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Abstract

Software constantly changes during its life cycle. This phenomenon is particularly promi-
nent in modern software, whose complexity keeps growing and changes rapidly in response to
market pressures and user demands. At the same time, developers must assure the quality of
this software in a timely manner. Therefore, it is of critical importance to provide developers
with effective tools and techniques to analyze, test, and validate their software as it evolves.

While techniques for supporting software evolution abound, a conceptual foundation for
understanding, analyzing, comparing, and developing new techniques is also necessary for the
continuous growth of this field. A key challenge for many of these techniques is to accurately
model and compute the effects of changes on the behavior of software systems. Such a model
helps understand, compare, and further advance important activities such as change-impact
analysis, regression testing, test-suite augmentation, and program merging.

To address this challenge, in this chapter, we describe our progress and those of other
researchers in developing and studying a foundational approach called change-effects analysis.
This kind of analysis computes, in an ideal setting (i.e, given unlimited resources), all the
differences that a change in the code of a program can cause on every element (e.g., statement)
of that program. These differences include not only which program elements are affected by a
change, but also how exactly their behavior (i.e., execution frequency and states) is affected.

Naturally, computing all possible effects of changes is an undecidable problem. However,
such a model for computing change effects can be the basis for practical approaches that ap-
proximate those effects. In this chapter, we describe various such approximations for change-
effects analysis and their application to two key tasks in software evolution: change-impact
analysis and change testing.

Keywords: software evolution; change-effects analysis; change-impact analysis; regression test-

ing; test-suite augmentation; program merging.

1 Introduction

The constant modification of software during its life cycle creates serious challenges for devel-
opers and testers because changes might not behave as expected or may introduce erroneous side
effects. For example, changing the type of a collection of items from a set to a list might lead
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to undesired duplicate items. For another example, adding minimum-age constraints to a banking
system might prevent children from monitoring their accounts even if only parents can perform
sensitive operations. Hence, developers must understand the consequences and risks of modifying
each part of a software system even before they can properly design and test their changes. Then,
after modifying the software, developers must check the correctness of their changes by identifying
and checking the actual effects of those changes on the behavior of the program. Developers can
use program-analysis techniques [2] to those ends.

The class of techniques that searches for the effects of changes in software is called change-
impact analysis [5,7,9,13,14,23,40,44,49,50, 58,61, 63]) (or, simply, impact analysis). Impact
analyses identify the parts of the software that are potentially or actually affected by a change.
We classify these techniques into two categories: predictive and descriptive. Predictive impact
analyses (e.g., [5, 13, 14]) identify potential effects of changing a particular program location,
such as a a statement or method, before changing it. This is particularly useful to assist developers
before they decide to change that location, how to change it, and how to propagate that change [60]
(i.e., which other changes to make down the line as a consequence). Descriptive impact analyses
(e.g., [61,63,79]), in contrast, identify affected entities after changes are made by analyzing the
differences in code and behavior observable between the unmodified and modified software.

After changes are made, to validate them, developers typically perform regression testing—
re-testing a program after it is modified [8, 11, 25, 28,29, 36,38,42,51,67,70,93]. Most research
on regression testing has focused on the efficiency of this activity through approaches such as
(1) selecting a subset of the test cases that need to be re-run (e.g., [16,70]), (2) prioritizing test
cases to find errors earlier (e.g., [68, 85]), and (3) reducing the size of the test suite according
to some criterion (e.g., [27,92]). However, little attention has been given to the effectiveness of
regression testing, which requires not only identifying existing test cases affected by changes, but
also understanding how changes affect the behavior of a program and what new test cases are
needed to exercise new behaviors. Finding as many differences as possible caused by changes in
the behavior of a program is a necessity to determine whether those changes are correct or not.

A key challenge for many of these techniques is to accurately model and compute the effects of
changes on the behavior of evolving software systems. Fundamental models help understand, com-
pare, and further advance change-impact analysis, regression testing, and other software-evolution
tasks, such as test-suite augmentation [57,73,78] and program merging [12,46,79].

In this chapter, we describe our progress and those of other researchers in developing and study-
ing a foundational approach called change-effects analysis [72]. This kind of analysis computes,
in an ideal setting (i.e, given unlimited resources), all the differences that a change in the code of
a program can cause on every element (e.g., statement) of that program. These differences include
not only which program elements are affected by a change, but also how exactly their behavior
(i.e., execution frequency and states) is affected.

Naturally, computing all possible effects of changes is an undecidable problem. However, such
a model for computing change effects can be the basis for practical approaches that approximate
those effects. In this chapter, we describe various such approximations for change-effects analysis
and their application to two key tasks in software evolution: change-impact analysis and change
testing. Our conclusion is that the effects of changes on software behavior can be computed with



enough precision to help testers analyze the consequences of changes and reuse and augment their
test suites effectively.

The rest of this chapter is organized as follows. Section 2 provides necessary background con-
cepts. Section 3 gives an overview of approaches by other researchers related to change-effects
analysis, including briefs reviews of change-impact analysis and test-suite augmentation. Sec-
tion 4 presents the foundations of change-effects analysis, including a procedure for finding all
such effects in an ideal setting of infinite resources. Sections 6—8 describe practical approxima-
tions applied to test-suite augmentation for evolving software, change-impact analysis, and change
interaction. Finally, Section 9 concludes and Section 10 discusses future directions.

2 Background

Several program analysis techniques are needed to identify the elements and relationships in pro-
gram code that can be affected by changes. Control-flow analysis (Section 2.1) builds graph rep-
resentations of all possible sequences of statements in program executions. Control- and data-
dependence (Section 2.2) analyses identify the dependencies among statements that arise from
control decisions and computations in the program. Slicing (Section 2.3) uses these dependencies
to identify the subset of a program or execution that affects or is affected by a certain control de-
cision or computation. Symbolic execution (Section 2.4) produces an algebraic representation of
the cumulative effect on the program state of statements in a path or set of paths of the program.

2.1 Control Flow Analysis

In this chapter, we define a statement as a line of executable code (i.e., code that can modify a
program state or path). Without loss of generality, we assume that a statement contains at most one
procedure call (i.e., function or method call). A statement that contains a procedure call is a call
site. The executable code of a program procedure can be represented by its control-flow graph [3],
defined next.

DEFINITION 1. A control-flow graph (CFG) for a procedure p is a connected directed graph!
G=(V, E) where V is the set of nodes and F is the set of edges. For each statement in p other than
a call site, V' contains a node. For each call site in p, V' contains a call node and a return node that
represent the points before and after the call, respectively. Each of these nodes is labeled with a
unique identifier (e.g., the line number) for the corresponding statement, followed by a suffix ’a’
if it is a call node and ’b’ if it is a return node. V' also contains two distinguished nodes EN (or
ENTRY) and EX (or EXIT) for the entry to and exit from p, respectively. In V', only EN has no
predecessors and only EX has no successors. The edges in F represent the flow of control among
the elements in p represented by the nodes in V. For each call site in p, £ contains an edge from
the corresponding call node to the corresponding return node. If p has multiple exit statements, £
contains an edge from each node corresponding to an exit statement to node EX. An edge e whose

'A directed graph is connected if, for all pairs of nodes (a, b), there is a path from a to b or from b to a.



Control-flow graph (CEG)

int Bin(int a, int b)
pre—-condition: a,b € [1,10]
0l: if (a <= 2) // Ci— if (a > 2)

02: b=Db+1
03: else
04: b=>b -1

05: // Ch— b =Db % 2

dependence type:
06: if (b > 2) p yp

..... V_.5 dataon

07: return 1 variable

) c control on
08: else T decision ¢
09: return O

Figure 1: Example program Bin with two possible changes. To the right, its CFG and PDG.

source node has multiple outgoing edges is labeled with the control decision that causes e to be
taken.

To illustrate, consider the single-procedure program Bin in Figure 1 and its CFG graph in that
figure on the top right. Bin has nine statements, six of which correspond to executable statements
(the empty statement 5 and the e1se statements 3 and 8 are ignored) represented by nodes in the
graph. Node 1, for example, is a conditional statement with two outgoing edges: the true branch
(1,2) labeled 7', and the false branch (1,4) labeled F'. Node EN represents the entry to the procedure
and node EX represents the exit from the procedure.

A CFG is suitable for intraprocedural (within procedures) analyses. However, different proce-
dures in a program interact via procedure calls at call sites; such interactions need to be modeled
for an interprocedural (across procedures) analysis. Therefore, to analyze programs with multi-
ple procedures, researchers have developed graph representations such as supergraphs [64] and
interprocedural control-flow graphs (ICFG) [83]. In this chapter, we use the ICFG representation.

DEFINITION 2. An interprocedural control-flow graph (ICFG) for a program P is a connected
directed graph GF=(V¥ ET') where V¥ is the union of the node sets of the CFGs of all procedures
of P and E¥ = (E.;4s — Ee,) U Einter, Where

* FE sy 1s the union of all edge sets of the CFGs of all procedures of P,
* ., 1s the set of all edges connecting call nodes to return nodes, and

* Einer 1s the set of all call edges (¢, EN,) and return edges (EX,, r) connecting the call and
return nodes for all call sites in P to the procedures p that they can call.

A call site that uses a function pointer or performs a virtual call might have more than one target
procedure. In this research, a call site whose call node has more than one outgoing call edge in



Einier 18 treated as a branching node and each call edge from that node is labeled with the signature
of the target procedure. Also, procedures might terminate abnormally by halting or throwing an
exception, which creates special control dependencies [83]. These and any other kinds of control
flow are represented by CFGs and ICFGs.

Not all paths in the ICFG of a program correspond to paths in that program—only realizable
paths do.

DEFINITION 3. A realizable path in the ICFG of a program is a path for which every call edge
(c, EN,) is matched by its corresponding return edge (EX,, r).

Henceforth, we use the term path to refer only to realizable paths in ICFGs. Two other neces-
sary control-flow concepts are dominance and post-dominance.

DEFINITION 4. A node m in a CFG or ICFG G dominates a node n in G if and only if every
path from every entry node of G to node n contains m.

DEFINITION 5. A node m in a CFG or ICFG G post-dominates a node n in G if and only if
every path from n to every exit node of G contains m.

2.2 Program Dependencies

The control decisions and the manipulation of variables in the statements of a program give rise to
dependencies among those statements. If a statement s; is dependent on a statement s,, we also
say that a node n; for s; in a CFG or ICFG G is dependent on a node n; for s, in G. Dependencies
created by control decisions are called control dependencies [21].

DEFINITION 6. A statement s is control-dependent on a statement s, with label L if s, has a
successor u (along an edge labeled L) and a successor v such that s; post-dominates u but s; does
not post-dominate v.

In other words, a statement s; is control dependent on a statement s; if s, has two or more
outgoing edges and, for at least one but not all those edges, s; necessarily executes after taking
that edge. If so, the control (execution) of s; depends on the decision at s,.

A control dependence can be written as (z,y) or (z,y, L) (the latter form if the decision mat-
ters), where y is control dependent on z for decision L. To illustrate, consider program Bin in
Figure 1 and its CFG on the top right in that figure. In this program, statement 2 is control depen-
dent on statement 1 for decision 7', written as (1,2, 7).

Dependencies created by accesses to program variables are called data dependencies [3].

DEFINITION 7. A statement s, is data dependent on a statement s, with label v if: (1) s
defines (assigns a value to) a variable v; (2) there is a definition-clear path for v from s5 to s (i.e.,
a path containing no other definition of v); and (3) s; uses (reads) v. The pair of definition and use
in a data dependence is called definition-use pair, or simply du-pair.

A data dependence can be written as (z, y) or (x,y, v), where statement y is data-dependent on
statement x for variable v. For example, in Figure 1, statement 6 is data dependent on statement 2
for variable b, represented as (2, 6, b).

Podgurski and Clarke defined semantic dependence [55] among statements.



DEFINITION 8. A statement s; is semantically dependent on a statement s, if, for some exe-
cution of the program, a change can be made to the value computed at s, that causes a change in
the values used by s; or in the number or location of the occurrences of s;.

Based on this definition of dependence of s; on s,, we can also say that statement s; is seman-
tically dependent on a particular change C' in statement s, that affects s; in at least one execution.
Semantic dependencies, however, represent an ideal but not always practical goal of analysis. For
instance, finding whether a sequence of dependencies (control or data) is also a semantic depen-
dence is an undecidable problem.

DEFINITION 9. A program dependence graph (PDG) [21] for a program P is a graph D=(V? | EP)
where VP contains one node for each node in the ICFG of P and EP is the set of edges repre-
senting the control and data dependencies among the statements of P that the corresponding nodes
represent. Each control-dependence edge is labeled with the control decision for which the target
node is dependent on the source node. Each data-dependence edge is labeled with the variable
that the source node defines and the target node uses. V' also contains a special node RUN. For
every node n in the ICFG of P that is not control dependent on any other node, there is a control-
dependence edge with label 1" (true) from RUN to n.

