
VinJ: An Automated Tool for Large-Scale Software Vulnerability
Data Generation

Yu Nong
Washington State University

Pullman, USA
yu.nong@wsu.edu

Haoran Yang
Washington State University

Pullman, USA
haoran.yang2@wsu.edu

Feng Chen
University of Texas at Dallas

Richardson, USA
feng.chen@utdallas.edu

Haipeng Cai
Washington State University

Pullman, USA
haipeng.cai@wsu.edu

ABSTRACT

We present VinJ, an efficient automated tool for large-scale diverse
vulnerability data generation. VinJ automatically generates vulner-
ability data by injecting vulnerabilities into given programs, based
on knowledge learned from existing vulnerability data. VinJ is able
to generate diverse vulnerability data covering 18 CWEs with 69%
success rate and generate 686k vulnerability samples in 74 hours
(i.e., 0.4 seconds per sample), indicating it is efficient. The generated
data is able to improve existing DL-based vulnerability detection, lo-
calization, and repair models significantly. The demo video of VinJ
can be found at https://youtu.be/-oKoUqBbxD4. The tool website
can be found at https://github.com/NewGillig/VInj. We also release
the generated large-scale vulnerability dataset, which can be found
at https://zenodo.org/records/10574446.

CCS CONCEPTS

• Software and its engineering–AI and software engineering;

KEYWORDS

Vulnerability analysis, data augmentation, deep learning
ACM Reference Format:

Yu Nong, Haoran Yang, Feng Chen, and Haipeng Cai. 2024. VinJ: An Au-
tomated Tool for Large-Scale Software Vulnerability Data Generation. In
Companion Proceedings of the 32nd ACM International Conference on the
Foundations of Software Engineering (FSE Companion ’24), July 15–19, 2024,
Porto de Galinhas, Brazil. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3663529.3663800

1 INTRODUCTION

Data-driven techniques have showed great promise over traditional
ones [15, 16] for vulnerability analysis. Yet the scarcity of qual-
ity data has become the main barrier for further advancing those
techniques [3–5, 17, 20]. An intuitive solution is to automatically
generate vulnerability data. However, existing automatic vulnera-
bility dataset generation tools have conspicuous limitations. First,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663800

some existing tools can only generate vulnerabilities specified by
developers. For instance, the framework developed by Zhang [27]
can only generate one type of vulnerability, while FixReverter [28]
is limited to three manually derived patterns. Learning-based ap-
proaches are also used for vulnerability generation. However, they
still suffer from major limitations. For example, SemSeed [22] in-
tegrates word embedding and pattern mining to inject bugs into
programs, but it is only effective for simple bug injection cases
(e.g., change <= to <). Getafix [1] uses mined edit patterns to inject
vulnerabilities, but lacks sensitivity to code semantics, resulting
in noisy generated data. Some DL-based tools (e.g., CodeT5 [24]
and Graph2Edit [26]) may be more semantics-aware, but they need
large amounts of training data which makes them high-cost.

To overcome these limitations, we recently developedVulGen [19],
a technique that aims at generating quality vulnerability data with-
out large amounts of training data [19]. However, the VulGen pro-
totype only demonstrates its effectiveness for realistic vulnerability
data generation without considering the efficiency. In the pattern
mining phase, all the patterns are clustered without grouping, mak-
ing the pattern mining very slow. In the data generation phase, it
can only generate 17.5 samples per minute on average. This seri-
ously impedes VulGen for large-scale vulnerability data generation.

Therefore, based on VulGen, we developed VinJ, an efficient au-
tomated software vulnerability data generation tool which supports
large-scale vulnerability data generation. VinJ generates vulnera-
bility samples by injecting vulnerabilities into existing real-world
normal programs based on the knowledge learned from existing
vulnerability samples. Given a vulnerability training set, VinJ first
fine-tunes a semantics-aware large pre-trained programming lan-
guage model CodeT5 [24] to locate the statements to inject vulnera-
bilities. Then, VinJ mines the vulnerability-injection patterns from
existing vulnerability samples. To overcome the inefficiency of the
VulGen prototype, we group the edit patterns based on their root
node types before the clustering. Then, we cluster multiple groups
at the same time with the support of multi-process parallelization.
Finally, given a normal program, VinJ locates a statement with the
fine-tuned CodeT5 model and applies a pattern on the located state-
ment to inject a vulnerability. To apply an appropriate pattern, VinJ
pre-ranks the patterns rather than ranking them during the gener-
ation phase as VulGen does to significantly improve the efficiency,
making VinJ support large-scale vulnerability data generation.

