS and the
incomplete dependence analysis of INFLUENCEDYNAMIC. To
that end, we propose to utilize the (whole-program) static
dependencies, together with the execute-after relation between
methods, and, optionally, statement coverage and dynamic
alias information, to develop DDIA techniques that offer better
precision with various cost-benefit tradeoffs.

A. Overview

We first introduce the design of a unified framework for
DDIA, from which both the two existing and three proposed
DDIA approaches can be instantiated. This framework, as
shown in Figure 2, helps illuminate the rationale underneath
various levels of DDIA precision and cost, as well as the
relationship among them.

The framework works in three phases: static analysis,
runtime, and post-processing, as shown at the top of the
diagram which sketches the overall common workflow steps
of a typical DDIA. The inputs for the entire process are a
program P, an input set (e.g., test suite) 7" of P, and a set M
of queries (i.e., the set of methods for which impact sets are
to be queried). In most cases, a mandatory step is to create the
dependence graph of P used by all the DDIA techniques we
proposed. There are five different workflow paths (numbered
with 1 through 5) that correspond to five alternative approaches
to computing the impact set of M. The output of the process
(framework) is consistently the resulting impact set of M.

The first path directly leads to the impact-computation step
without using any execution information, constituting a static
impact analysis. Although we do not include it in the study
here, it still provides a viable option to developers that we plan
to explore in the future. Path 5 effectively leads to PI/EAS,
which we use as the baseline approach for aforementioned

reasons. The other three paths correspond to the three proposed
DDIA techniques: path 2 to 70 using method traces only, path
3 to TC with statement coverage added to 7O, and path 4 to
FC further including dynamic points-to data on top of TC.

When building the dependence graph, the framework first
runs a profiler which executes 7' on P to make decisions
on the inclusion of exceptional control dependencies. Since
such decisions can greatly affect the graph size hence overall
performance of the DDIA, this step is an integral part of the
framework. The details about the exception profiler and how
the decisions are made can be found in [16].

After profiling, the static-analysis phase computes data
dependencies (DD) and control dependencies (CD) to build
the dependence graph [16] of P. Next, runtime monitors
for collecting constituent dynamic information (method trace,
statement coverage, and dynamic points-to data) are inserted
through byte-code instrumentation, configured based on the
needs of an instance. The outputs of this phase are the
dependence graph and instrumentation version P’ of P.

During the runtime, the framework executes 7" on P’
to produce the dynamic information configured during static
analysis. For example, all the three forms of dynamic data will
be produced in FC, while in 7O only the method traces will
be generated and collected. To reduce the storage at small time
overheads well paid off by overall cost savings, dynamically
generated data are all compressed on the fly. For programs of
relatively long-lasting runs, such extra data processing can be
particularly instrumental and often necessary.

The last phase, impact computation is essentially the
post-processing of all the static and dynamic information
collected during the previous phases. The general idea is to
prune executed methods that have no dependencies on the
query exercised by the dynamic data utilized. Intuitively, with
more dynamic data employed for such pruning, more precise
impact set will be obtained and, at the same time, larger
costs of the entire analysis will be incurred. When multiple
methods are queried, the process computes the impact set for
one method at a time and then takes the union of all. Note that
for any number of queries with respect to the same execution
set, the previous phases are performed once only, with their
outputs shared by the impact computation for all queries.

B. Trace Only (TO)
The method execution trace is the single type of dynamic
data used in 7O (path 2 in Figure 2). Corresponding to
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Fig. 2: A unified framework for DDIA that incorporates static dependence information and various forms of dynamic data to
achieve multiple-level cost-effectiveness: The marked paths (circled 1 to 5) illustrate five of its instances we studied.

DIVER [16], TO finds methods from the trace directly or
transitively dependent on the query using the dependence
graph. Details about this technique are presented in [16], and
here we recap only the key ideas as follows.

TO consists of two major steps. The first step conceptually
corresponds to the entire PI/EAS analysis: using the method
trace, filtering methods never executed after the query thus
cannot be impacted in that trace. However, an impact set
obtained as such is only a rough approximation of methods
dynamically dependent on the query. The execution order in
the trace implicitly exercised runtime control flows but not
control dependencies of the program, with data dependencies
entirely ignored. Thus, 7O takes the second step to further
prune methods that are neither data nor control dependent on
the query using the static dependencies, which is crucial for
its achieving a better precision than PI/EAS.

When tracking impact propagation along the method trace,
TO differentiates three types of data dependencies, parameter,
return and heap, so as to apply different propagation rules for
precise false-impacts pruning. To be exercised, the first two
types need an immediate posterior relation, whereas the last
type just a posterior one, between the events of a method
already affected and the method being considered. Further,
interprocedural dependencies through which impacts may
propagate into and out of a method are referred to as incomong
and outgoing dependencies of that method, respectively.

