
Li L, Li D, Bissyandé TF et al. On locating malicious code in piggybacked Android apps. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 32(6): 1108–1124 Nov. 2017. DOI 10.1007/s11390-017-1786-z

On Locating Malicious Code in Piggybacked Android Apps

Li Li1, Daoyuan Li1, Tegawendé F. Bissyandé1, Jacques Klein1, Haipeng Cai2, Member, ACM , IEEE

David Lo3, and Yves Le Traon1

1Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg 2721, Luxembourg
2School of Electrical Engineering and Computer Science, Washington State University, Washington, WA 99163, U.S.A.
3School of Information Systems, Singapore Management University, Singapore 178902, Singapore

E-mail: {li.li, daoyuan.li, tegawende.bissyande, jacques.klein}@uni.lu; hcai@eecs.wsu.edu; davidlo@smu.edu.sg
E-mail: yves.letraon@uni.lu

Received April 20, 2017; revised October 13, 2017.

Abstract To devise efficient approaches and tools for detecting malicious packages in the Android ecosystem, researchers

are increasingly required to have a deep understanding of malware. There is thus a need to provide a framework for dissecting

malware and locating malicious program fragments within app code in order to build a comprehensive dataset of malicious

samples. Towards addressing this need, we propose in this work a tool-based approach called HookRanker, which provides

ranked lists of potentially malicious packages based on the way malware behaviour code is triggered. With experiments on

a ground truth of piggybacked apps, we are able to automatically locate the malicious packages from piggybacked Android

apps with an accuracy@5 of 83.6% for such packages that are triggered through method invocations and an accuracy@5 of

82.2% for such packages that are triggered independently.

Keywords Android, piggybacked app, malicious code, HookRanker

1 Introduction

Malware is pervasive in the Android ecosys-

tem. This is unfortunate since Android is the most

widespread operating system in handheld devices and

has increasing market shares in various home and office

smart appliances. As we now heavily depend on mobile

apps in various activities that pervade our modern life,

security issues with Android web browsers, media play-

ers, games, social networking or productivity apps can

have severe consequences. Yet, regularly, high profile

security mishaps with the Android platform shine the

spotlight on how easily malware writers can exploit a

large attack surface, eluding all detection systems both

at the app store level and at the device level.

Nonetheless, research and practice on malware de-

tection have produced a substantial number of ap-

proaches and tools for addressing malware. The litera-

ture contains a large body of such work[1-4]. Unfor-

tunately, the proliferation of malware[5] in stores and

on user devices is a testimony that 1) state-of-the-art

approaches have not matured enough to significantly

address malware, and 2) malware writers are still able

to react quickly to the capabilities of current detec-

tion techniques. Broadly, malware detection techniques

either leverage malware signatures or build machine

learning (ML) classifiers based on static/dynamic fea-

tures. On the one hand, it is rather tedious to manually

build a (near) exhaustive database of malware signa-

tures: new malware or modified malware is thus likely

to slip through. On the other hand, ML classifiers are

too generic to be relevant in the wild: features currently

used in the literature, such as n-grams, permissions or

system calls, allow to flag apps without providing any

hint on either which malicious actions are actually de-

tected, or where they are located in the app.

The challenges in Android malware detection are

mainly due to a lack of accurate understanding of

what constitutes a malicious code. In 2012, Zhou and

Regular Paper

Special Section on Software Systems 2017

This work was supported by the Fonds National de la Recherche (FNR), Luxembourg under projects AndroMap C13/IS/5921289
and Recommend C15/IS/10449467.

©2017 Springer Science +Business Media, LLC & Science Press, China

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1109

Jiang[6] manually investigated 1 260 malware samples

to characterize: 1) their installation process, i.e., which

social engineering-based techniques (e.g., repackaging,

update-attack, drive-by-attack) are used to slip them

into users devices; 2) their activation process, i.e., which

events (e.g., SMS RECEIVED) are used to trigger the ma-

licious behaviour; 3) the category of malicious pack-

ages (e.g., privilege escalation or personal information

stealing); 4) how malware exploits the permission sys-

tem. The produced dataset named MalGenome, has

opened several directions in the research of malware de-

tection, most of which either have focused on detecting

specific malware types (e.g., malware leaking private

data[7]), or are exploiting features such as permissions

in ML classification[8]. The MalGenome dataset how-

ever has shown its limitations in hunting for malware:

the dataset, which was built manually, has become ob-

solete as new malware families are now prevalent; the

characterization provided in the study is too high-level

to allow the inference of meaningful structural or se-

mantic features of malware.