https://orcid.org/0000-0002-8598-5181
https://orcid.org/0000-0001-9298-9757
https://orcid.org/0000-0002-4508-5963
https://orcid.org/0000-0002-5224-9970
https://youtu.be/-oKoUqBbxD4
https://github.com/NewGillig/VInj
https://zenodo.org/records/10574446
https://doi.org/10.1145/3663529.3663800
https://doi.org/10.1145/3663529.3663800
https://doi.org/10.1145/3663529.3663800

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Yu Nong, Haoran Yang, Feng Chen, and Haipeng Cai

Subword TokenizationVulnerability
Training Set

Differencing Fine-tuning

Pre-trained CodeT5

AST
Construction

Phase 1: Location Learning

Modified
Statements

Anti-
unification

Parallel
Clustering

Concrete
EditsAST

Differencing

Abstract
Edits

Phase 2: Pattern Mining

Injection Localization

Localization
model

Pattern
Application

Injection
Patterns

Testing
Normal

Programs

Subword Tokenization

AST
Construction

Phase 3: Vulnerability Injection

Vulnerable Programs

Located
Statement

The Tool: VInJ

Pattern
Pre-Ranking

Figure 1: The architecture of VinJ, highlighting its three main working modules (phases).

We have implemented VinJ in Python and trained the VinJmod-
els with 9,705 training samples. When applying on 1,078 testing
samples, VinJ can generate diverse vulnerability samples covering
18 CWEs. VinJ outperforms the baseline tools and achieves 14.6%
accuracy (i.e., percentage of generated samples exactly matching
ground truth) and a 69% success rate (i.e., percentage of generated
samples that are vulnerable, whether or notmatching ground-truth),
indicating that VinJ is effective for quality vulnerability data genera-
tion. VinJ is also efficient for large-scale generation: it can generate
686k vulnerability samples in 74 hours (i.e., 0.4 seconds per sample),
outperforming VulGen (3.06 seconds per sample). By augmenting
their original vulnerability training sets with 10% of the 686k gen-
erated samples, state-of-the-art DL-based vulnerability detection,
localization, and repair models have their performance improved
significantly, indicating that VinJ is practically useful.

The core technical ideas and design rationales underlying VinJ
have been published in our research paper on VulGen [19]. Thus, in
this demo paper, we focus on (1) the additional, important design
and implementation details that are not presented in the research
paper. Moreover, this tool demo papers include (2) tooling enhance-
ment over the original VulGen prototype (e.g., the newly designed
performance optimizations such as parallel pattern clustering and
pattern pre-ranking), (3) extended efficiency and scalability evalua-
tion (e.g., those metrics of the tool in large-scale data generation),
and (4)much expanded practicability evaluation (e.g., assessing how
the data generated by our tool help improve multiple downstream
vulnerability analysis tasks, including learning-based vulnerability
detection, localization, and repair). In contrast, the original research
paper only evaluates VulGen in generating a small number of (963)
samples from normal programs drawn from a benchmark dataset
(rather than from the wild), and in improving the performance of
only one downstream task (i.e., learning-based vulnerability detec-
tion). Finally, as a tool demo, (5) this paper describes how to use
our tool (especially via the tool demo walk-through presented in
the Appendix), which is also not in the research paper.

To the best of our knowledge, VinJ is the first efficient automated
tool for large-scale diverse vulnerability data generation. Besides, as
part of VinJ, we also provide the first open-source implementation
of getafix [1], a commercial tool at Meta for bug repair, which is
not available before. This is our another tooling contribution.

The target audience of VinJ includes any users who need large-
scale vulnerability datasets for training and benchmarking data-
driven vulnerability analysis models.

2 TOOL DESIGN AND IMPLEMENTATION

Figure 1 shows the architecture of VinJ, highlighting its inputs and
outputs as well as three working phases.

Table 1: Hyperparameters of the localization model.