Figure 1 on the bottom right shows the PDG for the example program Bin, in which solid
edges, labeled with the corresponding decisions, represent control dependencies and dashed edges,
labeled with the corresponding variables, represent data dependencies.

It is also possible—and useful—to define partial versions of PDGs restricted to one kind of
dependence only.

DEFINITION 10. An interprocedural control-dependence graph (ICDG) [83] for a program P
is the PDG for P without the data-dependence edges.

2.3 Slicing

This section describes slicing from the perspective of the potential effects of changes on the rest of
the program. Figure 2 on the left shows the example program Arr used in this section to illustrate
slicing, including four proposed changes. Figure 2 on the right shows the PDG for Arr after those
changes are made. This program inputs an integer a and an array of integers b, and initializes v
to a at statement 2. In the loop of statements 3-8, the program iteratively determines the value
of j—depending on the value of b [1i]—and increments v by j. Finally, at statement 10, the
program returns true if v > 0 or false otherwise.

To determine which parts of the program may be affected by a change in a statement, the static
forward slice from that statement can be used.

DEFINITION 11. The static forward slice [30,31,90] from a statement s in a program P is the
set containing s and the statements for all nodes directly or transitively reachable along control and
data dependencies in the PDG of P from the node for statement s.

To illustrate, consider program Arr and its PDG in Figure 2. Table 1, in its second column,
shows the static forward slices for three different nodes in Arr. For example, the static forward
slice from node 2 is the set {2, 8, 10}. This slice is the same before and after the changes.



Program-dependence graph (PDG)

(after
changes)

boolean Arr (int a, int[] Db)
pre—-condition: b.length > 4

0l: int v, i, J
02: v = a //C —wv=a-1

03: for (i = 1; i <= 4; ++i) { fj_ @
04: if (b[i] > 0)

05: J // Cy = J=05
06: else
07: j =2

08: v o+= ] }
09. /x nothing %=/ // C3 — print j
10: returnv>0 //C4 — returnv >-10

Figure 2: Example program Arr on the left with four possible changes and its PDG on the right.

Table 1: Example forward program slices from program Arr after applying changes in Figure 2.

slicing criterion static slice input values dynamic slice from

first statement occurrence
statement 2 {2,8,10} | a=5,b=[1,-1,0, 3] {21, 81,82, 83, 8%, 10}
statement 5 {5,8,9,10} | a=5,b=[1,-1,0,3]1 | {5', 8% 8% 8% 8% 9! 10'}
statement 10 {10} | a=5,b=[1,-1,0, 3] {10'}

To determine for a particular execution which statements may be affected by a change in state-
ment s, a dynamic forward slice can be computed from s in that execution.

DEFINITION 12. The dynamic forward slice [10,30,31] from a statement s for an execution
Bin of program P is the set containing s and the statements for all nodes directly or transitively

reachable from the node for s along control and data dependencies in the PDG of program P for
execution Bin.

In this chapter, we use the finest-grained form of dynamic slice, which is based on statement
occurrences [1]: the i*" occurrence of statement s in the execution is denoted s*. The last column
in Table 1 shows the dynamic forward slice for the first occurrence of the corresponding statement
(first column) in the execution of the modified Arr on input {a=5, b=[1,-1,0,3]1} (third
column). (Note that, for the modified Arr and this input, the execution history of the executable
statements—excluding 1 and 6—is 21,31,41,51,81,32 4271 &2 33 43 72 &3 34 4152 81,91 10'.) For
example, the dynamic forward slice for statement occurrence 5' is the set {5',8',82,8%,84,91,10}.



Table 2: Symbolic execution of program Bin from Figure 1

location path condition symbolic state

statement 1 true X = X9, V = Vo

statement 2 xg < 2 X = X0, Y = Yo

statement 4 X > 2 X = Xp, Y = Yo

< = = +

statement 6 Xo S 2% *0, ¥ Yo !

Xop > 2| X = Xg, Yy = Yo — 1

(x0 < 2) AN (yo > 3) |x = X0,y =yo + 1
statement 7

(x0 > 2) N (yo > 1) | x = X0, = yo — 1

xg < 2) AN (yo < 3) |[x =X,y =vyo + 1
statement 9

(x0 > 2) N (yo 1) |x =X%X05,Yy =yo — 1

2.4 Symbolic Execution

Symbolic execution [17,35] analyzes a program by executing it with symbolic inputs along some
program path. Symbolically executing all paths in a program to a given point, if feasible, provides
a description of the semantics of the program up to that point. Symbolic execution represents
the values of program variables at any given point in a program path as algebraic expressions by
interpreting the operations performed along that path on the symbolic inputs. The symbolic state
of a program at a given point consists of the set of symbolic values for the variables in scope at
that point. The set of constraints that the inputs must satisfy to follow a path is called a path
condition and is a conjunction of constraints p; or —p; (depending on the branch taken), one for
each predicate traversed along the path. Each p; is obtained by substituting the variables used
in the corresponding predicate with their symbolic values. Symbolic execution on all paths to a
program point represents the set of all possible states at that point as a disjunction of clauses, one
for each path that reaches the point. These clauses are of the form PC; = S;, where PC; is the
path condition for path ¢ and S; is the symbolic state after executing path .

To illustrate, consider program Bin in Figure 1. Symbolic execution first assigns symbolic
values xy and y, to inputs = and y, respectively. When statement 1 is executed, the technique
computes the path conditions for the true and false branches, which are zop < 2 and zy > 2,
respectively. These conditions are shown in column path condition of Table 2, for statements 2
and 4. The values of variables at the entry of each statement are shown in column symbolic state.
For example, after evaluating statement 2, the technique updates the value of y to yo + 1. The
execution of the remaining statements is performed analogously. Each row in Table 2 shows the
path conditions and the symbolic values at the entry of the corresponding statement, after traversing
all paths to that statement. For example, there are two path conditions and symbolic states for
statement 7. Each path condition in the second column implies the symbolic state on its right in
the third column. Symbolic execution associates with each statement the disjunction of all rows for
that statement, where each row represents a path condition and its corresponding symbolic state.



3 Related Approaches

Before formally presenting change-effects analysis, we give an overview of approaches that, with-
out being defined in terms of change-effects analysis, have paved the way for this kind of analysis
or implicitly use it. Section 3.1 discusses fault-propagation models that describe the conditions
under which the effects of faults (or changes) propagate through code. Section 3.2 summarizes the
concepts and techniques of change-impact analysis. Then, Section 3.3 discusses regression testing
and test-suite augmentation, which also depend on the behavior of changes.

3.1 Fault Propagation Models

A number of researchers have worked on theoretical aspects of fault propagation for fault-based
testing. Fault-based testing [19,26] restricts testing to a class of faults and tests the software for the
absence of faults of that particular kind. Typically, the faults considered are simple transformations
of code at specific locations. There are two main assumptions that justify this testing approach:
the competent programmer hypothesis [19], which states that developers create programs that are
syntactically close to a hypothetical correct version, and the coupling effect [19], which states that
test data that reveals simple faults is also sensitive enough to uncover more complex faults. The
theoretical work on fault-based testing described in this section can be naturally applied to changes.
Changes, like faults, can be seen as code transformations; the only difference between changes and
faults is that the location and semantics of changes are always known.

Morell [47] developed a theory to understand and systematize fault-based testing. Fault-based
testing restricts testing to a class of faults and tests the software for the absence of these faults.
Morell’s theory provides a framework where classes of faults are specified as sets of transfor-
mations (alternative expressions) on different locations in the code and establishes as the goal of
testing the selection of input data that differentiate all alternative programs produced by those
transformations from the original program. To achieve this goal, Morell proposed symbolic test-
ing, in which transformations are symbolic (i.e., they represent potentially infinite alternatives),
the original program and its alternatives are represented as symbolic functions of the input, and
the condition for test inputs to distinguish an alternative from the original program is expressed
as a propagation assertion in which the symbolic functions are required to differ. Although sym-
bolically evaluating complete programs is impractical, Morell’s theory makes symbolic testing an
ideal formalism for developing and analyzing less complex, approximate approaches.

Richardson and Thompson [65] proposed the RELAY model of fault detection, which refines
Morell’s theory by describing in detail the different steps involved in the execution and propagation
of a fault to cause an observable failure. These steps include the origination of a potential failure
(i.e., an erroneous state) when executing a faulty component, the computational transfer of this
failure to the containing expression, and the transfer from computation to computation of faulty
states via information flows (i.e., chains of control and data dependencies) until a failure is revealed
to an external observer. The authors used this model of failure origination and transfer conditions to
highlight one of the main weaknesses of traditional testing criteria based on coverage of program
entities (e.g., branches, data dependencies) [66], which is their inability to address coincidental
correctness—the case in which a fault executes but the error is not transferred to the output. In



Reference [87], the same authors explored in detail the transfer conditions in the RELAY model and
acknowledged that symbolic execution is needed to provide accurate transfer conditions, which,
in general, makes the process quite complex. Nonetheless, the RELAY model gives additional
insights to Morell’s theory for developing approximations of fault (and change) propagation.

Voas also used the notions of origination and transfer of erroneous states in his PIE model [88].
In this model, the testing criterion for a fault should ensure that the fault is executed (E), that it
infects the state (1), and that the infected state propagates to the output (P). Rather than specify and
solve these conditions, however, Voas used this model to construct a dynamic (execution-based)
technique that estimates the probability that certain program locations cause observable failures if
they contain faults. Nevertheless, the PIE model is very convenient to succinctly refer to the main
steps of the RELAY model.

The three models described in this section were designed to identify the effects on the output of
single faults [47,66, 88] or multiple faults that do not interfere with each other [66]. For changes,
however, developers need to determine the effects of changes on any part of the program and
possibly do so for multiple changes simultaneously. To the best of our knowledge, no fundamental
model exists, other than the one we present next in Section 4, to systematically compute the effects
of one or more changes on each part of the program.

3.2 Change-Impact Analysis

Change-impact analysis (CIA) [13] finds all potentially-affected components that may require
further changes or that may propagate change effects to other components. Static and dynamic
program-analysis-based CIA techniques have been defined at various levels of granularity and pre-
cision, such as statements, methods, and classes [5, 13, 40, 54,59, 63,79, 94]. These techniques
use control flow or dependencies but ignore the states under which changes create an impact. For
comprehensive surveys of the literature on CIA, we refer the reader to References [18,41,43].

We classify CIA techniques into two categories: predictive and descriptive. Predictive impact
analyses (e.g., [5, 13, 14]) identify potential effects of changing a particular program location,
such as a a statement or method, before changing it. This is particularly useful to assist developers
before they decide to change that location, how to change it, and how to propagate that change [60]
(i.e., which other changes to make down the line as a consequence). Descriptive impact analyses
(e.g., [61,63,79]), in contrast, identify affected entities after changes are made by analyzing the
differences in code and behavior observable between the unmodified and modified software.

Change-impact analysis techniques provide various trade-offs between scalability and preci-
sion. The most scalable, coarse-grained impact analyses identify affected classes or methods
(e.g., [5,14,63]), which can be useful as a first step for developers to understand the consequences
of a change, but do not describe which parts of those classes or methods are affected or how
they are affected. The most fine-grained impact analyses use code dependencies (e.g., [10,31]) to
identify impacts at the statement level, but they are still imprecise because they either find, in a
conservative way, an excessive portion of the program as potentially affected or miss affected code
not revealed as impacted by a specific set of executions.

Other approaches to CIA identify bug propensities and co-change trends using software repos-
itories and identifier names [4, 14,24,56,97]. Some of these approaches include non-code compo-
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Figure 3: Test-suite augmentation process for evolving software.

nents [82,91]. On one hand, these approaches give hints about the intents of developers that are
hard to obtain via program analysis alone. On the other hand, they work at coarse granularities and
still produce both false positives and false negatives.

To account for state effects at the statement-level, we developed change-effects analysis [73,
75,777-19] for full precision and, for practical application, approximations based on propagation
limits [73, 78] and effect quantification [15, 81]. These are the topics of the next sections. A
few other authors have also addressed the state of change effects via summary-based symbolic
execution [52,53] and test-case generation heuristics [57, 86].

3.3 Regression Testing and Test-suite Augmentation

Regression testing is an important form of software testing that consists of re-testing software after
it is modified [8, 11, 22, 25, 28, 29, 36, 38,42, 48,51, 67,70, 93] to look for any regressions (i.e.,
program behaviors that stop working correctly) introduced by changes. Typically, an existing test
suite is re-used to perform regression testing. Also, because changes might introduce new features
or exhibit side effects, new test cases might be needed. Therefore, as a complement to regression
testing, developers need to perform what is called test suite augmentation [6,73], a process that
assesses the existing test suite and adds new test cases as needed.

