
ICC-Inspect: Supporting Runtime Inspection of Android
Inter-Component Communications

John Jenkins
Washington State University, Pullman, WA

john.jenkins@wsu.edu

Haipeng Cai
Washington State University, Pullman, WA

hcai@eecs.wsu.edu

ABSTRACT

We present ICC-Inspect, a tool for understanding Android app be-
haviors exhibited at runtime via inter-component communication
(ICC). Through lightweight Intent profiling, ICC-Inspect streams
run-time ICC information to a dynamic visualization framework
which depicts interactive ICC call graphs along with informative
ICC statistics. This framework allows users to examine the details
of a specific fragment of execution in the context of the holistic ICC
view of an app. Through its ability to concisely map in a visual for-
mat the complex ICCmechanisms of any Android app, ICC-Inspect
facilitates behavior understanding and debugging of Android pro-
grams. The open-source release, documentation, and a video demo
of ICC-Inspect are available here.

KEYWORDS

Android, ICC, behavior, understanding, inspection

ACM Reference Format:

John Jenkins and Haipeng Cai. 2018. ICC-Inspect: Supporting Runtime In-
spection of Android Inter-Component Communications. In MOBILESoft ’18:
MOBILESoft ’18: 5th IEEE/ACM International Conference on Mobile Software
Engineering and Systems , May 27–28, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3197231.3197233

1 INTRODUCTION

Android is now the leading mobile computing platform having
secured nearly 85% mobile market share [8]. As a result, more and
more software applications today are Android apps. In this context,
it is increasingly crucial to support app developers with various
automated tools for producing apps with higher quality and lower
cost. Also, as securing Android apps against malicious behaviors
has become a growing concern [2, 10], tools that help developers
understand how apps are coded and executed are essential for
longer-term and proactive security defense.

Android application programming features the use of a commu-
nication model, called inter-component communication (ICC), by
which components in an app (resulting from functional modulari-
zation) collaborate toward achieving higher-level tasks of the app.
An Android app typically uses messaging objects called Intents as
the primarily means to perform ICC, interacting with components

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5712-8/18/05.
https://doi.org/10.1145/3197231.3197233

internal or external to the app to accomplish any task a calling com-
ponent is unable to complete by itself. Thus, resolving ICC Intents
and mapping ICCs among components has been a requirement of
performing static or dynamic analysis of Android apps [10, 11].
Also, a key step in understanding the behaviors of any Android app
involves understanding ICCs within the app. Yet, understanding
ICCs is currently a major challenge to mobile developers, especially
within the context of undocumented third-party APIs [1]. Further,
there is a tendency for malware to take advantage of the ICC flex-
ibility in order to bypass security mechanisms in Android (e.g.,
through Intent spoofing and hijacking) [4, 11]. Inspecting the ICC-
induced behaviors against such threats can help mobile developers
produce securer apps.

While there has been considerable progress made in coherent
ICC analysis frameworks, to date most existing approaches report
conservative (hence large) ICC analysis results in a textual format [6,
7]. Not only are the textual results difficult to navigate, they are
mostly static thus provide few information on how the ICCs are
actually invoked in the app and, more importantly, how the app
behaves with respect to the ICCs that are exercised at runtime.

As a means of contextualizing the massive amount of informa-
tion that describes an application’s ICC, we developed ICC-Inspect,
a tool that assists with Android app behavior understanding.
ICC-Inspect specifically focuses on facilitating the inspection of
ICCs through a synergy of static and dynamic ICC analysis along
with interactive, dynamic information visualizations. By incorpora-
ting the bytecode analysis utilities of Soot [5], the static analysis
module of ICC-Inspect inserts in a given app probes linked to
run-time monitors that capture and transmit the information of
exercised ICCs as the Android application is traversed by the app
user. These transmissions are then received and processed by the vi-
sualization framework of ICC-Inspect, where a dynamic call graph
is built from the ICC traces. The call graph is then automatically
updated as the user continues to traverse the instrumented app.