𝑒 number of epochs 10
𝑒𝑏 number of encoder blocks 12
𝑑𝑏 number of decoder blocks 12
𝑒𝑠 encoder block size 1024
𝑑𝑠 decoder block size 256
𝑏 batch size 1
𝑙𝑟 learning rate 2e-5
𝑏𝑠 beam search size 1

2.1 Inputs and Outputs

To use VinJ, the users need to provide two sets of inputs: a Vulner-
ability Training Set of paired normal and vulnerable programs and
Testing Normal Programs the users want to inject vulnerabilities.

The outputs of VinJ are the Vulnerable Programs.

2.2 Phase 1: Location Learning

During this phase, VinJ learns where to inject (i.e., finding injection
locations) from the vulnerability training set with three modules:
Differencing, Subword Tokenization, and Fine-tuning.

Differencing. Given the Vulnerability Training Set, VinJ first
differences on the pairs of normal programs and respective vulner-
able programs. For implementation, we use the diff tool in Linux
to do this. It compares a pair of programs and outputs the lines
changed, which are theModified Statements. In this case, the normal
program and the respective modified statements construct a pair of
input and output for the localization model. These pairs allow VinJ
to learn the locations where vulnerabilities may be injected.

Subword Tokenization. To allow the deep learning model to
process the pairs, VinJ tokenizes the pairs of normal programs
and the respective modified statements. It converts the text into a
sequence of tokens so that the DL model can process. For imple-
mentation, we use the pre-trained CodeT5 Tokenizer from Hug-
gingFace [25] which implements Byte Pair Encoding to do this.

Fine-Tuning. Finally, VinJ fine-tunes the Pre-trained CodeT5
to train a Localization Model. Given the pairs of normal programs
and the respective modified statements. VinJ fine-tunes the CodeT5
model so that the model can predict a statement to inject a vulner-
ability given a new normal program. For implementation, we adapt
the source code from VulRepair [11] as it has similar formulation
to ours (i.e., transforming a text to another text). We download
the Pre-trained CodeT5 from HuggingFace [25] to fine-tune it. We
configure the model with the hyperparameters shown in Table 1.
Since we only generate one vulnerable program given a testing
normal program, we set the beam search size 𝑏𝑠 to be one. We also
enable AdamW optimizer [13] which is widely used to make the
training stable.

VinJ: An Automated Tool for Large-Scale Software Vulnerability Data Generation FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

2.3 Phase 2: Pattern Mining

VinJ mines the vulnerability Injection Patterns based on Getafix [1].
It also takes the Vulnerability Training Set as the input and learns
the edit patterns to convert normal code into vulnerable code.

AST Construction. Given that each vulnerability fix involves
a pair of normal and the respective vulnerable program, VinJ first
converts the pair of programs into ASTs. For implementation, we
use srcML [6] as the AST parser, which supports C language (the
language of our samples), to convert the source code into ASTs.

AST Differencing. Then, VinJ differences the pairs of ASTs to
get the Concrete Edits between normal and vulnerable programs.We
use GumTree [7] to get the concrete edits, following the approach in
Getafix [1]. Specifically, given the pair of ASTs, GumTree compares
the ASTs and finds the modified AST nodes and subtrees. The pairs
of modified subtrees constitute the concrete edits.

Anti-Unification. Next, VinJ uses the anti-unification algo-
rithm from Getafix [1] to merge similar concrete edits into Ab-
stract Edits. For example, two concrete edits "safe_free(ptr1)
=>free(ptr1)" and "safe_free(ptr2) => free(ptr2)" can be
merged into "safe_free(h0) => free(h0)" where h0 is a place-
holder that can match any AST subtrees. Since Getafix is not open-
source, we re-implement the anti-unification algorithm.

Parallel Clustering. Since there are many edits to be merged,
VinJ needs to decide which two edits are merged each time. The
intuition is that the merging should start from the most similar
concrete edits. Thus, we further follow Getafix and re-implement
the hierarchical clustering algorithm tomerge the abstract edits into
generalizable edit patterns. Given a set of abstract edits, VulGen
enumerates all possible edit pairs to find the most similar pair.
However, if the root nodes of two edits are different, the edits
are the most different and thus the merging is meaningless (i.e.,
the merged pattern can match any code). Therefore, in VinJ, we
optimized the hierarchical clustering into Parallel Clustering. Given
a set of abstract edits, VinJ first clusters the edits based on the AST
root node type. Then, each cluster does the hierarchical clustering
independently. This not only reduces the time cost of clustering,
but also enables multi-process/parallel computing which further
improves efficiency. After the clustering, the mined edit patterns
are the Injection Patterns with which vulnerabilities may be injected
in a variety of normal programs.