Figure 3 shows the two-step augmentation process in which a program P, tested by test suite
T, is modified to obtain version P’, for which an augmented test suite 7" is obtained. In the first
step of this process, developers first assess how well 7" and the test cases T added during the
modification of P test the effects of the changes on P’. Then, in the second step, the developers
add any new test cases to T'U T'" needed to exercise the untested effects of the changes. The
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mechanism to determine which effects of changes are tested and which are not depend on the
specific augmentation technique used and its underlying change-effects analysis.

Most research on regression testing in the literature has focused on efficiency aspects that reduce
the cost of re-running the test suite (e.g., [16,27,70,92]) and increase the probability of finding
regression errors early in the process (e.g., [68,85]). Research on efficiency includes the analysis
of correlations between deviations in program spectra (i.e., profiling information) and regression
faults (e.g., [29,93]) to better identify test cases that need to be re-run. Regarding the effectiveness
of regression testing and, especially, test-suite augmentation, the literature is smaller. Next, in
Section 3.3.1, we discuss coverage-based testing techniques for whole programs that inspired early
change-specific testing approaches. Then, Section 3.3.2 describes the research on such change-
testing approaches published before our own work presented in later sections.

3.3.1 Coverage-based Testing Criteria for Whole Software

A large body of work has addressed software testing based on white-box coverage criteria aimed
at discovering faults hiding anywhere in an implementation. These criteria define which entities
in the program must be covered (i.e., executed at least once) during testing [8,22,48]. A fest
suite (i.e., a collection of test cases) for a program is considered adequate for a white-box testing
criterion C if it covers all entities in that program required by C. Some testing criteria require that
all control-flow entities of some kind [32, 33,48] (e.g., statements, branches, paths) are covered,
while other criteria require the coverage of all data-flow entities of some kind [8,22,39,62] (e.g.,
definition-use pairs, chains of data dependencies). Frankl and Weyuker [22] provided a hierarchy
of the main control- and data-flow testing criteria that shows the subsumption relationships among
these criteria.

3.3.2 Coverage-based Testing Criteria for Modified Software

Whole-program coverage criteria aims at discovering faults whose existence and location are un-
known. In the case of modified software, however, the changes and their location are known.
Researchers have exploited this information at least partially by proposing to test the effects
of changes by conservatively identifying entities, such as branches or data dependencies, that
might be affected by the changes and requiring the coverage of these entities by a regression test
suite [11,25,69]. Affected entities are identified in these techniques via forward traversal of con-
trol and data dependencies from the locations affected by changes—the approach corresponding
to forward program slicing [30,31,90]. Thus, these testing techniques use specialized coverage
criteria that require the coverage of only affected subsets of program entities instead of all such
entities, as whole-program criteria do (Section 3.3.1). The effectiveness of these change-testing
techniques, however, was not evaluated empirically until our work started in Reference [73].
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4 Foundations of Change-Effects Analysis

This section presents precise foundations for the automatic analysis of the effects of changes.
While being a contribution in itself for the field of software changes, these foundations lie at the
core of the applications for change testing and analysis discussed in later sections. Section 4.1
formally defines the effects of a change and Section 4.2 shows how to compute these effects.

4.1 Formal Model of the Effects of Changes

This section presents a formal model of program-code changes and their effects. The guiding
principle for this model is that

A change C' in a program affects an element e of that program if applying C' to the
program alters in any way the behavior of e.

Element e can be a statement or even another change. The behavior of a change is the set of
differences caused by the change in the behavior of the changed statements.

This section formalizes the concepts of “changes” in program code and the “effects” of those
changes. Section 4.1.1 presents the example used to illustrate the model, Section 4.1.2 defines
what we mean by a change in code, and Sections 4.1.3 and 4.1.4 present the model for individual
and multiple changes, respectively.

4.1.1 Working Example

We will reuse our example program Arr from Figure 2 with the four changes shown as comments:
Cy, Co, C3, and C4. Applying these changes to Arr produces a modified version that we call Arr’ .
To the right of the program, Figure 2 shows the PDG for Arr’. Recall that Arr inputs an integer
a and an array of integers b, and initializes v to n at line 2. In the loop of lines 3-8, the program
iteratively determines the value of v—depending on the value of b [ j]—and increments v by J.
Line 8, which is empty in Arr, prints j in Arr’. Finally, at line 10, the program returns true if
v > 0 or false otherwise. In the modified program Arr’, change C; modifies the expression at
line 2 to decrement v by 1 with respect to Arr, Cy changes the value assigned to j at line 5, C3
inserts print 7j atline 8, and C4 modifies the expression evaluated and returned at line 10.

4.1.2 Definition of Code Change

To define the effects of a change, in this chapter, first we must define the notion of change in the
executable code of a program.? Informally, a code change in a program P is a mapping between a
set of executable statements in P and a new set of executable statements that replaces the former
set to produce the modified program P’. To support the concepts and techniques in the rest of
this chapter, and without loss of generality, we assume that the area of the program where a code

2By program, we mean a syntactically-correct (compilable) sequence of declarations and executable code.
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change is made has a single entry point. Formally, the next two definitions establish what a code
change is and how it is specified.

DEFINITION 13. A sub-ICFG is a non-empty, connected directed graph G°=(V°, E®) that is
a subgraph of an ICFG? and where V¥ contains exactly one node e that has no predecessors and is
the entry of the subgraph. Node e is not necessarily an EN node. We say that G* is a sub-ICFG of
an ICFG I if G¥ is both a sub-ICFG and a subgraph of 1.

DEFINITION 14. A code change in a program P is a description of modifications of the exe-
cutable code of P and is specified by a tuple <G, G', IN, OUT>, where G is a sub-ICFG of the
ICFG I of P, G’ is a sub-ICFG that differs from G (i.e., the node sets, edge sets, or corresponding
statements differ), and IN and OUT are partial functions £—V x L. where E is the set of edges
in I, V' is the set of nodes in G’, and L. is the set of control-decision labels, including the empty
label . The domain of IN consists of all edges (m,n) in I such that m is not in G and n is the entry
e of G. The image of IN is {€'} x L. (i.e., ¢’ maps to e for all edges that enter G). The domain of
OUT consists of all edges (m,n) in I such that m is in G and n is not in G.

The purpose of the specification <G, G’, IN, OUT> for a code change is that sub-ICFG G
specifies the part of the ICFG [ of P (the original code in P) to replace and sub-ICFG G’ specifies
the subgraph (new code in P) that replaces G in . The modified program P’ is obtained from the
ICFG [’ that results from applying this change to ICFG [. Partial functions IN and OUT specify
how G’ connects to the rest of [ when G’ replaces GG. Definition 14 indicates that all edges in [ that
enter GG target the entry node e of GG. Thus, given an edge (m,e) from the domain of /N and IN(
(m,e) ) = (€¢/,1), edge (m,e) is replaced by edge (m,e’) with label [ when applying the change. The
edges that leave (G in I, however, can leave from any node in GG. Each edge (m,n) in the domain
of OUT is replaced by edge (m’,n) with label [, where OUT( (m,n) ) = (m’,l).

The single-entry property of code changes is needed for the definition of the effects of changes
presented in Section 4.1.3. This constraint, however, does not affect the ability of Definition 14
to describe changes in code—it simply implies that modified areas in P with multiple entries can
be specified either as separate, possibly overlapping code changes, or as one code change whose
sub-ICFGs G and G’ include all modified nodes as well as nodes e and ¢’ that dominate (see
Definition 4 in Section 2.1) all nodes in G and G, respectively.

To illustrate Definition 14, consider the code change in Figure 4. The figure shows the ICFG of
program P on the left, inside which sub-ICFG G is highlighted. GG consists of nodes 2 and 3 and
edge (2,3). The code corresponding to each node is not important for this example and therefore is
not listed. The middle of the figure shows sub-ICFG G’, partial functions IN and OUT, and entry
nodes e and €’. The resulting ICFG of the modified program P’ is shown on the right. In this ICFG,
the modified area is highlighted and corresponds to sub-ICFG G’, which replaces sub-ICFG G. IN
maps the only edge entering the change in G, (1,2), to node 6 (¢’) of G’ with no label. Thus, edge
(1,2) is replaced by unlabeled edge (1,6) in the ICFG of P’. OUT maps nodes 4 and 5 of G to
nodes 7 and 8 of G/, respectively, with empty labels. Thus, edges (3,4) with label T and (3,5) with
label F are replaced by edges (7,4) and (7,5) with no labels in the ICFG of P’.

For a more concrete example, consider change C; in Arr (Figure 2). Both G and G’ for C;

3An ICFG is an interprocedural control-flow graph. See Definition 2 in Section 2.1.
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ouT((3,4)) = (7,€)
ouUT((3,5)) = (8,¢)
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Figure 4: Example of a code change. On the left, the ICFG of program P and its sub-ICFG G
(nodes 2 and 3). In the middle, sub-ICFG G, partial functions IN and OUT, and entry nodes e and
¢’. On the right, the ICFG of the modified program P’.

consist of node 2, whose corresponding statement is modified. Because node 2 is the only node in
the change, both e and ¢’ are node 2. In this particular example, /N maps edge (1,2) in G to node 2
in G’ with no label and OUT maps (2,3) in G to node 2 in G’ without label. For another example,
Cs in Figure 2 represents the insertion of node 9 before node 10 in Arr. In this example, because
neither G nor G’ can be empty, G can be defined as node 10—even though the corresponding
statement is not modified—and G’ can be specified by nodes 9 and 10 and edge (9,10). IN maps
edge (3,10) in Arr tonode 9 in Arr’ to indicate that control flows from 3 to 9 instead of 10 after
the change and OUT maps edge (10,EX) to node 10 to preserve that edge. All labels are empty.
Node 10in Arr and 9 in Arr’ correspond to e and €’ for this change, respectively.

An example of how Definition 14 handles code areas with multiple entry points is the change
resulting from the union of C; and C3 in Arr in Figure 2, which we denote by Cyy 3. Both G
and G’ contain nodes 5 and 9 because the corresponding statements are modified. However, if
only those nodes were in G and G, the edges in the domain of /N would have to include (4,5)
and (3,10), violating the property that the target of those edges is a unique node ¢ in G and €’ in
G'. Hence, GG and G’ must include nodes e and ¢’ that dominate all other nodes in their respective
graphs.* Therefore, change Cy2,3) can be made consistent with Definition 14 by having both e and
¢’ be node 3, GG consist of nodes {3, 4, 5, 7, 8, 10} and edges {(3,4), (3,10), (4,5), (4,7), (5,3),
(7,8)}, and G’ consist of nodes {3, 4, 5, 7, 8, 9, 10} and edges {(3,4), (3,9), (4,5), (4,7), (5.,8),
(7,8), (9,10)}. For this change, IN maps edge (2,3) to node 3 with no label and OUT maps edge
(10,EX) to node EX with no labels.

“Because a sub-ICFG is a connected graph, its entry node dominates all other nodes in the sub-ICFG.
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4.1.3 Effects of Individual Changes

To facilitate the discussion, hereafter, code changes are simply called changes and program execu-
tions are considered reproducible (i.e., all executions for the same input are identical).’ Let P and
P’ be two versions® of a program where P’ is the result of applying the set of N changes {C; | 1
< i< N} to P. Let P"\¢ be the program version that results from applying all changes except C'
to P.

Changes alter the states of the program and/or the instructions that get executed. The next
three definitions formalize the concepts of sequences of instructions and states for programs and
changes.

DEFINITION 15. The execution history of a program for input [ is the sequence of statements
executed when that program is run with input /.

DEFINITION 16. The augmented execution history of a program for input [ is an extension
of the execution history of that program for input I, where each statement occurrence s’ is paired
with the parts of the program state modified by s/. The parts of the state modified by a statement
occurrence s’ are all variables defined at s/ and the program counter (i.e., the index of the next
statement).

For example, consider program Arr’ (Figure 2) and input {a=5,b=[1,-1,0, 31}. Let pc
denote the program counter after a statement execution. The first five elements in the augmented
execution history of Arr’ are:

<2 {v=4,pc=3}>, <3! {i=1,pc=4}>, <4 {pc=5}>, <5' ,{j=5pc=8}>, and <8' {v=9,pc=3}>.

A change C' may or may not occur (i.e., execute) during a program execution, and if it occurs,
it might do so multiple times. C' occurs during an execution if at least one of its statements in the
modified program is executed.

DEFINITION 17. The augmented execution history of a change C' on program P for an execu-
tion of P is the sequence of occurrences of the location (entry point) of change C' in that execution
and, for each occurrence, the subset of the augmented execution history of the program contain-
ing only statements that are semantically dependent on C' in that execution. (See Definition 8 in
Section 2.2 for the definition of semantic dependence.)