C. Trace plus Coverage (TC)

On top of the hybrid approach TO, the TC technique
goes further to add statement coverage to the DDIA (path
3 in Figure 2). While the method execution trace informs
the analysis with method coverage and execution order, the
statement coverage offers a form of finer-grained execution
data to enable a finer-grained pruning for the DDIA. With 70,
it is implicitly assumed that statements bridging incoming to
outgoing dependencies within a method are always executed.
In essence, impact propagation through inside each method is
based on static, rather than dynamic, dependencies.

However, this conservative assumption can lead to falsely
identified impact propagation hence false impacts. 7C thus
exploits statement coverage to prune those false impacts. There
are two alternative ways of such pruning: (1) pre-pruning,

which prunes edges on which at least one statement is not
covered, from the dependence graph before it is applied
to post-processing, and (2) post-pruning, which incorporates
the statement coverage data into the impact computation
algorithm [16] along with the dependence graph, without
pre-processing the graph itself. We expect that both strategies
contribute equivalently to the effectiveness (precision), but
differently to the overhead, of DDIA.

D. Full Combination (FC)

FC (path 4 in Figure 2) combines all three types of
execution data performing the finest-grained analysis out
of the five DDIA instances we studied. By employing
statement coverage on top of method execution traces,
TC supposedly addresses false positives due to spurious
transitive dependencies, but only does that partially. Another
source of imprecision can be resulted from spurious data
dependencies due to imprecise static pointer analysis, which
is a well-known problem as true points-to sets are often
conservatively approximated only during static analysis. Yet,
precise points-to data can be obtained at runtime.

FC thus attempts to further improve the precision of DDIA
by exploiting dynamic points-to data. This technique collects
the full set of allocation sites that each pointer points to
during program execution, by monitoring memory addresses
of pointer targets. Then, during the post-processing phase,
spurious aliasing-induced data dependencies can be identified
by checking the intersection of relevant points-to sets. Given a
data dependence s1—s2 in the dependence graph, for example,
FC will regard it as a spurious dynamic dependence if there
does not exist a variable v1 defined on sl and a variable v2
used on s2 such that the points-to set of v1 and that of v2
have a non-empty intersection.

In collaboration with the method trace, which contains
all method execution instances, dynamic points-to sets can
be collected and employed at two granularity levels: method
level and method-instance level. The method level strategy
maintains a single points-to set of each heap variable (exercised
by the runtime input) in a method m that contains allocation
sites pointed to by that variable for all instances of m. In
contrast, the method-instance level data includes such points-to
sets for each instance of m separately.



Once spurious dependencies are identified, they are used
for pruning false impacts from the method execution trace.
The method level data can be applied either before or
during impact computation, similar to the pre-pruning and
post-pruning strategies described for TC above. However, only
post-pruning can be adopted with the method-instance level
data as the dependence graph is static and does not incorporate
information about method execution instances.

In comparison, the method-level data tends to be
conservative thus only approximates precise points-to data that
the method-instance level captures, yet with potentially lower
time and space overheads than the other. In this paper, we
study two variants of FC, FC,,; and FC,,;, which use the
method and method-instance level points-to data, respectively.

E. Other Instantiations

Beyond the three techniques proposed above, more
instances can also be spawned from this DDIA framework.
For example, as marked by path 5, PATHIMPACT and EAS are
both the instance of the framework that does not use the static
dependence model (dependence graph) but purely relies on the
method-level execution trace to predict impacts of the input
queries. INFLUENCEDYNAMIC can be instantiated from this
framework too, which would be a variant of TO that ignores
intraprocedural data dependencies and all control dependencies
(although it does utilize control flows), and uses a different
impact computation algorithm based on the method trace and
a partial dependence graph called influence graph [7].

The framework could also be instantiated such that a DDIA
technique would use the dynamic points-to sets as the only
type of dynamic data, or even without using the dependence
graph (i.e., adding dynamic alias analysis to PI/EAS). While
even more instances potentially exist, we leave them for future
exploration for space reasons.

F. Illustration

We illustrate IAPRO using the example program and traces
of Figure 1. In the example trace used by IAPRO (bottom right
of the figure), e denotes method-entry events while i denotes
method-returned-into events. Suppose the query set is {M5},
and function _trans is a library call that clones the input
object and returns the clone after transforming it. Then, the
ground-truth impact set is {M5} in this example case.

PI/EAS again finds the entire program (all methods) of
FE impacted as every method executes after the first entry
event of M5. INFLUENCEDYNAMIC does not prune any method
from that imprecise impact set because the influence [7] of M1
propagates to each of other methods according to its influence
graph for this case. The impact set of IAPRO starts with {M5}
upon the occurrence of event M 5., growing as more methods
are found dependent on M5 during the traversal of the method
trace with reference to, if available, statement coverage and/or
dynamic points-to sets.