2.4 Phase 3: Vulnerability Injection

In this phase, VinJ applies the trained Localization Model and the
mined Injection Patterns to inject vulnerabilities into normal pro-
grams. In this process, the VinJ input is theTesting Normal Pro-
grams which are richly available in real-world projects. Through
the vulnerability injection process in VinJ, the VinJ output is the
Vulnerable Programs it generated.

Subword Tokenization. The testing normal programs are again
fed into the subword tokenization model which is described in
Section 3. For implementation, we again use the CodeT5 Tokenizer
downloaded from HuggingFace [25].

AST Construction. To allow the Injection Patterns to match and
apply on the code, VinJ again parses the testing normal programs
into an AST. For implementation, we again use the srcML [6] tool
to help accomplish this step.

Injection Localization. The tokenized programs are fed into
the localization model and the model outputs the located statement,
which is the text of a statement for vulnerability injection. For
implementation, we use the part of source code from VulRepair [11]
that was used for testing (model inference).

Pattern Pre-Ranking. In the VulGen prototype, given a test-
ing sample, to select an appropriate pattern to apply, the patterns
are ranked per the product of two scores: (1) prevalence score: the
proportion of samples in the training set that can be injected vul-
nerabilities correctly by applying the pattern, assuming it can be
applied on the correct location; (2) specialization score: the recipro-
cal of the number of subtrees in the testing sample that the pattern
can match. However, this is very inefficient because the specializa-
tion score needs to be calculated for each testing sample. In VinJ,
we optimize the pattern selection. For specialization score, we cal-
culate the average number of subtrees that match the pattern in
the training samples. This way, the pattern scores can be calculated
before vulnerability injection and the patterns can be pre-ranked.

Pattern Application. With the located statement, VinJ applies
the first injection pattern per the pre-ranking that can match that
statement. Since the localization model outputs the statement in
source code (text) form, we convert each AST subtree back into
source code and compare it with the located statement. Once the
source code matches, we apply the injection pattern on that AST.

3 EVALUATION

We conduct our experiments on a machine with an AMD Ryzen
Threadripper 3970X (3.7GHz) CPUwith 32 Cores, anNvidia GeForce
RTX 3090 GPU, and 256GB memory.

3.1 Effectiveness

To evaluate VinJ, we apply it to the existing vulnerability samples
with ground truths. We combine 5 different real-world high-quality
vulnerability datasets to build a dataset: Devign [30], ReVeal [5],
PatchDB [23], BigVul [8], and CVEFixes [2]. We cleaned up the com-
bined dataset by removing overlapped samples, resulting in 27,237
function-level samples. Since there are irrelevant code changes
in multi-line commits for vulnerability fixing [19] and more than
40% of the vulnerabilities only need one-statement injection, we
only use samples where the edits are on one statement, resulting
in 10,783 samples. We split these samples with a ratio of 9:1 for
training and testing as in prior work [18], resulting in 9,705 for
training and 1,078 for testing.

Figure 2 shows the results ofVinJ and the baselines.VinJ achieves
14.64% exactly-match accuracy, outperforming the baselines. How-
ever, it is possible that an output program is vulnerable but does
not exactly match the ground truth. Thus, we randomly sample 100
of the generated programs and manually check them. Note that
the sample size 100 is sizable as peer works also use 100 or less
samples for similar-purpose manual validation [12, 29]. We invite
three PhD students who have 2-4 years of experience in software
engineering and security to label them. The manual labeling of a
sample assesses if an exploit can be written to attack it [19]. We fol-
low an inter-rater agreement procedure and qualify the agreement
in terms of Cohen’s Kappa, which is a standard metric to evaluate
the reliability of the assessment by different raters [9]. The Cohen’s

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Yu Nong, Haoran Yang, Feng Chen, and Haipeng Cai

14.64%

69%

12.59% 13%10.29%
17%

5.67%

50%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Accuracy (Exactly-Matched) Success rate

VInJ Graph2Edit T5 Getafix

Figure 2: Effectiveness of VinJ and the baselines.