For program Arr’ from Figure 2, executed on input {a=5,b=[1, -1, 0, 3]}, the augmented
execution history of change C, contains three occurrences of the change: 5!, 52, and 5. The subset
of the augmented execution history for occurrence 5' of C, in this example is:

<51 {j=5,pc=8}>, <8! {v=9,pc=3}>, <82 {v=11,pc=3}>, <83 {v=13,pc=3}>, <8* {v=18,pc=3}>,
and <10! {ret=true,pc=EX}>
where ret represents the value to be returned. Note that the subsets for 5 and 5 overlap with the
subset for 5! on all elements after 5% and 53, respectively, except for those two occurrences (52 and

SIf all sources of non-determinism in an execution, such as thread interleavings and random values, are captured
and made part of the input, the execution is reproducible.
A version of a program is that program with a set of changes applied to it.
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5%) and 9! which is in the augmented execution history for 5°.

After a change occurs, the executions of the versions of the program with and without the
change potentially diverge in path or state or both, from that point. That divergence continues
for part of the respective execution histories afterwards, possibly for the remainder of those two
executions. The next definition formalizes this divergence.

DEFINITION 18. Given an execution of modified program P’ with input /, the effects of change
C on that execution are the differences’ in the augmented execution histories of C' on P’ and P'\¢
for input /.

DEFINITION 19. The effects of change C' on program P’ are the union of the effects of C' on
all possible executions of P’.

The effects of a change on a modified program reflect the actual meaning of that change for the
behavior of the program. Thus, a change can be viewed not just as a localized syntactic modifi-
cation of the code, but more precisely as the collection of behavioral differences (i.e., differences
in states or paths) caused by the syntactic modification. Such differences are initiated at the loca-
tion of the change and propagate to all affected parts of the program, no matter how far from the
location of the change they are.

4.1.4 Effects of Multiple Changes

Changes in programs usually do not occur in isolation. Thus, it is necessary to define what the
effects of multiple changes on each other mean—how these effects interact. The guiding principle
for multiple changes in our formal model is that

A change C, affects another change C,, if the presence of C, alters in any way the
effects of C,, on the program.

This section provides formal definitions of dependence among changes and change interaction,
including a proof that change interaction is a symmetric relation.

The context for the effects of a change C' is the entire program with all other changes in place,
rather than just the syntactic location of C' and the original program with change C'. Because the
meaning of C corresponds to its effects on the entire modified program, any modification of those
effects caused by other changes is an interaction with C. This consideration leads to the definition
of semantic dependence among changes.

DEFINITION 20. A change C, is semantically dependent on a change C,, in program P’ if
the effects of C, on P’ differ from the effects of that same change on P'\¢, (i.e., P’ without the
changes in C))).

In other words, C, semantically depends on C,, if the presence or absence of C, on the mod-
ified program P’ determines which effects C,, has on P’. This definition of semantic change-
dependence is similar to the semantic dependence among two statements as defined by Podgurski

"The differences between two sequences can be specified by a set of additions, deletions, and modifications of their
elements. Because there might be multiple such sets that specify the differences between two sequences, we use the
term differences more broadly to represent all possible such sets.
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and Clarke [55], except for two differences. First, semantic change-dependence uses the aug-
mented execution history of a change, which includes not only the syntactically modified state-
ments but also all statements and states affected by that change across the program. Second, instead
of considering all possible changes to the computations performed at the source of the dependence,
our definition uses the concrete change C, between P'\¢, and in P’. This second difference is key
for making possible the computation of such dependencies, especially for individual executions.

The semantic dependence between two changes is a symmetric relation. The following theorem
formalizes this property.

THEOREM 1. If a change C, is semantically dependent on a change C,, then change C,, is also
semantically dependent on change C.,.

The proof of this theorem is provided in Reference [72].

4.2 Computation of the Effects of Changes

Based on the formal model of change effects (Section 4.1) and the principles of the PIE model
(Section 3.1), we can give now a systematic approach for computing the conditions that cause
a change to affect the behavior of a program. These conditions are captured and computed by
procedure COMPUTEEFFECTS? listed in Figure 5. The procedure inputs the original (unmodified)
program P and change C (see Definition 14) and, at line 1, computes the modified program P’ by
applying C' to P.

According to Definitions 18 and 19, the effects of a change are the differences in the augmented
execution history of the change (Definition 17) for P and P’. Thus, the effects of a change cannot
be fully specified in terms of either program alone. For example, for program Arr in Figure 2, the
execution history of change C3 in Arr is the history of line 10 (subgraph G for C3). This history is
not modified in Arr’ and, therefore, it provides no clue on what program behaviors are affected.
Only the inserted code for that change—graph G’ for C3—specifies that it is the return value that
is affected by the change.

To cover all affected behaviors, COMPUTEEFFECTS outputs the effects of change C' as a set of
PIE conditions for two sets of dependence chains (sequences): one set for G in P and the other
for G’ (for P’). The computation of effects is thus performed in two steps (two iterations of the
loop of lines 2-20), one for P and the other for P’. The conditions computed inside this loop are
described next in the next two sections.

4.2.1 Chain Conditions

The augmented execution history of a change (Definition 17 in Section 4.1.3), a key part of the
definition of the effects of a change (Definitions 18 and 19 in Section 4.1.3), uses the semantic de-
pendencies among statements. Computing semantic dependencies for all possible executions is an
undecidable problem, but semantic dependencies can be approximated by syntactic dependencies
(i.e., possible dependencies identified by a program analysis).

8We use procedure instead of algorithm because COMPUTEEFFECTS might not terminate.
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DEFINITION 21. A node n is syntactically dependent on a node m in the ICFG of a program
P and according to a safe analysis A, if and only if there is a chain of dependencies (control or
data or both) identified by A in P that starts at m and ends at n.

DEFINITION 22. A dependence chain is a pair <n,seq> where n is the starting node and seq
is a possibly-empty sequence of dependencies where the target node of each dependence is the
source node of the next dependence in segq.

Syntactic dependence is a necessary condition for semantic dependence (see Section 4.1.3).
Thus, a natural choice for a procedure that computes the effects of a change is to compute first the
dependence chains from the change in both P and P’. For example, in program Arr of Figure 2
with and without change Cs, there are four chains from node 5 to node 10: <5, ((5,8), (8,10))>,
<5, ((5,8), (8.,8), (8,10))>, <5, ((5,8), (8,8), (8,8), (8,10))>, and <5, ((5,8), (8,8), (8,8), (8,8),
(8,10))>.

Lines 4-13 and 16—17 of procedure COMPUTEEFFECTS (Figure 5) compute the chain condi-
tions for the change in program. The chain conditions are the constraints on the program input
for reaching each node in the change and executing each dependence chain from those nodes.
The constraints for each chain are the path condition (see Section 2.4) of the paths that cover it.!°
Lines 4-7 begin this computation by creating one “empty” chain <n, ()> for each definition or
branching decision in each node n of the change in program and placing this chain in a work list
used in the rest of the procedure. Lines 68 assign to each empty chain, as the condition for its
execution, the path condition for reaching its starting node by calling reachingCondition.

The while loop in lines 8—19 iterates over the work list of chains until the list is empty, extract-
ing one chain at a time at line 9 and placing it in prefixChain. For each prefixChain, the for loop of
lines 1018 extends it with every control or data dependence that starts where the prefix chain ends
(line 11). For each dependence, the loop computes its coverage conditions (line 12) in terms of the
program variables at the source of the dependence and then computes the chain conditions for the
extended chain as the conjunction of the chain conditions of the prefix chain and the conditions for
the new dependence (line 13). The auxiliary procedure coverCondition takes not only the program
and the dependence but also the prefix chain to ensure that only realizable paths (i.e., paths whose
procedure call and return edges match) are considered. Line 16 stores this chain condition for the
extended chain along with the state condition (see Section 4.2.2) for the chain. Finally, line 17
adds the chain to the work list to be further extended in later iterations of the while loop.

4.2.2 State Conditions

Syntactic dependence, although necessary, is not a sufficient condition for semantic dependence
of a node s on a change C'—the infection created by a change might not propagate through any
chain connecting C' and s. For example, node 10 in program Arr’ is connected to change C; in
node 2 via node 8 by a chain of data dependencies on variable v, but the value returned at node 10
is not affected by C; unless the value of v that reaches that point is O with C; and thus 1 without

%A program analysis is safe if it has no false negatives such as missed dependencies.
'0We use “path condition” not only for single paths but also for the disjunction of path conditions for all paths that
reach a node or that cover a dependence.
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Procedure COMPUTEEFFECTS
Inputs: P: program; C': change
Output: effects: map program — dependence chain — conditions
(1) P’ :=applyChange (P, C)
(2) foreach program € { P, P’ }
3) altProgram := P’ if program is P ; P otherwise
@ chainWorklist := createEmptyChains (program, change)
®) foreach emptyChain € chainWorklist
(6) effects|program][emptyChain] := reachingCondition (program, start(emptyChain) )
@) endfor
// incremental computation of conditions
(8) while chainWorklist # ()

©)) prefixChain := pop (chainWorklist)
(10) foreach dep € nextDependencies (program, prefixChain)
(an chain := append (prefixChain, dep)
// chain conditions
12) depCond := coverCondition (program, prefixChain, dep)
(13) chainCond = effects[program]|[prefixChain] N\ depCond
// state conditions
(14) (S, Sait) := PSE_Dep (program, altProgram, dep)
(15) stateCond := live(S) # live(Sqit) V (pc(S) A = pe(Sqie))
(16) effects|program]|[chain] := chainCond A stateCond
(17) push (chainWorklist, chain)
(18) endfor

(19) endwhile

(20) endfor
(21) return effects

Figure 5: Procedure that computes the effects of a change, which does not necessarily terminate.

C;. Hence, to obtain the effects of a change C' on a point in the program, additional conditions on
the program state are needed.

Despite the undecidability of computing semantic dependencies, it is possible to add conditions
on the program state for such dependencies incrementally from the change, as shown in procedure
COMPUTEEFFECTS of Figure 5. Recall that the while loop in the procedure extends each chain
one control or data dependence at a time. Although the computation of effects for a particular
program point might not terminate due to cycles in control- or data-flow, an incremental procedure
for computing these effects can be the basis for useful approximations such as those presented in
the next chapters.

The program state can be logically divided in two parts: the program variables and the program
counter (i.e., the pointer to the next instruction to execute). Thus, there are two cases in which an
infection propagates throughout a dependence chain:
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* Case 1: the infection is a difference in the value of at least one program variable.

» Case 2: the infection is a difference in the program counter that causes a divergence in the
paths taken by the program.

To compute the two cases of state conditions, line 14 invokes PSE_Dep to perform partial
symbolic execution [6,73] defined next.

DEFINITION 23. Partial symbolic execution, or PSE for short, is a form of symbolic execution
that starts and ends at arbitrary points in the program and uses as symbolic input the program
variables at the start point. The result of PSE consists of the state of the program at the end point
and the path condition!® for reaching that point from the start point. Both results are in terms of
the symbols for the variables at the start point.

PSE_Dep applies PSE to the paths that cover dependence dep in program and its alternate
altProgram (determined at line 3) and returns the respective symbolic states S and S,;; at the end
of those paths. The symbols in these states are the program variables at the source node of the
dependence. The symbol for each of these variables, however, is equated to the symbolic value of
the variable already available effects when adding the state condition at line 16. Similarly, PSE_Dep
uses placeholder conditions p and p,;; stating that the execution in the respective program reaches
the source node of the dependence; those placeholders are replaced at line 16 by the actual path
conditions for reaching the end of the prefix chain.

Condition p,; is not satisfiable if the source of dependence dep does not exist in altProgram
or is modified so that the last dependence in prefixChain does not exist or does not end in that
node. Also, the path condition in S, is not satisfiable if dep does not exist in altProgram (i.e., in
altProgram, the source or target node do not exist or there is no dependence between those nodes).

For Case 1, line 15 of the procedure specifies in the first term of the disjunction that the value of
some live variable!! at the target of the dependence differs in the two programs. Only live variables
are of interest because any differences in the values of dead variables'? do not affect the behavior
of program.

For Case 2, the procedure at line 15 specifies in the second term of the disjunction that the path
condition in .S must hold while the path condition in S,;; must not hold. One way in which the
negation of the path condition in S,;; can be satisfied is that altProgram simply does not reach the
source node of dep.

4.3 Comparison with Related Approaches

In References [6] and [73], we introduced partial symbolic execution (PSE) and symbolic state
differencing as mechanisms for testing the effects of changes. In this section, we formalized the
foundations for that work via a comprehensive formal model of the effects of changes that un-
derlie and justify those mechanisms and by specifying in full how those effects can be obtained
programmatically [72,73,75,79].