Next, control returns into M2. With 70, which assumes
that line 15 is covered and object ¢ at line 35 points to the
same allocation site (of line 40) as the base object of field d
at line 13, the (heap) DD of M2 on M5 (via instance field d)
is exercised, so M2 is regarded as impacted. Later in the trace,
when M4 is entered, another heap DD, of M4 on M2 (via class
field g), is exercised and M4 is thus added to the impact set:
The impact reached to (line 13 of) M2 from (line 35 of) M5
continues to propagate (via line 15) to (line 25 of) M4. The first
and second heap DD here are the only outgoing dependence of

M5 and M2, respectively. As a result, the impact set computed
by 70 is {M2, M4, M5}.

However, with TC, which checks statement coverage and
finds that statement 15 is not covered (w is 5 at line 14),
the second heap DD above is not exercised. As a result, T7C
reports a more precise impact set {M2, M5}. Finally, on top
of TC, FC further checks dynamic points-to data and thus
finds that the two base objects, of field d at line 35 and that
at line 13, are not aliased at runtime, so the first heap DD is
skipped too. Consequently, F'C reports M5 as the only impacted
method, thus gives the most precise (also accurate) impact set.
(Coincidentally, in this example, FC would find the accurate
impact set even without using the statement coverage, because
by checking dynamic aliasing data the impact would not even
propagate into M2 hence M4 would also be pruned.)

V.  EVALUATION

This section presents our empirical evaluation of the DDIA
framework we proposed, by studying the IAPRO techniques as
its representative instances: 70, TC, and FC (both variants).
Our main goal with this empirical study was twofold. First, we
wanted to assess the precision of the new techniques and its
practicality in terms of time and space costs against the existing
most cost-effective DDIA PI/EAS as the baseline approach.?
Second, we intended to analyze the effects of different types
of dynamic data on the cost-effectiveness of DDIA in order to
inform future design of better DDIA techniques.

A. Experiment Setup

The DDIA framework was implemented in Java based on
the Soot byte-code analysis framework [21] and our data-flow
analysis and instrumentation toolkit DUA-FORENSICS [22].
For the dependence graph construction including the
exceptional control dependence analysis, and PI/EAS facilities
including the method execution trace instrumentation and
monitoring, we reused relevant modules of DIVER [16]. In
the implementation of TAPRO and PI/EAS, we included the
exception-handling enhancement [14] to ensure the safety of
analysis results relative to the execution data utilized.

For statement coverage monitoring capable of exceptional
control flows, we computed whole-program reverse dominance
frontiers and branch-induced control dependencies [23],
whereby statement coverage was monitored indirectly
through branch coverage monitoring. For dynamic alias
analysis, we piggybacked the collection of object memory
addresses on the method-event monitors. Monitoring method
and method-instance level points-to sets shares the same
instrumentation with differences in runtime monitors.

For impact computation, 70 implements the same as
D1vER [16]; TC, for which we adopted the post-pruning
strategy for a uniform implementation for all IAPRO
techniques (recall that FC,,;; can not adopt the pre-pruning
algorithm), skips any edges of the dependence graph having
at least one node whose underlying statement is not covered
during the method trace traversal; F'C, for both variants, prunes
the method trace similarly to 7C but checks heap edges only.

We chose seven Java programs of various types and sizes,
as summarized in Table I, for our experimental study. The size
of each subject is measured as the number of non-comment
non-blank lines of code (#LOC) in Java. For each subject, the
last two columns give the number of total methods (#Methods)

2The TO technique was described before but only initially evaluated [16].



TABLE I: STATISTICS OF EXPERIMENTAL SUBJECTS

Subject #LOC #Tests #Methods #Queries
Schedulel 290 2,650 24 20
NanoXML 3,521 214 282 172
Ant 18,830 112 1,863 607
XML-security 22,361 92 1,928 632
JMeter 35,547 79 3,054 732
Jaba 37,919 70 3,332 1,129
ArgoUML 102,400 211 8,856 1,098

and that of the subset (#Queries) covered by at least one of
the tests (#Tests) used by our dynamic analyses.

Schedulel is a priority scheduler and NanoXML an XML
parser. XML-security is an Apache library for encryption, and
JMeter an Apache performance-testing application. Ant is a
cross-platform build tool. We took these subjects from the SIR
repository [24] and picked the first available version of each.
Jaba is a Java-bytecode analyzer provided by its developers.
ArgoUML is a UML modeling tool for which we used a stable
version r37/21 from its SVN repository.