0%
5%

10%
15%
20%
25%

Figure 3: Diversity of VinJ’s generated samples.

Kappas between the three participants are 0.7877, 0.7476, and 0.6826,
indicating substantial [14] reliability of the manual checking. On
average, the three raters label 69% of the generated programs as
vulnerable, while the baselines only achieve 13-50% success rate,
indicating VinJ is promising to generate vulnerabilities.

We also assess whether VinJ is able to inject a variety of vulnera-
bilities during the manual labeling. Figure 3 shows the distribution
of VinJ’s generated data. VinJ covers 18 different CWEs where the
distribution is similar to real-world CWE distribution [21], indicat-
ing that the generated data is diverse.

3.2 Efficiency and Scalability

We evaluate the efficiency VinJ’s major modules (other modules
take negligible time and memory). The fine-tuning module can
do 8.18 iterations on average, and thus the whole fine-tuning on
the 9,705 samples with 10 epochs takes 3 hours 17 minutes, with
up to 5.5G memory usage. The AST construction and differencing
modules take 1.2 seconds on each sample on average. We enable
60-process configuration and thus the whole AST construction
and differencing on the 9,705 samples take only 162 seconds, with
up to 73G memory cost (1.21G per process on average). The anti-
unification and parallel clustering take 1 hour 17 minutes with up
to 22.6G memory cost to cluster these concrete edits with our op-
timization while the VulGen prototype takes 19 hours 24 minutes
with 11.3G memory cost. In the vulnerability injection phase, the
pattern pre-ranking takes 16 minutes. After that, the injection lo-
calization takes 0.22 seconds for each sample on average with up to
2.2G memory cost, and the pattern application takes 0.18 seconds
for each sample on average with up to 13G memory cost. Therefore,
VinJ takes 7 minutes 11 seconds to inject vulnerabilities into the
1078 testing samples, while the VulGen prototype takes 55 minutes
(i.e., 3.06 seconds per sample), indicating that VinJ is efficient.

We also evaluate the scalability of VinJ for large-scale vulnera-
bility data generation. Thus, we collect a dataset of 738,453 normal
programs from 238 open-source projects. After discarding the sam-
ples that VinJ cannot inject vulnerabilities, VinJ generates 686,513
samples in 73 hours 14 minutes, with up to 96G memory usage,
indicating that VinJ is scalable.

4.61%

48.84%

8.55%

5.42%

53.43%

11.07%Repair: VulRepair
(Top-1 accuracy)

Localization: LineVul
(Top-10 accuracy)

Detection: LineVul
(F1 accuracy)

After Augmentation Before Augmentation

Figure 4: Improvements of downstream tasks with the sam-

ples generated by VinJ.

3.3 Practical Usefulness

We practically apply the generated vulnerability samples to improve
the training of DL-based downstream vulnerability analysis mod-
els. We extensively consider three tasks–vulnerability detection,
localization, and repair–while the original VulGen paper focuses
solely on detection [19]. For models, we utilize LineVul [10], a vul-
nerability detection and localization model, and VulRepair [11], a
vulnerability repair model. To improve the training of the mod-
els, we augment their original training sets by incorporating 10%
of the 686,513 generated samples, along with additional normal
samples to balance the dataset. The 10% usage is due to scalability
considerations for downstream task models. To simulate the real-
world vulnerability analysis scenario, we use a third-party testing
set ReVeal [5] to leverage independent testing. Figure 4 shows the
significant improvements of the three tasks with the generated
samples. The default metrics for the three tasks—F1, top-10, and
top-1 accuracy—show improvements from 4.61% to 5.42%, 48.84%
to 53.43%, and 8.55% to 11.07%, respectively. This shows the practi-
cability of the generated samples.