An optional static call graph is also generated during the static
analysis, which contains every potential ICC in the target app.
The static ICC calling relationships are established conservatively
based on the app’s Intent filters as specified in its manifest file.
If the user is interested in exploring an individual Intent’s fields,
detailed ICC information can be displayed by means of the user
hovering over individual ICC Intent nodes. All Intent resolution
that occurs throughout the app’s traversal is cleanly depicted using
a variety of colored edges, which indicate the specific type of Intent
resolution that has occurred. Edge labels further detail the specific
matching Intent fields that lead to the Intent resolution. Alongside
the ICC graphs, detailed tables break down specific ICC statistics.
In addition, the static graph is interactively linked to the dynamic
graph: if the user would like to explore the relationship between a

https://bitbucket.org/sabatu/icc-visualizer-with-graphstream
https://doi.org/10.1145/3197231.3197233
https://doi.org/10.1145/3197231.3197233

Input

Static ICC Analysis
For computing static
ICC callgraph

Instrumentation
For generating
output to dynamic
ICC callgraph

1.) Static Analysis

Instrumented APK

2.) Installation to Device 3.) User Inputs to Instrumented APK

4.) Instrumented APK transmits
captured ICC information to
visualization framework

 APK

Figure 1: Overview of ICC-Inspect process flow.

dynamic ICC and its static counterpart, all they need to do is click
the specific dynamic ICC node, and the node in the static ICC graph
that corresponds to that particular node will be highlighted.

2 THE ICC-INSPECT APPROACH

We first give an overview of ICC-Inspect and then elaborate on the
key modules of ICC-Inspect: static analysis, profiling and dynamic
analysis, and interactive visualization.

2.1 ICC-Inspect Architecture

The architecture of ICC-Inspect is depicted in Figure 1. The input to
ICC-Inspect is a target Android app for inspection, and the output
is the interactive dynamic visualization of ICCs being exercised
by user inputs to the app. The intermediate processing consists
of three major phases in the four numbered steps. The static ICC
analysis (step 1) takes the APK of the input app and instruments the
APK for ICC profiling. Static ICC analysis is also performed during
this phase to build the static ICC call graph. The instrumented APK
is then fed into the profiling phase (steps 2 and 3), where traces are
collected during app executions driven by the user inputs to the
app, and then used to construct the dynamic call graph. Finally, the
interactive visualization phase takes the ICC call traces to construct
the dynamic call graphs, and visualize both the static and dynamic
views of the ICCs. The user can henceforth interact with the app
and the visualizations.

2.2 Static Analysis

Static ICC analysis. Our static analysis starts with building the
static ICC call graph of the given app. The static graph is considered
optional in regards to ICC-Inspect static analysis. Depending on
the type of analysis the user wants to perform with ICC-Inspect,
the static graph may be unnecessary, and hence omitting the ex-
tra processing time required by the static graph construction will
reduce the overall time cost of the entire ICC-Inspect analysis. If
the user elects to not have ICC-Inspect depict a static ICC graph,
the dynamic graph will then occupy the additional space that the
static graph would consume.

As depicted in Figure 2 (bottom left), an interactive static call
graph of the app under analysis is provided below two dynamic ICC
graphs. The motivation is to provide the user a reference of every
potential ICC within the scope of the app. The static graph can also
be used in tandem with the dynamic graph, for example; clicking
on an ICC node in either dynamic graphs will highlight and center
the corresponding ICC node in the static graph. As the static call

Color Of Node Type Of Node Occurrences Percentage

Receiving ICC

Sending ICC

Externally Matched Routine

Implicit / Internal Match

Explicit / Internal Match

Implicit / External Match

Explicit / External Match

3

4

6

0

0

2

4

23.08

30.77

46.15

0.00

0.00

33.33

66.67

Caller StatisticsComponent Statistics

Color Of Caller Node Caller Name Occurrences Percentage

StartActivity

FragmentActivity

MainActivity

MultireddSyncRoutine

SubscriptionsSyncRoutine

ModeratedSyncRoutine

2

1

1

1

1

1

28.57

14.29

14.29

14.29

14.29

14.29

boolean a() Android.content.ComponentName startService() Void StartActivity() Void startActivityForResult() Android.content.ComponentName startService()