B. Experimental Methodology

For our experiments, we applied 70, TC, FC,,,;, FC,,;;, and
PI/EAS separately to each subject on a Linux workstation of
an Intel i5-2400 3.10GHz processor and 8GB DDR2 RAM.
To obtain the method traces and other dynamic data, we used
the entire test suite provided with each subject except for
Jaba, for which we use the shortest-running 70 tests only on
which the current implementation did not run out of memory.
Per technique and subject, we computed the impact sets for
all methods, each as an individual query. Expectedly, some
methods were not executed by any test and thus had empty
impact sets. We excluded them from our results.

To assess the cost-effectiveness of IAPRO, we compared
three major metrics against the baseline technique PI/EAS.
The first measure is precision. Without actual changes available
hence the lack of ground-truth impact sets, this precision
is measured relatively through the impact-set size ratios of
IAPRO to PI/EAS. We report the mean and five quartiles
of the precision for all queries per subject. It is crucial to
note that IAPRO attempts to improve the precision yet without
penalizing the recall of PI/EAS, because the additional
dependence analyses it employs for pruning false impacts of
PI/EAS are still all conservative in nature.

The second metric is the time and space costs. For each
technique and subject, we collected the time cost (per-thread
CPU time) separately per DDIA phase; for static-analysis and
runtime phases that are needed once for all queries, we did one
measurement of time; for post-processing costs, we calculated
the mean and standard deviation of query time for all queries;
for space costs, we gauged the sizes of disk data used.

The third metric is the average cost-effectiveness of IAPRO.
To see how many gains in effectiveness (precision) different
forms of dynamic data contribute with respect to the extra costs
incurred by using them, we compared the ratio of precision
gain to cost increase among the three IAPRO instances relative
to the baseline, for the one-time cost of the first two DDIA
phases and per-query post-processing cost separately. This data
analysis helps reveal the effects of different dynamic data on
the cost-effectiveness of DDIA.

For a further analysis of those effects, we intended to assess
the statistical significance of the differences in precision among
the TAPRO instances. To that end, we performed a set of paired

Wilcoxon signed-rank tests [25] where the two groups were
the impact-set sizes given by each pair of techniques being
contrasted. We adopted this non-parametric test to lift the
assumption about the normality of underlying data distribution.
In addition to p-values computed separately for each subject
at the 0.95 confidence level, we also report combined p-values
for each pair of techniques using the Fisher method [26].

C. Results and Analysis

1) Precision: The main precision results are shown in
Figure 3, where the per-subject data points are summarized
by separate plots. In each plot, the impact-set size ratios (y
axis) to the baseline are grouped by the IAPRO instances we
studied, with each group characterized by a single boxplot that
consists of the maximum (upper whisker), 75% quartile (top
of middle box), 25% quartile (bottom of middle box) and the
minimum (lower whisker). The central dot within each middle
box indicates the median, surrounded by a pair of triangular
marks that represent the comparison interval of that median.
These comparison intervals, together within each plot, give a
quick indicator of the statistical significance of the differences
in medians among the four groups in that plot: For any two
groups, their medians are significantly different at the 5%
significance level if their intervals do not overlap.

Overall, TO greatly reduced the sizes of baseline impact
sets, with TC, FC,,;, and FC,,;; continuously improving the
relative precision, albeit slightly. Also, except for Schedulel,
there always existed cases in which TAPRO cut some off the
entire impact set reported by the baseline analysis—IAPRO
reports empty impact sets for queries with empty method
body—Ileading to the minimal size ratios of 0%. And except
for Ant and XML-security in addition to Schedulel, TAPRO
was always able to prune some false impacts—The maximal
ratios are constantly below 100% for other subjects.

The largest gains in precision were seen with Ant,
XML-security and JMeter, for which IAPRO drastically prunes
the baseline impacts by over 80%. ArgoUML also got a
substantial impact-set reduction from [APRO, which reported
no more than 35% of the methods produced by the baseline.
With Schedulel and Jaba, IAPRO improved relatively less,
probably because these programs have dense dependencies
among their entities as a result of tight inter-function couplings.

The entire figure suggests that neither statement coverage
nor dynamic points-to data contributed to the precision gain
of IAPRO over the baseline so much as the static dependence
information did. On the other hand, the comparison intervals
show no significant differences in the medians of precision
among all IAPRO instances, except for those between 70 and
the other three in the only case of NanoXML.

The complementary results on precision shown in the left
five columns of Table II further demonstrated the effects of
the additional dynamic data beyond method traces, where the
means of impact-set size ratios reveal that both 7C and FC
gained only little in precision on top of TO. Between the two
forms of dynamic information, however, statement coverage
appears to be more effective than dynamic points-to data.
Consistent with the boxplots, the overall mean ratios, as listed
in the bottom row of the table, show that relative advantage
of statement coverage. Note that, as in other tables too, these
overall numbers are not simple averages over the per-subject
means listed in the table but weighted averages by the number
of queries per subject as shown in the last column of Table I.
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Fig. 3: Precision of the IAPRO techniques expressed as impact-set size ratios against PI/EAS (the lower the ratio, the better).