4 LIMITATION

There are several major limitations of VinJ. The first limitation
is that it relies on the AST parser srcML [6]. At the same time,
the implementation of VinJ is based on the AST format for C lan-
guage. Thus, it can only work with C programs with the current
implementation. The second limitation is that the injection patterns
only work on a single statement. Although this is less restrictive
than existing tools that only handle even smaller edits (e.g., token-
level [22]), single-statement edits do represent a substantial portion
of real-world vulnerability introduction [19]. The third limitation is
that, it cannot guarantee the output vulnerability-injected programs
are indeed vulnerable, thus the generated data can still suffer from
noise (although the noise is less than peer works such as D2A [29],
which has only 53% success rate while ours achieves 69%).

5 CONCLUSION

We have developed VinJ, an automated tool that generates vulnera-
ble code by injecting vulnerabilities into existing real-world normal
programs, which are richly available. VinJ effectively uses existing
high-quality vulnerability samples to train effective vulnerability
injection models. VinJ is able to generate large-scale and quality
vulnerability data. Our empirical experiments show that VinJ is
effective in vulnerability injection and outperforms baseline ap-
proaches. It is also efficient to generate large-scale vulnerability
datasets which are practically useful.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments, which
helped us improve our paper. This research was supported by the
Army Research Office (ARO) through grant W911NF-21-1-0027.

VinJ: An Automated Tool for Large-Scale Software Vulnerability Data Generation FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES

[1] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27. https://doi.org/10.1145/3360585

[2] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics in
Software Engineering (PROMISE). 30–39. https://doi.org/10.1145/3475960.3475985

[3] Yingzhou Bi, Jiangtao Huang, Penghui Liu, and Lianmei Wang. 2023. Bench-
marking Software Vulnerability Detection Techniques: A Survey. arXiv preprint
arXiv:2303.16362 (2023). https://doi.org/10.48550/arXiv.2303.16362

[4] Haipeng Cai, Yu Nong, Yuzhe Ou, and Feng Chen. 2023. Generating vulnerable
code via learning-based program transformations. In AI Embedded Assurance for
Cyber Systems. Springer, 123–138. https://doi.org/10.1007/978-3-031-42637-7_7

[5] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2022.
Deep Learning Based Vulnerability Detection: Are We There Yet? IEEE Transac-
tions on Software Engineering 48, 9 (2022), 3280–3296. https://doi.org/10.1109/
TSE.2021.3087402

[6] Michael L Collard, Michael John Decker, and Jonathan I Maletic. 2013. srcML: An
infrastructure for the exploration, analysis, and manipulation of source code: A
tool demonstration. In 2013 IEEE International Conference on SoftwareMaintenance.
516–519. https://doi.org/10.1109/ICSM.2013.85

[7] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering (ASE). 313–324. https://doi.org/10.1145/2642937.2642982

[8] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (MSR). 508–512.
https://doi.org/10.1145/3379597.3387501

[9] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. 1981. The measurement
of interrater agreement. Statistical methods for rates and proportions 2, 212-236
(1981), 22–23. https://doi.org/10.1002/0471445428.ch18

[10] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: a transformer-based
line-level vulnerability prediction. In Proceedings of the 19th International Con-
ference on Mining Software Repositories (MSR). 608–620. https://doi.org/10.1145/
3524842.3528452

[11] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 935–947.
https://doi.org/10.1145/3540250.3549098

[12] Xinlei He, Savvas Zannettou, Yun Shen, and Yang Zhang. 2023. You Only Prompt
Once: On the Capabilities of Prompt Learning on Large Language Models to
Tackle Toxic Content. In 2024 IEEE Symposium on Security and Privacy (SP). 61–61.
https://doi.org/10.1109/SP54263.2024.00061

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014). https://doi.org/0.48550/arXiv.
1412.6980

[14] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282. https://doi.org/10.23641/asha.12978197

[15] Yu Nong and Haipeng Cai. 2020. A preliminary study on open-source memory
vulnerability detectors. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 557–561. https://doi.org/10.1109/
SANER48275.2020.9054851

[16] Yu Nong, Haipeng Cai, Pengfei Ye, Li Li, and Feng Chen. 2021. Evaluating
and comparing memory error vulnerability detectors. Information and Software
Technology 137 (2021), 106614. https://doi.org/10.1016/j.infsof.2021.106614