Figure 2: The four visual components of ICC-Inspect.

graph will often be depicting a plethora of ICC nodes, an alternating
45-degree zigzag pattern is designed to maximize use of available
space. IC3 [6] is used to resolve ICC Intent fields at each ICC call
site in the app. For each of the ICCs whose target component is
resolved as a valid component name, the ICC is explicit and the
static ICC call edge is established (from the enclosing component
of the ICC call to the target component). All other ICCs are implicit,
for which the manifest file of the app is parsed to extract the Intent
filters of each component declared. By matching the Intent filters
against the resolved Intent fields at all ICC call sites, potential
calling relationships between two components are identified and
the static ICC call edges established accordingly. This matching is
conservative in order to avoid missing any possible ICC call edges.
In contrast, a dynamic call graph edge is established when an Intent
at an ICC receiving site exactly matches an earlier Intent from
an ICC invocation site in the ICC trace. This matching is precise
because all Intent fields are exactly resolved at runtime.
Instrumentation. To generate a dynamic call graph of ICC that
updates as the user traverses the app, ICC-Inspect continuously
collects ICC call traces and streams them to our visualization frame-
work. To that end, a probe for monitoring Intent objects is inserted
after each ICC invocation and receiving site found in the app’s
bytecode. The probe is hooked to a run-time monitor that reports
the run-time value of each Intent field and transmits the values to
the visualization framework through TCP socket-based messaging.

2.3 Profiling

Setup. After the static-analysis phase, the instrumented APK is
installed onto either a handheld device or an emulator [3]. We
implemented inter-process messaging based on a TCP socket as
the primary mechanism for trace transmission to allow for using
ICC-Inspect on a physical Android device.
Tracing. As the user triggers specific events in the target app that
cause ICCs, the relevant Intent information will be generated by
the run-time monitor hooked by the probes inserted in the app.
Then, the traces are sent to the visualization framework via the
socket-based messaging mentioned earlier.

2.4 Interactive Dynamic Visualization

Once the static ICC call graph is built (if opted for) and the (instru-
mented) app is installed, the visualization will start. Upon startup,

2

Figure 3: Examining the calling pattern of Intent callers by

activating a specific caller node’s matching edges.

ICC-Inspect’s main window will be rendered to the screen with
two empty dynamic ICC call graphs, a static ICC graph (if selected
by the user), and two legends to the right of the graphs (see Fi-
gure 2). The dynamic graph in the middle of the window handles
overall dynamic graph structure, while the upper graph focuses
context from the central graph into exploring the individual ICC
pairs themselves. The legend in the top-right corner serves as a
reference for the ICC nodes, and resolution edges in the dynamic
ICC graph. Specifically, each node and edge type is depicted by
four properties: coloration, specific name, number of occurrences,
and statistical percentage of occurrence within the evolution of the
dynamic graph. The legend in the bottom-right corner serves as a
reference to all of the caller nodes within the graph. As in the ICC
legend, individual callers are depicted by the same four properties.

When an individual Intent is received for processing from the
instrumented app, an Intent listener first parses all the individual
fields of the Intent into a custom data structure (referred to as Intent-
Type), for ease of processing during dynamic call graph generation.
The IntentType is then passed into the main graph construction,
and an ICC node is generated from the IntentType, with coloration
and shape matching the type of ICC node that is being processed
(sending or receiving). The ICC node’s label is instantiated to dis-
play the Intent’s callsite information. A unique numeric ID will also
be generated and overlaid on each ICC link.