1A variable v is [ive at a program point 7. if there is a definition-clear path for v from n to a use of v.
12A variable v is dead at a program point n if there is no definition-clear path for v from n to any use of v.
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The formal model of Section 4.1 is consistent with Morell’s theory [47], its extension RE-
LAY [65], and the more practical PIE model [88] described in Section 3.1. Unlike this theory and
model, however, our model also provides a complete and precise definitions of what a change in
program code is, how the effects of such a change manifest in individual executions, and how
changes affect a program at each point and for all possible executions. Our model also addresses
multiple changes and their possibly-interacting effects. The definitions in our model lead directly
to the formulation of a general procedure for obtaining the effects of changes. From this procedure,
practical and effective approximations can be derived, as shown in the next sections.

For testing changes, the techniques discussed in Section 3.3 use slicing to obtain testing require-
ments corresponding to individual data- and control-dependencies affected by a change. Simple
dependencies, however, without accounting for state differences caused by changes, are quite lim-
ited for representing the effects of changes accurately. A dependence that is potentially affected
by a change is not necessarily executed exclusively as part of the propagation of the effects of
the change. Individual dependencies do not fully reflect the different and complex ways in which
dependencies interact to propagate infections.

Meanwhile, change-impact analysis techniques, such as those discussed in Section 3.2, identify
elements such as methods or statements that are possibly affected by a change and therefore need
special attention. These techniques, however, are no better than change-testing approaches for
modeling the effects of changes at a fine-grained level, for similar reasons. Such techniques either
rely on slicing only or identify coarse-grained entities such as methods executed after a change.

S Application: Test-Suite Augmentation Requirements

In recent work [73, 78], we performed the first empirical studies of the change-testing criteria
proposed in earlier literature and discussed in Section 3.3.2. The results suggest a low capability to
reveal observable behavioral differences caused by changes because these techniques fail to exploit
all the information that a change provides. Coverage-based approaches require the coverage of the
changed locations and potentially-affected entities but do not consider how the change affects the
program state, how those entities are affected, and how the output is affected when those entities are
affected. Approaches based only on the coverage of the change and affected entities only guarantee
that the change is executed, as required by the PIE model adapted for changes (Section 3.1), but
they do not provide sufficient guarantees that the state of the program is infected by the change and
that the infection propagates to the output.

This section describes the MATRIX technique for propagation-based testing of changes [6,73].
This technique is a practical, straightforward approximation of the formal ideal approach of Sec-
tion 4 that explicitly addresses the infection and propagation requirements of the PIE model. M A-
TRIX computes and monitors test-suite augmentation requirements for individual changes based
on a precise analysis of those changes—unlike the simpler approaches of Section 3.3.2.
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6 Application: Test-Suite Augmentation Requirements

In recent work [73, 78], we performed the first empirical studies of the change-testing criteria
proposed in earlier literature and discussed in Section 3.3.2. The results suggest a low capability to
reveal observable behavioral differences caused by changes because these techniques fail to exploit
all the information that a change provides. Coverage-based approaches require the coverage of the
changed locations and potentially-affected entities but do not consider how the change affects the
program state, how those entities are affected, and how the output is affected when those entities are
affected. Approaches based only on the coverage of the change and affected entities only guarantee
that the change is executed, as required by the PIE model adapted for changes (Section 3.1), but
they do not provide sufficient guarantees that the state of the program is infected by the change and
that the infection propagates to the output.

This section describes the MATRIX technique for propagation-based testing of changes [6,73].
This technique is a practical, straightforward approximation of the formal ideal approach of Sec-
tion 4 that explicitly addresses the infection and propagation requirements of the PIE model. MA-
TRIX computes and monitors test-suite augmentation requirements for individual changes based
on a precise analysis of those changes—unlike the simpler approaches of Section 3.3.2.

6.1 Overview of MATRIX

The MATRIX technique adapts the procedure COMPUTEEFFECTS of Figure 5 in Section 4.2,
which computes the effects of a change on any point in the program, to make it applicable in
practice. The technique works in two phases. Phase 1 identifies the dependence chains in the
program (Definition 22) through which the effects of a change might propagate to the output. These
chains are what we call the chain testing requirements in this technique—they should be covered
as a necessary (albeit not sufficient) condition for exercising the many paths through which the
effects of a change might propagate. Phase 2 uses partial symbolic execution (PSE) (Definition 23)
to compute the infection and propagation conditions (i.e., the state conditions of Section 4.2.2) for
the effects of the change along each dependence chain found in Phase 1. The conditions computed
in Phase 2 for each chain are what we call the state testing requirements for those chains.
Computing all the requirements for covering a change, infecting the state, and propagating the
infection to the output is impractical in general. Hence, the technique makes two simplifications.
First, the technique omits the conditions for reaching the change from the entry of the program
that COMPUTEEFFECTS obtains in Line 6 because an existing test suite created for high code
coverage should already cover the change. Second, the technique sets a limit d on the distance
from the change (i.e., the length of each chain from each node in the change) that the analysis
is allowed to reach along each chain. This limit can be specified by the developer or a tool that
uses this technique. The testing requirements obtained by this technique are, for two reasons, a
safe approximation of the conditions for the execution, infection, and propagation of changes to
the output. The first reason is that a test case that does not satisfy these requirements on a chain
is guaranteed not to propagate an infection to the output through that chain. The second reason
is that these requirements are a necessary but not sufficient condition for test cases to propagate
an infection to the output through a chain. Thus, by requiring the propagation of an infection
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Table 3: Dependence chains in program Bin and change C; from Figure 1.

chains inputs | differences

) a1 =<1,(1,2)> 80 16
distance 1 —— (1,4)> 50 i
) @1 =<1,(1,2),(2,6,y)> 80 16
distance 2 = M — 3 7.1, (4,6, 4)> 20 i
@31 =<1,(1,2),(2,6,y),(6,7)> 72 16

) @2 =<1,(1,2),(2,6,y),(6,9)> 8 0
distance 3 1= 1 (1.1), (4,6, ), (6,7)> 14 0
Q34—<1,(1,4),(4,6,y),(6,9)> 6 4

to distance d on each chain from the change, the technique aims at increasing, with respect to
a coverage-based approach, the probability that the infection will keep propagating beyond that
distance and eventually affect the output. The emphasis on propagation is the reason why we
classify this technique as propagation-based.

The goal of the technique is to create requirements for the difference-revealing subset of all
possible test cases, which are the test cases that produce an observably-different behavior in the
original and modified programs. This subset is first approximated by test cases that just cover
the change. From that point, the ideal subset is increasingly better approximated by subsets that
satisfy the chain and state requirements for each distance because, as the distance increases, the
test suites that satisfy those requirements restrict more and more the test cases that can possibly
propagate an infection to the output. For each distance d, the testing requirements subsume branch
and data-dependence coverage criteria (Section 3.3.2) within that distance.

6.2 The MATRIX Technique

This section describes the propagation-based technique MATRIX for analyzing the testing require-
ments of single changes. Section 6.2.1 presents Phase 1, while Section 6.2.2 presents Phase 2.

6.2.1 Phase 1: Chain Requirements

A simple strategy for testing a change is STMT—cover all changed statements. However, as shown
in studies [73], this strategy often fails to guarantee that all possible effects of the change on differ-
ent parts of the program are tested. Consider, for example, program Bin in Figure 1 and change C;.
Let Bin; be this modified version. This program has 10x10=100 test inputs. Examining the code
in Figure 1 reveals that the change produces a different observable behavior in Bin; (i.e., a differ-
ent output with respect to Bin) if and only if y € [2, 3], which corresponds to 20 inputs, or 20%
of the input space. Hence, randomly picking an input that covers the change has a rather small
chance of causing a difference.

In many cases, an adequate test suite for the simple change-coverage strategy exercises only a
small fraction of all dependence chains along which a change may propagate. Because the effects
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of a change can propagate forward along any of the chains starting from the change, an adequate
testing strategy should require the coverage of all such chains. Table 3 shows all dependence
chains reaching distances 1, 2, and 3 from the change (Statement 1) in programs Bin and Bin;—
the chains of lengths 1, 2, and 3, respectively. A chain g, ; corresponds to the it chain of length
n. For each chain, columns inputs and differences show the number of inputs that cover the chain
and the number of covering inputs that also reveal a difference in the output.

Consider the requirement of propagating the effects of the change along all chains of length
one (i.e., along direct dependences) from this change. Two control dependences must be tested:
(1,2) and (1,4). Table 3 shows that, for (1, 2), there are 80 covering inputs, 16 of which reveal a
difference. For (1,4), there are 20 possible inputs, four of which reveal a difference. Each chain
has a probability of 20% of revealing a difference. A test suite I’ that covers all dependencies from
the change in this example has thus a 36%'* chance of revealing a difference. Therefore, covering
all chains of length one increases the probability of difference detection from 20% to 36% with
respect to simply covering the change.

Consider now dependence chains of length greater than one. The number of chains can grow
exponentially with their length, but in practice it is possible to cover chains of a limited length.
In the case of change C,, there are four chains of length 3 reaching output statements 7 and 9.
Two of these chains can reveal a difference, as Table 3 shows: g3 1, which is covered by 72 inputs,
revealing a difference in 16 cases (22.2%), and chain g3 4, which is covered by six inputs, revealing
a difference in four cases (66.7%). A test suite that covers all chains of length 3 would thus reveal
a difference with probability 74.1%. A random test suite of size 4, in comparison, has a 59%
chance of revealing a difference. This example shows that longer chains can improve the chances
of revealing a different behavior after a change, compared to shorter chains or simple change
coverage (i.e., chains of length 0) by requiring a well-distributed coverage of propagation paths
from the change.

The computation of chain requirements for MATRIX is identical to the computation of chain
conditions in COMPUTEEFFECTS except for two differences. The first difference is that, at Line 6,
the conditions for reaching the change are empty—these conditions are omitted for the reasons
given in Section 6.1. The second difference is that, at Line 17, for COMPUTEEFFECTS, the ex-
tended chain is added to the work list only if its length has not yet reached distance d. From now
on, we use CHAIN to denote the strategy of satisfying chain requirements during testing.

6.2.2 Phase 2: State Requirements

Chain requirements can increase the probability of finding output differences, but they cannot
guarantee that the effects of the change propagate to the end of each chain. For example, for
program Bin and change C; in Figure 1, Table 3 shows that only 16 out of 72 inputs (22%) that
cover chain g3 ; reveal a difference in the output. The reason is that the program state after covering
chain g3 ; and reaching Statement 7 in Bin might be the same as the state at Statement 7 in Bin;
for the same input. Hence, to guarantee propagation of the infection to the end point of each
chain—thus increasing the chances that the infection will keep propagating after that point and

13The probability that T reveals a difference is 1—]Ticqr(1=p¢). p: is the probability that test ¢ reveals a difference.
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reach the output—algorithm COMPUTEREQS computes state requirements for each of the chains.

Like procedure COMPUTEEFFECTS, algorithm COMPUTEREQS performs partial symbolic ex-
ecution (PSE) (Definition 23) on each dependence to obtain the state conditions for Cases 1 and
2 (Section 4.2.2) in which P and P’ can differ: some live variable differs or the path conditions
differ. These two state requirements for a chain reduce the space of test cases covering the chain to
those that propagate an infection to the end of the chain, thus increasing the chances of propagating
the infection to the output. However, unlike COMPUTEEFFECTS, COMPUTEREQS uses at Line 14
a modified version of PSE that takes into account a path-length limit [ provided as input.

In COMPUTEREQS, PSE stops analyzing a control-flow path that covers a dependence when
this path reaches length /, thus avoiding the costly analysis of paths that are too long—perhaps
infinitely long. When PSE stops analyzing a path, it stops adding terms to the conjunction that is
the path condition for that path. In that case, the incomplete path condition might be satisfied even
though, in reality, the path might not be covered because some condition after the /™ node in the
path is not satisfied. Similarly, if a variable v is updated in a path after the limit [ for that path
is reached, the value v is considered unknown—it can have any value. In such a case, whether v
differs in the original and modified programs cannot be determined (unless v does not exist in one
of the programs).

To illustrate, consider again Figure 1. Using symbolic execution, the technique defines the state
of Bin; at the change point as {x = x¢,y = yo}. After following chain ¢ ;, the symbolic state
in Bin, is {x = zo,y = yo + 1}, and the path condition for this chain is g > 2 A yo > 1. In the
example, both x and y are dead at Statement 7, so the live states are the same in Bin; and Bin, that
is, Case 1 for g3 ; 1s not satisfied. However, the path condition in Bin for all paths to Statement 7 is
(ko <2Ayp > 1)V (xg >2Ayo > 3),s0 Case 2 for g3 1 (pc(S") A—pc(S)) is satisfied by zp > 2
and y € (2, 3]. Condition 2 reduces the number of test cases that cover the chain from 72 to 16,
which are exactly those revealing a difference. Constraining the other difference-revealing chain,
3,4, also yields a 100% detection.