[17] Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and
Haipeng Cai. 2024. VGX: Large-scale sample generation for boosting learning-
based software vulnerability analyses. In IEEE/ACM International Conference
on Software Engineering (ICSE). Article 149, 13 pages. https://doi.org/10.1145/
3597503.3639116

[18] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Gen-
erating realistic vulnerabilities via neural code editing: an empirical study.
In Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. 1097–1109.
https://doi.org/10.1145/3540250.3549128

[19] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2023. Vul-
Gen: Realistic vulnerability generation via pattern mining and deep learning. In
IEEE/ACM International Conference on Software Engineering (ICSE). 2527–2539.
https://doi.org/10.1109/ICSE48619.2023.00211

[20] Yu Nong, Rainy Sharma, Abdelwahab Hamou-Lhadj, Xiapu Luo, and Haipeng
Cai. 2022. Open science in software engineering: A study on deep learning-based
vulnerability detection. IEEE Transactions on Software Engineering 49 (2022),
1983–2005. https://doi.org/10.1109/TSE.2022.3207149

[21] National Institute of Standards and Technology (NIST). 2022. CWE Top 25
Most Dangerous Software Weaknesses. https://cwe.mitre.org/top25/archive/
2022/2022_cwe_top25.html.

[22] Jibesh Patra and Michael Pradel. 2021. Semantic bug seeding: a learning-based
approach for creating realistic bugs. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 906–918. https://doi.org/10.1145/3468264.
3468623

[23] XindaWang, ShuWang, Pengbin Feng, Kun Sun, and Sushil Jajodia. 2021. Patchdb:
A large-scale security patch dataset. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 149–160. https://doi.org/
10.1109/DSN48987.2021.00030

[24] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding
and Generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. 8696–8708. https://doi.org/10.18653/v1/2021.emnlp-
main.685

[25] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019). https://doi.org/10.48550/arXiv.1910.03771

[26] Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. 2021.
Learning Structural Edits via Incremental Tree Transformations. In International
Conference on Learning Representations. 126–133. https://doi.org/10.48550/arXiv.
2101.12087

[27] Shasha Zhang. 2021. A Framework of Vulnerable Code Dataset Generation
by Open-Source Injection. In 2021 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA). 1099–1103. https://doi.org/10.
1109/ICAICA52286.2021.9497888

[28] Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXRE-
VERTER: A Realistic Bug Injection Methodology for Benchmarking Fuzz Testing.
In 31st USENIX Security Symposium (USENIX Security 22). 3699–3715.

[29] Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo
Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021. D2A: A dataset
built for ai-based vulnerability detection methods using differential analysis.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP). 111–120. https://doi.org/10.1109/ICSE-
SEIP52600.2021.00020

[30] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in Neural Information Processing
Systems (NeurIPS) 32 (2019), 10197–10207. https://doi.org/10.48550/arXiv.1909.
03496

https://doi.org/10.1145/3360585
https://doi.org/10.1145/3475960.3475985
https://doi.org/10.48550/arXiv.2303.16362
https://doi.org/10.1007/978-3-031-42637-7_7
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.1002/0471445428.ch18
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1145/3540250.3549098
https://doi.org/10.1109/SP54263.2024.00061
https://doi.org/0.48550/arXiv.1412.6980
https://doi.org/0.48550/arXiv.1412.6980
https://doi.org/10.23641/asha.12978197
https://doi.org/10.1109/SANER48275.2020.9054851
https://doi.org/10.1109/SANER48275.2020.9054851
https://doi.org/10.1016/j.infsof.2021.106614
https://doi.org/10.1145/3597503.3639116
https://doi.org/10.1145/3597503.3639116
https://doi.org/10.1145/3540250.3549128
https://doi.org/10.1109/ICSE48619.2023.00211
https://doi.org/10.1109/TSE.2022.3207149
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://doi.org/10.1145/3468264.3468623
https://doi.org/10.1145/3468264.3468623
https://doi.org/10.1109/DSN48987.2021.00030
https://doi.org/10.1109/DSN48987.2021.00030
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.2101.12087
https://doi.org/10.48550/arXiv.2101.12087
https://doi.org/10.1109/ICAICA52286.2021.9497888
https://doi.org/10.1109/ICAICA52286.2021.9497888
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.48550/arXiv.1909.03496
https://doi.org/10.48550/arXiv.1909.03496

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Yu Nong, Haoran Yang, Feng Chen, and Haipeng Cai

APPENDIX: VINJ DEMOWALK-THROUGH

In this section, we walk through the demo process of VinJ and use
illustrative screen-shots to show the usage of VinJ.