TABLE II: AVERAGE PRECISION AND QUERYING COST OF THE IAPRO TECHNIQUES VERSUS PI/EAS

Mean IS size ratio to PI/EAS (%) Query time in seconds: mean (stdev)

Subject TO TC FCri FConil PI/EAS TO TC FCoi FCrmit

Schedulel 71.3 71.3 66.6 65.1 0.7 (0.3) 14.6 (6.0) 15.7 (5.9) 192 (5.8) 443 (6.7)

NanoXML 51.7 456 455 435 0.1 (0.1) 6.2 (8.8) 6.4 (8.9) 5.6 (1.7) 7.9 (10.4)

Ant 25.7 172 17.2 16.9 0.1 (0.1) 32 (7.6) 3.4 (7.9) 33 (1.2) 52 (9.7)

XML-security 288 2438 24.6 241 0.1 (0.1) 74 (9.6) 8.0 (10.4) 8.2 (10.5) 16.9 (20.9)

TMeter 188 182 181 17.6 0.1 (0.1) 23 (7.8) 23 (7.9) 1.8 (5.6) 22 (6.2)

Jaba 66.9 63.8 633 61.5 0.3 (0.2) 783 (82.5) 99.7 (102.5) 82.6 (83.0) 105.2 (99.7)

ArgoUML 315 20.4 29.2 292 0.1 (0.1) 15.9 (58.2) 15.9 (57.8) 12.6 (42.8) 15.8 (49.9)

Overall 383 34.8 34.6 33.8 0.1 (0.2) 26.4 (60.0) 32.0 (72.1) 26.7 (57.9) 35.1 (70.8)

TABLE III: SPACE AND OTHER TIME COSTS OF THE IAPRO TECHNIQUES VERSUS PI/EAS
Static analysis cost in seconds Runtime cost in seconds Execution data size in MB

Subject Prof. "PI/EAS | 70 TC FC Normal | PI/EAS | 70 | TC | FCpyi | FComs || PUEAS | 7O | TC | FCui | FCmul
Schedulel 3 5 6 11 17 4 10 16 | 19 36 91 1.0 | 82 [ 102 14.8 20.2
NanoXML 12 11 14 25 39 1 1 5 7 14 26 04 | 24| 30 35 49
Ant 29 27 142 170 311 1 2 2 4 9 25 1.0 | 20 | 38 5.1 72
XML-security 37 33 158 190 280 4 5] 15| 20 30 70 05 | 38| 42 5.9 11.6
TMeter 51 38 372 408 764 2 3] 15 28 42 61 05| 08| LI 1.6 24
Taba 62 55 289 326 600 11 2| 14 25 51 115 25 | 150 | 16.8 23.0 2438
ArgoUML 190 172 | 7,465 | 7,542 | 11,998 8 10 [ 11 | 23 38 87 4| 73| 81 1.4 17.8
Overall 82 73 | 2,047 | 2,115 | 3,392 8 9 12| 21 35 76 13| 68| 79 10.9 14.3

Finally, method-instance level dynamic alias data led to
slightly larger precision gain than method-level data, which is
most noticeable with Schedulel, NanoXML and Jaba, possibly
because of relatively heavier use of pointers in these subjects.
Overall, IAPRO reduces the baseline impact sets by 61%—-66%,
implying an increase in precision of about 160%—200%.

2) Efficiency: Table II summarizes the means and standard
deviations (in the parentheses) of query costs incurred by the
baseline and all IAPRO instances, in the right five columns. As
expected, IAPRO incurred higher cost during post-processing
than the baseline because of the larger execution data they
traversed (full method execution trace by IAPRO versus two
integers per method by PI/EAS). Among the IAPRO instances,
query cost generally grows as more dynamic data is used. An
exception is FC,,;, though, for which adding method-level
dynamic aliasing data even reduced the cost with respect to
TC for five out of the seven subjects. A possible reason is
that spurious alias-induced data dependencies account for a
relatively large portion of all dependencies in these subjects.
In consequence, pruning those spurious DDs using dynamic
points-to sets sped up searches on the reduced dependence
graph during the process of impact computation.