From now on, we use PROP to denote the strategy of satisfying CHAIN (chain requirements)
and the state requirements for each such chain during testing.

6.3 Summary of Empirical Results

To assess the potential of MATRIX beyond the simple example of Figure 1, we obtained empir-
ical results for it in comparison with the coverage-based approaches of Section 3.3.2. We im-
plemented MATRIX as an extension of DUA-FORENSICS [74, 80], our dependence-analysis and
instrumentation framework. We studied the difference-detection abilities of the MATRIX strate-
gies CHAIN and PROP alongside the coverage-based strategies STMT (changed statements), BR
(affected branches), and DU (affected du-pairs) from Section 3.3.2. For CHAIN and PROP, we
used the greatest distance d our tool could reach for PROP within a memory constraint of 1 GB and
a path-length limit [ of 10 branches.

The results are shown in Table 4. We studied 6 changes in Tcas, a small air control program,
and 9 changes NanoXML, a lean XML parser. For each change and type of strategy, we generated
100 test suites and measured the probability that the strategy exposes at least one difference in
the output. The table omits two changes in NanoXML for which all strategies trivially had 100%
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Table 4: Difference-detection rates of test-suite augmentation requirements for various changes.
change max distance | STMT BR DU || CHAIN | PROP
tcas_1 31411% | 41.1% | 473% | 47.3% | 10.0%
tcas_2 6152% | 152% | 152% 169% | 54.1%
tcas_3 6| 2.0% 3.2% 2.0% 18.4% | 18.6%
tcas_4 6| 1.0% | 19.4% 1.0% 10.0% | 10.0%
tcas_5 6| 0.7% 0.7% 0.7% 3.5% 3.7%
tcas_6 51 2.1% 3.7% 2.1% 46% | 10.0%
nanoxml_1 21522% | 10.0% | 52.2% 10.0% | 10.0%

3

3

3

3

4

4

2

672% | 672% | 6712% || 672% | 67.2%
0.0% 0.0% | 104% | 10.4% | 10.4%
13.4% | 13.4% | 48.7% | 48.7% | 10.0%
187% | 18.7% | 18.7% | 18.7% | 18.7%
35.0% | 35.0% | 35.0% || 66.0% | 66.0%
219% | 21.9% | 219% || 422% | 42.2%

| 21.5% | 26.12% | 25.49% | 41.84% | 60.07%

nanoxml_2
nanoxml_3
nanoxml_4
nanoxml_5
nanoxml_6
nanoxml_7

average || 4

detection. For “non-trivial” changes, somewhat surprisingly, BR did slightly better on average than
DU, while the two did better than STMT. The MATRIX strategies, especially PROP, did much bet-
ter than the coverage-based strategies. This suggests that, while CHAIN is a viable improvement,
PROP is the ideal choice with a more than 50% chance on average of finding observable effects of
changes. For more details on this study, we refer the reader to Reference [73].

Because of the scalability issues of symbolic execution, which analyzes paths one by one, we
developed a more scalable form of symbolic execution called SPD [75] which analyzes multiple
paths simultaneously by exploiting the dependence structure of programs to obtain the same results
as regular symbolic execution but more efficiently. For the changes in Tcas, using SPD, the effec-
tiveness within our memory limits of PROP increased by 17% whereas, for NanoXML, a variant
of SPD that constrains the size of symbolic expressions increased the the effectiveness of PROP by
44%. For full details on SPD and our second study, we refer the reader to Reference [75].

7 Application: Demand-driven Test-Suite Augmentation

Computing all change-testing requirements for a distance d, as in Section 6, gives developers an
idea of how adequate a current test suite is and how much additional testing effort is needed.
However, in practice, the number of test requirements grows explosively with distance d, which
limits the distances to which change-effects propagations can be achieved (whether an effect keeps
propagating beyond d is left to chance). Also, if only a small subset of these requirements are
satisfied, the computation of the remaining requirements is wasted.

In this section, we present an alternative approach to achieve greater distances to test changes

27



with CHAIN and PROP by identifying satisfied testing requirements on demand during testing
instead of computing all testing requirements up-front. Naturally, this comes at the price of not
knowing in advance the total number of requirements and not having up-front the propagation
constraints that can help generate those test cases. Nevertheless, as we show in this section, a
demand-driven alternative of MATRIX can be practical and effective.

7.1 Overview

To circumvent the limitations of the original version of MATRIX, the demand-driven approach
for testing changes using the CHAIN and PROP strategies. This approach requires only static and
dynamic dependence analysis and runtime state monitoring, in contrast with MATRIX, which
requires symbolic execution of all paths that can propagate a change and the enumeration of all
dependence chains within a distance limit. Instead of computing all test requirements beforehand,
the approach identifies the unsatisfied test requirements that lie at the frontier of the test require-
ments already satisfied. Although the propagation conditions are no longer expressed symbolically
in the approach, these conditions are still used as testing requirements—instead of solving the con-
straints, testers must ensure the propagation of an infection via a difference in state or a divergence
in paths.

Given a test suite 7S, a frontier test requirement for CHAIN is a dependence chain that is
covered by 7S up to, but excluding, its last dependence. For PROP, a frontier test requirement for
TS is a dependence chain and its propagation conditions such that either the chain is a frontier test
requirement for CHAIN or the propagation condition for the last dependence of the chain is not
satisfied by 7S. Consequently, the set of unsatisfied test requirements for test suite 75§ is the union
of the frontier test requirements for 7S and every other test requirement whose chain extends the
chain of some frontier test requirement.

To illustrate, we use chain trees to depict the satisfied and frontier test requirements for changes.
A chain tree is a tree whose root node represents a change and where each other node represents
the pair of a dependence and its propagation condition. Each such pair is either part of a satisfied
test requirement or the end of a frontier test requirement. A node at the end of a frontier test
requirement is called frontier node and is a leaf in the chain tree. The root node is annotated with
an identifier for the change and every other node is annotated with the corresponding dependence
and propagation condition. (For CHAIN, the propagation condition is omitted.) Each edge (u,v)
in a chain tree indicates that the dependence and propagation condition for node u (or the change,
if w 1s the root) are followed by the dependence and propagation condition for node v in some test
requirement. Therefore, the target PDG node of the dependence for w is the source PDG node of
the dependence for v.

Consider, for example, program Bin and change C; from Figure 1, and testing strategy CHAIN.
Before any test cases execute, the chain tree for C; in Bin consists of only one node—the frontier
node for change C; in statement 1. Figure 6 shows this chain tree growing as three different test
cases are added, one after another. The first tree results from adding test case ¢;, which traverses
chain ((1,2), (2,5), (5,8)) in Bin. The nodes belonging to this satisfied test requirement are shown
as shaded solid circles. The frontier nodes, for dependencies (1,4) and (5,6), are shown as un-
shaded dashed circles. These dependencies, which succeed the change C; and dependence (2,5),
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Figure 6: Chain trees for satisfied and frontier test requirements (shaded solid and unshaded dashed
circles, respectively) for program Bin of Figure 1. In each step, a new test case expands the tree.

add testt;: a=0,b=5=>

respectively, are identified by our approach as the next targets of testing—any chain covered next
will have chain ((1,4)) or ((1,2), (2,5), (5,6)) as a prefix. In the middle and on the right, Figure 6
shows the results of adding two more test cases. Test case ¢ expands the chain tree via frontier
node (1,4) by covering chain ((1,4), (4,5), (5,6)). Because this chain includes dependence (1,4),
(1,4) is no longer a frontier node. Instead, node (5,8) becomes a frontier node that succeeds (4,5) in
the tree because, after covering dependence (4,5), 5 continues to its other successor—dependence
(5,6). Then, test case t3 covers dependence (5,6) after (1,2) and (2,5). Thus, node (5,6) is no longer
a frontier node after ¢5. Note that, if we used PROP instead of CHAIN, each node would also be
annotated with the propagation condition for the corresponding dependence.

The demand-driven approach preserves the precision of propagation-based test requirements
while avoiding the cost of symbolic execution and avoiding most of the effort incurred by MA-
TRIX, which performs a full static analysis that can find a large number of test requirements,
many of which are not satisfied later. Naturally, using this approach sacrifices the ability to obtain
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immediately the test requirements that describe the entire space of untested affected behaviors,
which might better support the automatic generation of test cases. However, the benefits of this
alternative approach justify this trade-off because it can significantly increase the distances reach-
able for CHAIN and PROP. Moreover, this demand-driven approach removes the burden from the
tester of handling a large number of short-distance requirements and, instead, lets the tester focus
on requirements that are more likely to be satisfied, possibly at greater distances.

7.2 Demand-Driven Approach to MATRIX

The demand-driven approach for propagation-based test-suite augmentation is described by algo-
rithm SATISFYREQSDEMAND in Figure 7. The inputs are the program P, the change C', a boolean
function B that indicates whether the budget allows for more testing, and the existing test suite 7.S
to be augmented. The first line creates the modified program P’ by applying change C' to P.
Lines 2 and 3 find all control and data dependencies reachable via any sequence of dependencies
that starts at some node in the sub-ICFGs of C' (see definitions 13 and 14). Lines 4 and 5 instru-
ment these two programs to determine at runtime the chains of these dependencies covered from
the changed nodes and the portion of the program state that directly affects at runtime each of those
dependencies. For a control dependence, the affecting state is simply the branching decision taken
at the source node of the dependence. For a data dependence, the affecting state is the concrete
value assigned to the variable at the definition.

The algorithm does not enumerate all chains statically like MATRIX. Instead, the algorithm
instruments each dependence once such that the coverage of a dependence at runtime is reported
only when the dependence starts at a changed node or when the execution of its source node is
the target at runtime of another dependence dynamically linked to a changed node. The result of
executing each of the instrumented programs is an acyclic directed graph where the root nodes (i.e.,
the nodes without predecessors) are occurrences of changed program statements, the remaining
nodes represent occurrences of dependencies, and each edge (d;, ds) indicates that a changed
statement or dependence d; was immediately followed by a dependence d,. Thus, the covered
dependence chains are the paths in this graph. Also, each node in this graph except for the root
nodes is annotated with the affecting state for the dependence occurrence associated to that node.

Line 6 in SATISFYREQSDEMAND initializes the set Satisfied of satisfied testing requirements
to “empty” chains at the modified nodes in the instrumented programs—one chain <n, ()> for each
modified node n. Line 7 initializes the counter for the total testing effort spent in this algorithm.
The main loop of lines 8—28 computes the testing requirements satisfied by the original test suite
and by each new test case provided to the algorithm.!* The loop only stops when function B signals
that the budget has been exhausted by returning false, depending on the effort spent in testing so
far, the testing requirements satisfied, or the size of the test suite. Line 9 obtains the next test case
t and the effort involved in obtaining .

In the first |7] iterations of the loop, getNextTest returns each of the test cases in 7. In the
remaining iterations, getNextTest obtains a new test case from the user or a test-case generator.

14Test cases at this point need only include the scaffolding and input data to run the program. The creation of oracles
for these test cases can be deferred until the test cases are accepted for addition to the test suite.
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Algorithm SATISFYREQSDEMAND

Inputs: P: program; C: change; B: budget function; 7S: test suite
Output: 7S: test suite; Satisfied: testing requirements

(1) P’ :=applyChange (P, C)

2) deps = forwardDepChains (P, C')

(3)  deps’ := forwardDepChains (P', C)

@ P s := instrument (P, deps)

(5) P, :=instrument (P', deps’)

(6)  Satisfied := createEmptyChains (P;y,s, C') U createEmptyChains (P}, ,
@) totalEffort :== 0

®) while B(totalEffort, Satisfied, TS) = true

)] (t, effortTest) := getNextTest (TS, P;ys, P}, ,, C, Satisfied)
(10) (data, effortEx) := execute (P, t)

(11D (data’, effortEx’) := execute (P}, t)

12) totalEffort := totalEffort + effortTest + effortEx + effortEx’
(13) addTest := false

(14) foreach prefixChain € Satisfied

)

(15) foreach dynDep € extendingDeps(prefixChain, data, data’)
(16) chain := append (prefixChain, dynDep)
a7 if chain ¢ Satisfied

(18) Satisfied := Satisfied U chain

(19) addTest := true

(20) endif

201 if propagates(chain, data, data’)

22) markProp (chain, Satisfied)

23) addTest := true

24) endif

(25) endfor

(26) endfor

27 TS := TS U (addTest? {t} : 0)
(28) endwhile

(29) return TS, Satisfied

Figure 7: Algorithm for demand-driven, propagation-based testing of a change.