As an individual ICC node’s specific field information is often
too dense to display all at once, additional fields can be viewed
as needed by the user. For instance, the graph constructor uses
a hashmap to link the ICC node’s internal ID with the specific
IntentType the ICC node is based off of. If the user wants to access
analysis results for a specific ICC, they can then hover their mouse
over the distinct ICC node. The mouse hover triggers the event
handler to retrieve the specific IntentType that generated the ICC
node via the hashmap, and then displays every individual field to
a translucent window positioned next to the ICC node, that will
subsequently disappear whenever the user moves the mouse off of
the selected ICC node.

When an ICC node is created, a smaller caller node is also created
directly below the ICC node, and is linked to the ICC node via an
edge. The caller node represents the calling method of the specific
Intent that was mapped into an ICC node. If the user clicks on
the caller node, edges are automatically generated that lead to
every other caller node in the dynamic graph of the same type. The
intention of the caller node generating edges is to provide the user

with a high-level overview of a caller’s calling pattern throughout
the dynamic graph’s evolution, as illustrated in Figure 3.

As soon as the dynamic graph includes at least two ICC nodes,
time-stamp edges and Intent resolution edges are automatically
generated and linked respectively between individual ICC nodes.
The time-stamp edge lists as its label the time difference between the
current ICC node being generated, and it’s predecessor. If multiple
ICC links are generated at very close intervals, they will still be
identifiably different by their uniquely generated numeric ID’s in
the graph. The resolution edge compares individual Intent fields
between the ICC node’s predecessor and itself to determine if an
intra-app ICC match has occurred. If no intra-app ICC match is
detected, the current ICC node will instead be linked to an external
routine, which will cause the generation of an external ICC node.
The resolution details can be accessed by the user hovering their
mouse over the specific external ICC node.

3 USAGE OF ICC-INSPECT

To illustrate the usage of our tool, we show how ICC-Inspect is
used to investigate obfuscated ICCs in an app. In particular, we
explore Sonic Dash, an app where the majority of ICCs are de-
dicated exclusively to advertisement services. After starting the
app, the dynamic trace will contain several ICCs with obfuscated
call-sites. The user may first investigate the caller of these ICCs
by clicking on the caller node below the obfuscated ICC, which
will then produce edges to every other ICC that the caller has also
instantiated (Figure 4). If the user would like to further investigate
a specific ICC, they can simply hover mouse over the relevant node,
and a translucent window will pop up containing all of the ICC’s

Figure 4: ICC-Inspect at first glance. It is apparent that the

receiving ICC call-site has been obfuscated.

Figure 5: By hovering the mouse over the ICC being investi-

gated, a window pops up detailing specific information that

wasmined along with the ICC in the instrumented APK.We

can see from the “Caller" field that this ICC is related to an

advertisement service: “AdvertisingIdClient".

3

Figure 6: By zooming out, and clicking on the ICC’s caller

node, we can begin to explore the other ICC’s being set by

the same caller. This will allow us to begin exploring the

overall relationship that this specific caller has with the dy-

namic ICC trace. Note that all nodes in ICC-Inspect can

be dropped and dragged to any point in the graph. The

motivation behind this interaction is to allow the user to

re-configure the trace to fit whatever abstraction they are

trying to achieve for their application’s trace.

Figure 7: By zooming out further and clicking on all other

available callers, we get an exploded view of every callers

relationship with the dynamic ICC trace of the application.

detailed information (Figure 5). It is apparent that the ICC is related
to advertising services in this instance, as its detailed information
window specifies a caller field of ’AdvertisingIDClient’. If the user
would like to get a quick visual representation of the frequency of
the AdvertisingIdClient’s ICCs so far in the trace, they can quickly
zoom out, and will be able to observe specifically where in the trace
these ICCs occur by means of the caller node’s edges (Figure 6).
Finally, if a user would like a visual depiction of the frequency of all
callers in the dynamic trace, they can simply click on the respective
caller nodes and re-arrange them into whichever configuration
most concisely helps them understand the overall caller frequency
in the graph (Figure 7).
Tool performance. We applied ICC-Inspect to various popular
apps downloaded from Google Play. The standard test case for each
app consisted of manually navigating the app through to comple-
tion, while observing results produced in the static and dynamic
ICC graphs. The main cost lies in the time for static analysis, es-
pecially for constructing the static ICC graph, if it is opted for.
For a few dozens of apps, the static analysis took on average no
more than 3 and 15 minutes without and with the static ICC graph,
respectively. Note that for a given app, the static analysis cost is in-
curred only once. After this phase, the user can explore the app with
ICC-Inspect without rerunning the static analysis. Other costs (for
tracing and rendering) of our tool were negligible. The total run