Naturally, higher costs are associated with subjects of
denser dependencies (e.g., Jaba and ArgoUML), longer traces
(e.g., Jaba), and/or larger test input (e.g., Schedulel). The
lowest efficiency of TAPRO was seen with Jaba, which has
a much larger dependence graph and longer traces than other

subjects. In addition, the generally large standard deviations
suggest the post-processing time fluctuates greatly across
different queries in most subjects. The overall numbers show
that the query cost of TAPRO is about half a minute per
query. In fact, the average cost for the other six subjects than
Jaba would be 10-20s. In all, the query cost of IAPRO looks
reasonable. Further, multiple queries can be easily parallelized
since their computation is independent of each other.
Comparing across the TAPRO instances reveals that the
method-instance level alias data is much more expensive than
the method level data and statement coverage, which mostly
brought small overheads only with respect to 70. This is not
surprising because the instance level data can be substantially
larger than the other two. The right five columns of Table III
compare the sizes of such execution data used by PI/EAS and
IAPRO. As can be seen, the largest jump among the IAPRO
instances occurred when the method-instance level dynamic
points-to data was added to the analysis. On the other hand,
as expected also, the space cost constantly grows from 7O to
FC,,;; because of the continuous addition of dynamic data.
Yet, such costs are all quite small—the largest by FC,,;; with
Jaba is about 30M only. Another source of space cost comes
from the dependence graph (not shown in the table), which is
no more than 41M (the largest, with ArgoUML), though.
The rest of Table III shows the time costs of the first
two phases of DDIA techniques studied here, including the
uncaught-exception profiling costs incurred by all TAPRO



techniques (Prof.) and the execution time of inputs on the
original (uninstrumented) programs (Normal). Mostly, both
the profiling cost and static-analysis time tend to increase
with the program size, with the peak number seen by the
largest subject ArgoUML. Similar to previous observations,
the method-instance level dynamic alias data again led to the
greatest cost growth, in both the static-analysis and runtime
phases. Nonetheless, the profiling is generally cheap, as is
the generation of addition dynamic data at runtime. Static
analysis is mostly efficient too, except for the largest subject
ArgoUML. However, as the runtime phase, the static analysis
incurs one-time costs for all queries for the same program
version, and it can be incorporated in nightly builds in practice.

In sum, the three IAPRO instances come with time and
space costs higher than the baseline which, however, are still
reasonable. Note that such extra time and spaces are, by design,
natural additional costs for the sake of better effectiveness.
Also, incorporating more dynamic information into the DDIA
generally causes increasing cost of both types as expected, with
the method-instance level dynamic alias analysis incurring the
largest overhead among the IAPRO instances.

3) Effects of Dynamic Data: Our statistical testing results
for all the studied DDIA techniques are shown in Table IV.
For each subject, the table presents the p-values from seven
paired two-sided Wilcoxon tests each comparing one pair of
DDIA instances, for which the null hypothesis was constantly
the means of the impact-set sizes for the two compared
techniques being equal. The hypothesis testing covered all
combinations of the IAPRO instances, but only considered
TO when compared to the baseline. We stopped continuing
comparing other IAPRO instances to the baseline as the
significance was found constantly quite strong with 70, and
we saw that those others kept improving in precision over 70.

The numbers indicate that IAPRO is strongly significantly
more precise than PI/EAS, and in the majority of cases
statement coverage contributes significantly to the precision of
DDIA while dynamic points-to data generally does not. And
nevertheless the dynamic alias analysis has stronger effect on
the precision when applied at method-instance level than done
at method level. The bottom row lists the combined p-values
for all subjects per test, which confirmed the same contrasts. In
all, these observations resound with those from the precision
results expressed by impact-set size ratios discussed earlier.

Finally, Figure 4 puts the precision and costs together
showing the cost-effectiveness of the IAPRO instances. In
both plots, the y-axis indicates the precision gains (for a size
ratio of r, the precision gain is (1 — r)/r) divided by the
factor of cost increases, of each of these instances, shown
on the z-axis, relative to the baseline results. The per-query
post-processing cost and one-time cost of the first two phases
combined are separately considered, shown in the left and right
plot, respectively. We do not consider the space costs in this
regard as those costs are all marginal, almost negligible relative
to today’s storage resources, and they are all one-time costs.

When considering the query cost only, FC,,,; appears to be
the most cost-effective IAPRO instance for any subject. When
considering the static-analysis and runtime costs, however,
TO has the best cost-effectiveness for all subjects but Ant
and JMeter, for which TC 1is the best. TC is always more
cost-effective than the two variants of FC, though. Taken
together, these results suggest that the most cost-effective
option may vary as certain parts of the overall costs are

weighed more than others, which implies that IAPRO allows
users to choose different best options for varying needs.

For example, if developers readily afford the one-time cost
but are less tolerant for possibly long query time, they would
not bother applying additional dynamic data such as statement
coverage and dynamic points-to sets here. On the other hand,
developers concerned about large static-analysis cost with very
large subjects but willing to wait for impact computation may
find that the effectiveness gain given by statement coverage
and method-level dynamic alias analysis pays off the extra
cost utilizing those additional dynamic data will incur.