Each new test case ¢ is created using the knowledge of the programs, the change, and the require-
ments satisfied so far. The concrete mechanism that creates new test cases in getNextTest after the
elements of 7S have been processed is determined by the user—each new test case can be created
manually, automatically, or semi-automatically. Lines 10 and 11 execute the test case on the in-
strumented versions of the original and modified programs, respectively, and returns the runtime
data—the annotated acyclic graphs of dependencies linked to the change—collected by the instru-
mentation and the effort spent executing the test case and collecting this data. Line 12 adds these
runtime efforts and the test-case creation effort to the effort counter.

The rest of the main loop determines what new testing requirements (CHAIN and PROP) are
satisfied by ¢ and whether ¢ is added to the test suite. Line 13 initializes a flag to false to assume at
first that ¢ should not be added to 7S. Then, the loop at lines 14-26 and its nested loop at lines 15—
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25 identify, for every chain in Satisfied (called “prefix” chain), all dependencies in ¢ that extend
that prefix chain.'> For each such dependence, Line 16 creates the extended chain. Lines 17-20
add the extended chain to the set Satisfied if not already in that set (thus satisfying a new CHAIN
requirement) and lines 21-24 mark that chain in Satisfied as propagated'® if the differences in
runtime data indicates so (thus satisfying a new PROP requirement). In either case, the flag for
adding ¢ to the test suite is set because ¢ satisfies at least one new chain or state requirement.

Finally, Line 27 adds ¢ to the test suite 7S if the flag is set, thus augmenting 7S. Note that, for
the first | TS| test cases, TS does not change because each ¢ is already in 7'S. The purpose of the
first |T'S| iterations of the main loop is simply to populate Satisfied with all testing requirements
satisfied by the existing test suite before new test cases are created and to determine whether those
new test cases must be added to 7'S.

7.3 Comprehensive Study

The demand-driven nature of this approach allowed for a more comprehensive study than for MA-
TRIX. For this study, we used DUA-FORENSICS [80] again and we considered Java subjects for
which a large number of test cases are available. Those pools of test cases allowed us to create up
to 1000 test suites for each technique studied. Between a number of subjects from the Siemens
suite [34] that we translated to Java and three versions of NanoXML [20], we studied a total of 62
changes. For complete details of this study, we refer the reader to References [77] and [78].

For each change, we computed and compared the difference-detection ability of each strategy—
STMT, BR, DU, CHAIN, and PROP—to produce output differences. Such differences give to
developers a view of the behavior of that change. Our metric of quality of the test suite is the ratio
of the number of tests detecting differences per test suite to the size of the test suite. Thus, the best
possible value of this metric is 1.0.

To support our analysis of the factors affecting the effectiveness of each strategy, we also
defined the detectability of a change as the difference-detection ratio for STMT on that change. The
detectability of a change is thus the estimated probability that a test case that covers the change
also reveals an output difference. The lower the detectability of a change, the less likely it is that
a test case reveals a difference for that change and, thus, the greater is the difficulty of testing that
change successfully.

Table 5 shows the average detection ratios for all strategies, up to distance 10 for CHAIN and
PRrOP. For all changes, a distance of 10 or more was achieved for the latter two strategies. There-
fore, distance 10 is the maximum distance for which we obtained results for all changes. In this
study, DU was slightly more effective per test than BR, which had no significant improvement over
STMT. CHAIN has a consistently greater cost-effectiveness on average than those three coverage-
based strategies, although the difference is not great. PROP, however, did considerably better than
all other strategies, including CHAIN, for all distances with strong statistical significance. Inter-
estingly, PROP peaks at distance 4 and then decreases to some extent, suggesting that the best

I5A dependence d extends a chain c if the source node of d is the end node of ¢ and d is covered immediately after
the chain is covered.

16A chain ¢ covered in an execution is marked as propagated if, for each dependence d in the chain, the affecting
program state at the source node of d differs between data and data’.

32



Table 5: Average ratio of differences found to test-suite size (ds-ratio) per change-testing strategy.

CHAIN
STMT | BR | DU dl [ d2] d3| dd| d5| d6| d7] dS| d9]dio

| 32[.32] 35[.38[.38].40[.40 | 40 ] 41| .41].40 | 40 40 |

dl | d2| d3 | d4 | JETOZQ\ d7 | d8| d9|dlo
[48[.50[.52].53].52].52].50].50] 49 48]

Table 6: Difference-detection increase over STMT for all strategies per detectability limit.

detectability | number of Br | DU CHAIN PRrOP
limit changes (avg. all dist.) | (avg. all dist.)
1.0 62 0.0x | 0.1x 0.2x 0.6x
8 48 0.4x | 0.4x 1.0x 2.0x
.6 46 0.5x | 0.5x 1.3x 2.6x
4 43 1.0x | 0.7x 2.0x 3.8x
2 39 1.0x | 0.8x 2.6x 5.2x
A 30 1.9x | 1.1x 5.0x 11.3x
.05 22 49x | 2.8x 8.9x 16.3x
.03 18 6.1x | 2.8x 10.9x 21.3x
01 9 54x | 6.8x 16.2x 34.7x
.005 7 8.0x | 12.6x 23.7x 51.0x
.003 4 0.1x | 1.7x 3.6x 74.0x
.001 1 0.0x | 0.0x 0.0x 334.0x

distribution of test cases can be achieved early. Nevertheless, at distances 10 or greater, more
differences in total can be found as the test suite sizes increase.

Another important consideration is the effectiveness of testing with respect to the difficulty of
testing a change. Table 6 shows the breakdown of our results by the difficulty of testing subsets of
all 62 changes. The table shows the number of changes for different detectability limits (defined
earlier in this section) in decreasing order of limits. For example, all 62 changes have a detectability
limit 1.0 (i.e., detectability of at most 1.0, which is the maximum possible value), whereas 39
changes have a limit of 0.2 (i.e., detectability of 0.2 or less).

The next columns in Table 6 indicate how much more cost-effective PROP, CHAIN, BR, and
DU are over STMT for the set of changes within each detectability limit. (For PROP and CHAIN, the
results are the average for all distances between 1 and 10.) For example, for the subset of changes
with detectability limit 0.6, the table indicates that PROP has a probability 2.6 times greater of
finding a difference per test case than STMT. Remember that the detection probability for STMT
for those changes is less than or equal to the value in the first column.
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The data in this table indicates that, the harder-to-test changes are, the better all techniques
do. However, CHAIN and, most of all, PROP, show an even grater superiority over coverage-based
strategies for detecting differences on difficult changes, which are arguably the changes in greatest
need for a good testing strategy.

In all, PROP produces considerably higher-quality test suites than the other strategies as it dis-
criminates and distributes test cases over the behavior space of changes better than the alternatives.
Meanwhile, CHAIN provides a less effective but perhaps simpler alternative to PROP. Moreover,
the superiority of propagation-based techniques over coverage-based counterparts for hard-to-test
changes is even greater. A Wilcoxon signed-rank test [89] indicates that the superiority of PROP
over BR and DU with a p-value lower than 0.01.

8 Application: Quantitative Change-Impact Analysis

A major problem of program analyses is their imprecision, manifested in an excess of false pos-
itives (false alarms) or false negatives (missed targets) or both. Program slicing [90] is one
such analysis that is popular but also quite imprecise [79]. Static slicing often reports too many
potentially-relevant statements, whereas dynamic slicing—a variant that trades completeness for
precision—can also produce many false positives [45,79]. To increase the precision of static slic-
ing by reducing the size of slices, researchers have proposed combining static and dynamic slicing
(e.g., [37]) and pruning slices based on some criterion (e.g., [84,95]). However, these methods
can suffer from false positives and even false negatives. Other attempts to improve this precision
include better alias and points-to analyses, which can reduce slice sizes to some extent.

To address the limitations of slicing, especially its static version, we introduce in this section
quantitative slicing (g-slicing) [15,76,81], a general approach for assigning quantities to statements
in a slice, such as scores or probabilities. These quantities denote the relevance of each statement
in that slice to help users and tools focus their attention first on the parts of the slice that matter
the most. For example, for change-impact analysis, g-slicing points users to the most affected
areas of the program first so they can take major corrective actions early. Q-slicing can also help
tools prioritize regression-testing targets by their likelihood of interaction with changes. These
quantities are practical approximations of the state constraints that describe the effects of changes
in the foundations presented in Section 4.

As with program analysis in general, we use two approaches to computing quantitative slices
(g-slices): a static and a dynamic approach. We have developed one technique of each type. Each
technique has its own merits and has the potential to complement the other. The first technique uses
a probabilistic model of dependence propagation to analyze the static structure of the program [76].
The second technique applies sensitivity analysis to program executions to dynamically measure
the degree to which statements in the program depend on modifications to other statements [15].

In this section, we emphasize the dynamic approach that combines sensitivity analysis and
execution differencing and whose results are encouraging. Using our sensitivity-analysis tool, we
quantified the forward static slices from various locations. The resulting scores isolated with great
precision, among all potentially-impacted statements found by static slicing, the actual impacts
observed at runtime after making real changes in those locations.
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1: for (signl = +1; signl >= -1; signl -= 2) {
2 c = (rl - signl * r2) / d;

3: if (cxc <= 1.0) {

4: h = sqgrt(d+*d - pow(rl-signlxr2),2)) / d;
5: for (sign2=+1; sign2>=-1; sign2-=2) {
6: nx = vx * ¢ — sign2 % h * vy;

7 ny = vy % Cc + sign2 x h x vx;

8: print x1 + rl * nx;

9: print yl1 + rl * ny;

10: print x2 + signl * r2 * nx;

11: print y2 + signl % r2 x ny; 1}

Figure 8: Excerpt from a program that computes the tangents among circles.

The benefits of quantifying slices as practical and effective approximations of the effects of
changes are many and can further the adoption of program slicing in development tools. We already
found that early change-impact analysis, in which users assess the potential impact of changing a
location before designing the change, can become highly effective. Quantitative forward slicing
can also support regression testing, testability analysis, and information-flow analysis. Meanwhile,
quantitative backward slicing can improve debugging, comprehension, reverse engineering, and
parallelization. Even dynamic slicing can benefit from g-slicing, as dynamic slices are mediocre
approximations of true runtime dependencies [45,79].

8.1 Example of Impact Quantification

Consider the code fragment in Figure 8 for finding tangents between circles. The forward static
slice from c at line 2 contains lines 2—11, which suggests that they might be affected by c. How-
ever, c at line 2 strongly affects c«c at line 3 but less strongly affects the branching decision in
that line—variations in ¢ may or may not flip the branch taken. Therefore, because ¢ may or may
not affect this decision, the remaining lines are “less affected” than lines 2 and 3. Lines 611,
however, also use the value of ¢, which makes them “more affected” than lines 4 and 5 (but still
less affected than lines 2 and 3).

Q-slicing quantifies these differences among lines in the slice. A g-slicing technique can give,
for example, a score of 1.0 to lines 2 and 3, 0.5 to lines 4 and 5, and an intermediate value 0.75 to
the rest. The actual scores for these lines will depend on the specific g-slicing technique used to
quantify the slice. We present two such techniques next.

8.2 Static Quantification

Static quantification of program slices can be achieved by analyzing the control- and data-flow
structure of programs [76,96]. The advantages of this approach are that no execution data is
required and the results represent all behaviors of the program. The latter advantage is quite attrac-
tive for tasks like testing because, no matter how many test cases have been created, this approach
points users to behaviors not tested yet.
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Our static approach for g-slicing uses two key insights:

1. Some data dependencies are less likely to occur than others because the conditions to reach
the target from the source of the dependence vary.

2. Data dependencies are more likely to propagate information than control dependencies, yet
control dependencies should not be ignored either as in some existing work.

Using the first insight, we created a reachability and alias analysis of the control flow of the
program that estimates the probability that the target of a dependence is reached from its source
and that both points access the same memory location. Using the second insight, our approach
performs another reachability analysis, this time on the dependence graph, that gives a lower but
non-zero score to control dependencies.

We estimate the probability that a statement a affects a statement b by computing two compo-
nents: (1) the probability that a sequence of dependencies from a to b occurs when the program
executes and (2) the probability that information flows through that sequence. More details of this
approach and early promising results are presented in [76,96].

8.3 Dynamic Quantification

Given a representative test suite, we can quantify slices via differential execution analysis [79] and
sensitivity analysis [71].

8.3.1 Differential Execution Analysis

Differential execution analysis (DEA) is designed specifically for forward slicing from changes to
identify the runtime semantic dependencies [55] of statements on changes. Semantic dependencies
tell which statements are truly affected by which other statements or changes. Although finding
semantic dependencies is an undecidable problem, DEA detects such dependencies on changes
when they occur at runtime to under-approximate the set of semantic dependencies in the program.
Therefore, DEA does not guarantee 100% recall of semantic dependencies but it achieves 100%
precision. This is much better than what dynamic slicing normally achieves [45,79].