1. INSTALL VINJ

To install VinJ, we first set up the environments and install depen-
dencies that VinJ needs. Then, we clone the VinJ repository to start
the experiments.

• Step 1. Download and install Java>=11 through this link.
• Step 2. Download and install srcML through this link.
• Step 3. Download and extract our specific gumtree-lite.zip
from figshare.

• Step 4. Set the environment path for our specific gumtree-
lite:

e xpo r t GUMTREE=YOUR_GUMTREE_PATH
expo r t PATH=$PATH : $GUMTREE

• Step 5. Download and install the Python>=3.6 through this
link.

• Step 6. Install the following Python dependencies for the
localization model:

p ip i n s t a l l t r a n s f o rme r s
p ip i n s t a l l t o r ch
p ip i n s t a l l numpy
p ip i n s t a l l tqdm
pip i n s t a l l pandas
p ip i n s t a l l t o k e n i z e r s
p ip i n s t a l l d a t a s e t s
p ip i n s t a l l gdown
p ip i n s t a l l t e n s o r bo a r d
p ip i n s t a l l s c i k i t − l e a r n

• Step 7. Download and install PyPy3 through this link to
improve the efficiency.

• Step 8. Clone or download the VinJ repository to the local
directory.

2. USE VINJ

In this section, we demonstrate the usage of VinJ for vulnerability
dataset generation. Because of the repository size limit on GitHub,
we only include a small set of training and testing samples in
the repository. The training and testing experiments on the small
dataset can be easily run by the scripts (i.e., the .sh files in the
repository) provided. We first train and test the localization model
with the following script:

s ou r c e l o c _ t r a i n _ t e s t . sh

Figure 5 shows the run-time log of the localization model and
testing. The localization model correctly predicts 25.8% of the vul-
nerability injection locations.

Then, we extract the injection patterns with the following script:

s ou r c e pa t t e rn_ t r a i n _demo . sh

Figure 6 shows the run-time log of pattern extraction. We can
see that VinJ extracts and clusters many injection patterns.

Figure 5: The run-time log of the localization model training

and testing.

Figure 6: The run-time log of the pattern extraction.

Finally, we test the extracted patterns and the trained localization
model on the testing set using the following script:

s ou r c e p a t t e r n_ t e s t _ d emo . sh

Figure 7 shows the run-time log of pattern extraction. We can
see that VinJ uses the extracted patterns to inject vulnerabilities
into the programs.

https://openjdk.org/
https://www.srcml.org/
https://figshare.com/s/d85b715edc26ea99c5fa
https://www.python.org/
https://www.pypy.org/
https://github.com/NewGillig/VInj.git

VinJ: An Automated Tool for Large-Scale Software Vulnerability Data Generation FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Figure 7: The run-time log of the vulnerability injection.

To do complete training and testing, we can download the full
training and testing datasets for localization and pattern mining/ap-
plication through the following line. Then replace the respective
folders and files with the demo ones.

To make the process simpler, we can also directly download the
trained localization model and patterns for testing, by download
them in the following link. We can also directly run the script to
automatically download models and inject vulnerabilities on our
testing set:

s ou r c e p a t t e r n _ t e s t . sh
After this process, the vulnerability-injected samples are out-

putted to ./pattern_mining_application/generated/.

Received 2024-01-29; accepted 2024-04-15

https://figshare.com/s/d85b715edc26ea99c5fa localization_train_test_data.zip and vulgen_train_test_final.zip
https://figshare.com/s/d85b715edc26ea99c5fa VInj_trained_pattern_model.zip

	Abstract
	1 Introduction
	2 Tool Design and Implementation
	2.1 Inputs and Outputs
	2.2 Phase 1: Location Learning
	2.3 Phase 2: Pattern Mining
	2.4 Phase 3: Vulnerability Injection

	3 Evaluation
	3.1 Effectiveness
	3.2 Efficiency and Scalability
	3.3 Practical Usefulness

	4 Limitation
	5 Conclusion
	References