Nevertheless, it is also possible that developers would
choose a DDIA technique preferably based on its precision
gain even if it may not be the most cost-effective option: They
opt for better precision anyway no matter whether the added
costs are best paid off. For example, they may choose the most
expensive technique FC,,;; for its highest precision among the
five DDIA instances we studied, if the relatively largest cost
is still affordable to them. For those developers, IAPRO does
provide more technical options than existing alternatives.

As we mentioned earlier, the impact sets give by IAPRO are
all safe relative to the execution set utilized by the analysis.
Further, since 7O, TC, and FC prune false-positive impacts
continuously with increasing amount of dynamic data, the
impact set of a query produced by 7TC is a subset of that of
the same query by 70, and similar inclusion relations hold for
FC compared to 70 and FC to TC. At the same time, such
incremental precision gains come with growing overheads in
general. Accordingly, developers are suggested to adopt the
TIAPRO instance that best fits their effectiveness need, time and
storage budget, and availability of program information.

D. Threats to Validity

One internal threat to the validity of our results is the
possibility of implementation errors in the five instances of
our framework and our experimentation scripts. However, all
the DDIA instances were based on Soot and DUA-FORENSICS
that have both matured over many years, and we verified the
scripts manually for each experimental step. We paid special
attention to verifying the modules of our framework used
for monitoring and applying the additional dynamic data. For
threats common to DIVER, we adopted similar solutions [16].

The main external threat is that our study subjects may not
be representative of all real-world software. And an additional
such threat lies in the limited coverage of the inputs available
for the chosen subjects that we used in our dynamic analyses.
To reduce such limitations, we purposely chose as many and
much diverse subjects as possible that come with reasonably
large and complete set of inputs, which were also often used
by other researchers before.

The main construct threat concerns our use of relative
impact-set size comparisons for precision contrasts, and the
assumption about the safety of impact sets given by our
techniques. With respect to actual impact sets for concrete
changes, the recall may not be perfect especially when
those changes modify control flows of programs at runtime.
Nevertheless, our analyses are safe relative to the execution
data utilized for the single program version available to them.

Finally, a conclusion threat is the appropriateness of
our statistical analyses. To reduce this threat, we used a
non-parametric hypothesis test which makes no assumptions
about the distribution of the underlying data (e.g., normality).



TABLE IV: WILCOXON P-VALUES FOR NULL HYPOTHESES THAT THERE ARE NO DIFFERENCES IN MEANS WITH RESPECT
TO VARIOUS PAIRED CONTRASTS AMONG PI/EAS AND IAPRO TECHNIQUES (CONFIDENCE LEVEL=0.95)

Subject PI/EAS vs TO TO vs TC TO vs FC,,; TO vs FC,,,;; TC vs FC,,,; TC vs FC,,; FC,,; vs FC,,;;
Schedulel 1.73E-05 1 0.4854 0.2261 0.4854 0.2261 0.5523
NanoXML 9.41E-24 0.0053 0.0052 0.0001 0.9922 0.1298 0.1325
Ant 8.06E-130 0.0033 0.0025 0.0014 0.9126 0.7766 0.8583
XML-security 1.22E-104 0.1029 0.0507 0.0196 0.733 0.4659 0.6965
JMeter 2.71E-181 0.6369 0.5411 0.1745 0.8892 0.3777 0.4571
Jaba 6.43E-42 0.0384 0.0129 0.0001 0.5083 0.0184 0.0423
ArgoUML 1.77E-176 0.1575 0.0995 0.0906 0.8086 0.7703 0.9599
Fisher Overall 0 0.0006 4.99E-05 2.79E-09 0.9935 0.1449 0.4326
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Fig. 4: Cost-effectiveness of the IAPRO techniques expressed as the ratios of their precision gain to the increase in the average
query cost (left) and total cost of the first two phases (right), both against PI/EAS.

Another conclusion threat concerns the data points analyzed:
We applied the statistical analyses only to methods for which
impact sets could be queried (i.e., methods executed at least
once). To minimize this threat, we adopted this strategy
consistently for all experiments and compared the techniques
of interest with respect to those methods only.

VI. RELATED WORK

In [16], we presented the technique of DIVER, which
corresponds to the 70 instance in this paper. Also, our DDIA
framework reused many parts of DIVER to unify all the five
DDIA instances we studied here. In contrast, this paper focuses
on the unified DDIA framework by which we provide DDIA
techniques of multiple level of cost-effectiveness tradeoffs, and
studies the effects of two additional types of dynamic data on
that tradeoff. In addition, our empirical study includes a much
extended evaluation of DIVER and PI/EAS plus three others.