DEA works by executing a program before and after the change, collecting the augmented ex-
ecution history [79] of each execution, and then comparing both histories. The execution history
of a program for an input is the sequence of statements executed for that input. The augmented
execution history is the execution history annotated with the values read and written by each state-
ment occurrence. The differences between two such histories reveal which statements had their
occurrences or values altered by a change—the conditions for semantic dependence. A formal
definition of DEA is given in [79].

8.3.2 Sensitivity Analysis

DEA can be used to quantify static forward slices when the change is known—for post-change
impact analysis. To do this, a DEA-based g-slicing technique can execute the program repeatedly
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with and without the change for many inputs and find, for each statement, the frequency with which
it is impacted by the change. If the inputs are sufficiently representative of the program’s behavior,
we can use these frequencies as the quantities for the statements in a g-slice.

More generally, however, the specifics of a change might not be known when a user asks for
the impacts of modifying a statement or when the slicing task does not involve a change (e.g.,
debugging, information-flow analysis). For such situations, we created SENSA,!7 a sensitivity-
analysis technique and tool for slice quantification and other applications. Sensitivity analysis is
used in many fields to determine how modifications to some aspect of a system (e.g., an input)
affect other aspects of that system (e.g., the outputs) [71].

We designed SENSA as a generic modifier of program states at given locations, such as changes
or failing points. SENSA inputs a program P, a test suite 7', and a statement c. For each test case ¢
in 7', SENSA executes ¢ repeatedly, replaces each time the value(s) computed by c with a different
value, and uses DEA to find which statements were affected by these modifications. With this
information for all test cases in 7', SENSA computes the sensitivity of each statement s in P to the
behavior of ¢ by measuring the frequency with which s is affected by c. These frequencies are the
degree of dependence on statement c of all statements s in P, given 7.

For a forward static slice from statement c in program P, SENSA uses 7' to quantify the de-
pendence on c of the statements in that slice. For a backward static slice from s, SENSA can be
used in a similar fashion to quantify the dependence of s on selected statements ¢ from that slice.

SENSA is highly configurable. In addition to parameters such as the number of times to re-run
each test case with a different modification (the default is 20), SENSA lets users choose among
built-in modification strategies for picking new values for ¢ at runtime. Furthermore, users can
add their own strategies. SENSA ensures that each new value picked for c is unique, to maximize
diversity while minimizing bias. Whenever a strategy runs out of possible values for a test case,
SENSA stops and moves on to the next test case. SENSA offers three modification strategies from
which the user can choose:

1. Random: A random value is picked within a specified range. By default, the range covers all
elements of the value’s type except for char, for which only readable characters are picked.
For some reference types such as String, objects with random states are picked. For all other
reference types, the strategy currently picks null.'®

2. Incremental: A value is picked that diverges from the original value by increments of ¢ (the
default is 1.0). For example, for a value v, the strategy first picks v + ¢ and then picks v — 4,
v + 24, v — 24, etc. For common non-numeric types, the same idea is used. For example, for
string foo, the strategy picks fooo, fo, foof, oo, etc.

3. Observed: First, the strategy collects all values that ¢ computes when running 7" on P.
Then, the strategy picks iteratively from this pool the new value at c. The goal is to ensure
that values remain meaningful to the program.

7SENSA is available for download at http://nd.edu/~hcai/sensa/html
18We are developing a method to instantiate most types with random states.
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Table 7: Results of change-impact prediction using SENSA for g-slicing

Subject Average impact-prediction cost (% of ranking)
ideal | slicing | SENSA-rnd | SENSA-inc | SENSA-obs
Schedulel 37.1% | 45.2% 38.4% 38.3% 38.4%
NanoXML 7.8% | 24.6% 9.9% 10.7% —
XML-security || 5.7% | 35.8% 12.0% 12.5% —

8.3.3 Evaluation

We compared the g-slices produced by SENSA with context-insensitive static forward slices for
predicting change impacts at various program locations. The scenario is early change-impact
analysis, in which users query for the potential impacts of changing a location without necessarily
knowing the details of the change yet. Our research questions were:

RQ1: How good is g-slicing at predicting impacts?
RQ2: How good is g-slicing for different usage budgets?
RQ3: How expensive is SENSA for g-slicing?

The first and second questions address the benefits of g-slicing overall and per slice-inspection
effort. The third question targets the practicality of SENSA.

8.3.4 Setup

SENSA extends DUA-FORENSICS [74, 80], our analysis and monitoring tool for Java bytecode
programs. For this study, we chose three Java subjects from the SIR repository [20] for which
many test cases and changes (bug fixes) are provided. These subjects are Schedulel (a small task
scheduler), NanoXML (a lean XML parser), and XML-security (an encryption library of more
than 20,000 lines of code). For each subject, we studied 7 changes, for a total of 21 changes.

8.3.5 Methodology

We first applied SENSA and static forward slicing to the locations of the changes to reproduce
the scenario in which users query for the consequences that changing those locations would have.
Then, for each g-slice given by SENSA, we ranked its statements from greatest to lowest score. For
comparison, we also ranked the static slices using Weiser’s approach [90] by visiting statements
in breadth-first order from the change location and sorting them by increasing visit depth. For tied
statements in a ranking, we used as their rank the average of their positions in that ranking.

To assess and compare the predictive power of the rankings given by g-slicing via SENSA
and Weiser’s slicing, we applied the changes, one at a time, to the corresponding location in its
subject. Then, for each change, we used DEA on the unchanged and changed subject to find
the statements actually impacted when running all test cases for that subject. Using these actual
impacts, we calculated how closely each ranking predicted those impacts. For each ranking and
each impacted statement found by DEA, we determined the percentage of the slice that would have
to be traversed, in the ranking’s order, to reach that statement. We call this percentage the cost of

38



100% 1
8
90% N
80% N
5 W
c 70% W
S \
o ) N
«— 60% §§
2 N |
S 50% ss B Ideal
g— 40% '§§ | & Stat. slice
“ 30% 'ss Dyn. slice
3 ss | = SensA-rand
20% N | .
ss | B SensA-inc
10% N
\
0% =
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of slice inspected

Figure 9: Prediction effectiveness of techniques per inspection effort for NanoXML.

finding an actually-impacted statement using that ranking. Then, we computed the average cost
of finding all actual impacts for each ranking—the lower this cost is, the better the technique that
produced that ranking is at predicting impacts.

Also, to assess how close to the best possible result each ranking was, we created the ideal
ranking by placing all actually-impacted statements at the top of that ideal ranking.

8.3.6 Results and Analysis

Table 7 presents the average cost, for each subject and the seven changes in that subject, of five
rankings: the ideal ranking, the slicing ranking (using Weiser’s traversal), and the rankings for
SENSA and its three strategies: rnd (Random), inc (Incremental), and obs (Observed). For some
changes in NanoXML and XML-security, SENSA-0bs was not applicable as only one value at the
change was observed at runtime and, thus, SENSA could not find a different value to replace it. In
consequence, we omitted the SENSA-obs results for those subjects.

RQ1: The ideal cost for Schedulel in Table 7 reveals that, on average, more than a third of the
statements in the slices were actually impacted, in contrast with the two other subjects, for which
less than 10% of the statements in their slices were impacted. For Weiser’s slicing, the prediction
costs ranged between 25-45%, whereas SENSA was remarkably closer to the ideal predictions
at 10-38%. All SENSA strategies exhibited similar costs when applicable. In all, SENSA for
g-slicing seems much better overall than simple program slicing (Weiser’s traversal) at predicting
actual impacts.
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Figure 10: Prediction effectiveness of techniques per inspection effort for XML-security.

RQ2: Because slices can be large, if users cannot explore the entire slice, we expect that
they will inspect each ranked slice from the top. The graphs of Figures 9 and 10 for NanoXML
and XML-security—the two largest subjects—show, on average for all changes in the subject, the
percentage of the actual impacts found (Y axis) for each percentage of the ranked slice inspected (X
axis). For example, at 10% of the traversal for NanoXML, on average, the ideal ranking finds 77%
of the actual impacts while the slicing predictions find only 25-41%. The SENSA predictions, in
contrast, find 67-68% of those impacts. For XML-security, the trends and differences are similar.
These results suggest that SENSA is not only better overall (RQ1) but is also especially good for
the portions of the rankings that users and tools would inspect first.

RQ3: We run our experiments on an Intel Core i5 quad-core machine with 8GB RAM and
64-bit Linux. The average time taken by SENSA for all changes in our subjects ranged from 303 to
493 seconds. The runtime overhead of executing the entire test suites for the instrumented subjects
ranged between 32-63%. We consider these costs acceptable. There is also plenty of room for
optimizations in our implementation.

9 Conclusion
In this chapter, we addressed the challenge of making the analysis of the effects of changes well-

founded to maximize its effectiveness through a principled and cost-conscious approach. At a
fundamental level, this chapter provides theoretical foundations of the effects of changes by defin-
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ing exactly what a change is, what the effects of a change are on the behavior of a program, and
how changes affect each other. This foundational treatment of the nature of changes and their
effects on the behavior of programs establishes, to an unprecedented level of detail, what these
effects are and how they can be computed. It can serve as the basis for a variety of theoretical and
practical studies and techniques in regression testing, software evolution, and other change-related
disciplines.

At the application level, we presented a number of techniques that provide usable approxima-
tions to the fundamental approach for computing the effects of changes. These techniques support
the analysis and testing of changes by automatically identifying the set of potential effects of a
change within distance limits and providing the means to test those effects on demand. The ef-
fects identified by these approximations can serve as change-testing requirements, which we call
“propagation-based” because they include the effect-transfer conditions on the program state.

The results for these test-suite augmentation applications indicate that propagation-based test-
ing requirements are significantly more effective for detecting behavioral differences than the test-
ing approaches presented earlier in the literature, which are based only on the coverage of affected
program entities. These studies also show that propagation-based testing requirements can be par-
ticularly cost-effective by identifying and satisfying them on demand.

The effects of changes can also be approximated as quantities denoting the degree of influence
of changes on individual lines of code. The resulting technique, quantitative slicing, promises sig-
nificant increases in the usefulness of program slices. Rather than pruning statements from slices,
g-slicing grades statements according to their relevance in a slice. In this chapter, we discussed
two approaches to g-slicing, including a novel dynamic technique for computing relevance scores.
More techniques can be added under the umbrella of g-slicing. The possibilities are many for quan-
tifying slices in better ways and for improving other applications, such as debugging. Q-slicing is
an emerging, rich, and open field.

10 Future Directions

At the foundational level, our definitions in this chapter can lead to new ways to compute how
changes propagate through software components, including not only code but also data (e.g.,
databases, files). New theories can be developed as an extension of these foundations that better
suit changes in concurrent and data-driven software. (Our foundations currently support virtually
all types of code, as long as it is possible to capture all sources of uncertainty as inputs.) Also, we
envision the opportunity of using our foundations to define a framework for the specification of
formal semantics of programming changes, much like existing formal semantics of programming
languages.

The techniques presented in this chapter for computing testing requirements are by no means
the only ways in which the effects of changes can be approximated. For example, various heuristics
can be used to identify and prioritize clusters of the effects of changes to focus the testing efforts
on the areas that are most likely or most strongly impacted by those changes. On the experimental
side, it is necessary to investigate the ability of change-testing techniques to not only reveal the
observable differences in the behavior of software caused by changes but also to detect any errors
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introduced by those changes. Finding differences caused by changes is already a difficult task
and, therefore, cost-effective techniques such as those we presented are needed to find as many
differences as possible as a requisite for detecting change-related errors.

Another important avenue of future research is the automation of test-data creation for satis-
fying propagation-based testing requirements for changes. Despite recent advances in test-data
generation, the problem of targeted test-data generation (i.e., generation of inputs for reaching a
particular point in the program) is far from solved. Moreover, the propagation-based testing of
changes requires not only the execution of the change, but also the satisfaction of infection and
propagation conditions. Thus, it is unclear whether test-data generation for change effects can be
automated to a satisfactory level, although the current immaturity of this field suggests that much
greater automation can be achieved. In all, creating test data for change testing is the natural next
step in this line of research to improve upon the purely-manual approach used in our case stud-
ies. The large amount of developer involvement currently limits our ability to study change-testing
techniques.

Our immediate plan for g-slicing is to extend our studies to more subjects and changes of
different types and sizes to further generalize our results and characterize the best and worst
conditions for the use of g-slicing. We are also developing a visualization for quantified slices
to improve our understanding of the approach, to enable user studies, and to support other re-
searchers. Using this tool, we will study how developers take advantage in practice of quantified
slices. Slightly farther in the future, we foresee adapting g-slicing to quantify important tasks other
than change-impact analysis, such as debugging, comprehension, mutation and interaction testing,
and information-flow analysis. More generally, because g-slicing’s scores are abstractions of ef-
fects on states according to our foundations, these scores can be expanded within this framework
to multi-dimensional values or data structures at first and reduced to discrete sets on demand for
scalability.
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