time of the tool depends on how long the user wants to manipulate
the app with ICC-Inspect.

4 RELATEDWORK

Epicc [7] employs interprocedural dataflow analysis to statically
resolve field values of ICC Intents hence match ICC across apps to
identify ICC-induced security vulnerabilities. Later, IC3 [6] achie-
ved higher precision in Intent resolution than Epicc through multi-
valued constant propagation. These tools address ICC resolution to
empower ICC-involved client analyses, such as malware detection
and taint analysis [4, 11]. We used IC3 for our static ICC analysis.
There are also numerous tools built on ICC analysis for identifying
vulnerable ICCs, as surveyed in [10]. In contrast, our tool primarily
aims at understanding ICCs themselves as part of program com-
prehension of Android apps. Although in one of our case studies
we used this understanding to help capture malicious behaviors,
our tool supports better Android program comprehension in ge-
neral. The tool based on COVERT [9] visualizes ICCs, but to help
users better understand how the ICC-related security vulnerabilities
come about. Also, the visualization is static and based on static ICC
analysis results, as opposed to our focus on dynamic visualization
showing how ICCs are exercised in a given app.

5 CONCLUSION

Wepresented ICC-Inspect, a tool for facilitating examination of An-
droid app behaviors with respect to exercised ICCs via interactive,
dynamic ICC call graphs. Since ICC has been an obstacle for An-
droid app understanding and a main surface of app security threats,
ICC-Inspect potentially empowers both behavior understanding
and security inspection of Android apps by mobile developers. We
illustrated how our tool can be used for such purposes and revealed
the practical usage overheads expected.

REFERENCES

[1] Waqar Ahmad, Christian Kästner, Joshua Sunshine, and Jonathan Aldrich. 2016.
Inter-app communication in Android: Developer challenges. In MSR. 177–188.

[2] Haipeng Cai and Barbara G Ryder. 2017. Understanding Android application
programming and security: A dynamic study. In ICSME. 364–375.

[3] Google. 2017. Android emulator. http://developer.android.com/tools/help/
emulator.html. (2017).

[4] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android Taint Flow Analysis for App Sets. In International Workshop on the State
of the Art in Java Program Analysis (SOAP). 1–6.

[5] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. Soot - a Java
Bytecode Optimization Framework. In Cetus Users and Compiler Infrastructure
Workshop. 1–11.

[6] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to Android inter-
component communication analysis. In ICSE. 77–88.

[7] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-Component Communica-
tion Mapping in Android with Epicc: An Essential Step Towards Holistic Security
Analysis. In USENIX Security Symposium. 543–558.

[8] International Data Corporation (IDC) Research. 2018. Android dominating mobile
market. http://www.idc.com/promo/smartphone-market-share/. (2018).

[9] Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2015. Analysis of Android
inter-app security vulnerabilities using COVERT. In ICSE, Vol. 2. 725–728.

[10] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The Evolution of Android Malware and Android Analysis Techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 76.

[11] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. 2014. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting
of android apps. In CCS. 1329–1341.

4

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
http://www.idc.com/promo/smartphone-market-share/

	Abstract
	1 Introduction
	2 The ICC-Inspect Approach
	2.1 ICC-Inspect Architecture
	2.2 Static Analysis
	2.3 Profiling
	2.4 Interactive Dynamic Visualization

	3 Usage of ICC-Inspect
	4 Related Work
	5 Conclusion
	References