The baseline PI/EAS comes from the method-level DDIA
introduced by Law and Rothermel [12] and its performance
optimization EAS [13] by Apiwattanapong and colleagues.
Our TAPRO techniques all utilize the method execution events
as by PI/EAS as the common form of dynamic data to
prune interprocedural dependencies that are not exercised
by runtime inputs. Unlike PI/EAS that relied solely on the
method execution order, however, IAPRO leverages static
program dependencies in addition to that data and other types
of dynamic information to significantly improve precision
against PI/EAS. Impact analysis based on static-execute-after
relations [27] also exploits method execution order but that for
a static approach (considering all possible program inputs).

DDIA approaches employing both static and dynamic
information (i.e., hybrid) have also been explored before,
such as INFLUENCEDYNAMIC [7] and its extension in [28].
While these techniques improve PI/EAS in terms of analysis
precision, they all model partial dependencies yet exploit a
single type of dynamic data (the method execution trace)
only. Previous studies have shown that none of them
achieved significant precision gain over PI/EAS [7], [28].
SD-IMPALA [29] also explored hybrid DDIA yet it focuses
on improving the recall of DDIA and does that at the cost

of penalizing precision. It uses call graphs as the static
dependence model and is shown even less precise than its
predecessor Impala [30] and PI/EAS. In contrast, IAPRO is
built on a complete (albeit conservative) dependence model to
accomplish significantly better precision not only than PI/EAS
but even further beyond DIVER we recently developed by
using diverse dynamic information. It is difficult to include
INFLUENCEDYNAMIC in our study as its design is constrained
to procedural languages such as C while our current IAPRO
implementation targets object-oriented software, and also its
environment is different from that of IAPRO.

Statement coverage has been wused in regression
testing [31], test generation [32], and in general as a test
metric [33], but not yet directly for predictive DDIA or even
impact analysis generally, to the best of our knowledge. For
DDIA, Orso and colleagues used coverage data but at method
level to guide impact computation [10], which is much less
precise than PI/EAS [9], though. We used statement coverage
in TC and FC to improve the precision of predictive DDIA and
showed that using statement coverage can greatly contribute
to the precision and cost-effectiveness of DDIA.

Mock and colleagues used dynamic points-to data to
improve the precision of program slicing and intensively
studied the effects of that data on slice sizes [18]. In their study,
they examined flow-sensitive and flow-insensitive dynamic
points-to sets for both variables and function pointers, and
found that dynamic pointer analysis does not significantly
lead to better slicing precision in general. With the two FC
instances of TAPRO, we exploited dynamic points-to data too
but for DDIA. We examined two types of such data also but
differentiated them by method instance instead of by pointer
dereference site, based on our different application contexts
and needs. While our finding that dynamic points-to data
generally may not translate to significantly higher precision
for DDIA is akin to theirs, our study suggests higher overhead
of using dynamic points-to data relative to the total cost of
DDIA, at the method-instance level in particular, than what
they found in the context of program slicing.

Forward dynamic slicing [34] could work as the
finest-grained DDIA, yet in theory it can be too expensive



for a method-level impact analysis [13], [35] since it would
have to be applied to most, if not all, statements inside the
queried method. On the other hand, dynamic slicing can be
an extended instance of our DDIA framework as it implicitly
exploited statement coverage and (statement-instance level)
dynamic points-to data too, and beyond. While we assume that
dynamic slicing would incur much higher cost than IAPRO,
it may still be worth comparing them empirically, especially
on their cost-effectiveness, for DDIA. In that regard, variants
of dynamic slicing such as relevant slicing [36] and quasi
slicing [37] will be of interest as well as they have different
levels of efficiency, precision, and/or recall.

VII. CONCLUSION

We have presented in this paper a DDIA framework and
its three representative instances together called IAPRO, which
exploit both static program dependencies and various dynamic
data, including method execution trace, statement coverage,
and dynamic points-to data, to make dynamic impact analysis
more useful. Beyond separately evaluating the precision and
costs of each IAPRO instance against the baseline technique
PI/EAS, we also studied the effects of these different types
of dynamic information on the cost-effectiveness of DDIA.

Our study demonstrated that IAPRO is constantly much
(160%—-200%) more precise than the baseline approach with
strong statistical significance, and that leveraging statement
coverage and dynamic points-to data can further improve
the precision of DDIA, all at reasonable costs. In addition,
we showed that since different TAPRO instances give the
best cost-effectiveness in different situations or application
contexts, our DDIA framework and techniques can provide
flexible options to meet various user needs for impact analysis.

We are currently expanding the study of DDIA to include
both larger number and diversity of subjects and more types
of changes (e.g., multiple-method changes and real changes
from software repositories). We are also planning to expand
the result analysis to further examine individual effects of
various static and dynamic data on DDIA in general, and the
interactions among them. Our another next step is to focus on
the recall of predictive DDIA with respect to true impact sets.
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