The ultimate goal of our work is to build an ap-

proach towards systematizing the dissection of Android

malware and automating the collection of malicious

code packages in Android apps. Previous studies, in-

cluding our own, have exposed statistical facts which

suggest that malware writing is performed at an “indus-

trial” scale and that a given malicious piece of code can

be extensively reused in a bulk of malware[5-6]. Malware

writers can indeed simply unpack a benign, preferably

popular app, and then graft some malicious code on it

before finally repackaging it. The resulting app, which

thus piggybacks malicious packages, is referred to as

a piggybacked app. Our assumption that most mal-

ware is piggybacked of benign apps is confirmed with

the MalGenome dataset where over 80% of the samples

were built through repackaging. For simplicity, in this

entire paper we refer to any code package injected via

piggybacking as a “malicious” package. Actually, such

a package may 1) directly contribute in implementing

the malicious behaviour, 2) contribute in further hiding

malicious operations to static analyzers, or 3) provide

commodity functions (e.g., in the form of a library)

which are exploited by piggybackers to facilitate pay-

load hooking.

Identifying and extracting accurately malicious code

in an app is however a challenging endeavour. In any

case, a malicious behaviour can be implemented as

an orchestration of different behaviour steps in several

packages. To the best of our knowledge, state-of-the-art

studies mainly leverage comparison-based approaches

(either 1-to-1[9] or 1-to-n[10] comparison) to pinpoint

malicious payloads. Approaches analysing solely a mal-

ware sample, to systematically identify packages which

contribute to malicious behaviour implementation, are

scarce. Our objective is therefore to propose a step

towards helping analysts to readily identify malicious

packages in Android apps without requiring the availa-

bility of other apps for comparison. To that end, we

build HookRanker, a ranking approach which orders

packages with regard to the likelihood of their malicious

status. Overall, we make the following contributions.

• We propose an automated approach for locat-

ing hooks (i.e., code that either switches the execution

context from benign to malicious code or triggers ma-

licious code independently) within piggybacked apps.

Our approach eventually yields two ranked lists of most

probable malicious packages, which can benefit malware

analysts to quickly understand how the malicious be-

haviour is implemented and how the malicious code is

triggered. A key characteristic of our approach is that

it does not require to have the original benign version of

the piggybacked app, which is usually hard to harvest,

in order to perform some form of difference analysis.

• We present a tool called HookRanker to auto-

matically recommend potential malicious packages and

components. Evaluations on a set of benchmark apps

have demonstrated that HookRanker is efficient to lo-

cate malicious packages of piggybacked apps.

• We experimentally show that our work can imme-

diately be leveraged, to some extent, by researchers and

practitioners to build classifiers that output explainable

results, i.e., when an app is flagged as a malware, one

understands precisely that it exhibits features from a

particular malicious package, and thus it is straightfor-

ward to indicate the relevant type/family of malware.

Reproducibility. We make our dataset and experi-

mental results available online 1○.

This paper is an extended and improved version of

a short paper[11] presenting preliminary results at the

2017 International Conference on Mobile Software En-

gineering and Systems (MobileSoft). In the previous

version, we have explored solely Type1 hook for pig-

gybacked apps, although we have actually shown that

there are in total two types of hooks (including Type1

and Type2 hooks (see Listing 1)). In this extension, in

addition to Type1 hook, which involves method calls for

triggering piggybacked rider code, we further explore

1○https://github.com/serval-snt-uni-lu/HookRanker, Nov. 2017.

1110 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

1 //Activity for launching the app

2 public class com.unity3d .player.UnityPlayerProxyActivity extends android .app.Activity {
3 protected void onCreate (android .os.Bundle) {

4 $r0 := @this: com.unity3d .player.UnityPlayerProxyActivity;
5 $r1 := @parameter0: android .os.Bundle;

6 $b0 = 1;
7 specialinvoke $r0.<android .app.Activity : void onCreate (android .os.Bundle)>($r1);
8 + staticinvoke <com.gamegod .Touydig : void init(android .content .Context)>($r0);

9 $r2 = newarray (java.lang.String)[2];
10 $r2[0] = "com.unity3d .player.UnityPlayerActivity";

11 $r2[1] = "com.unity3d .player.UnityPlayerNativeActivity";
12 staticinvoke <com.unity3d .player.UnityPlayerProxyActivity: void

copyPlayerPrefs(android .content .Context ,java.lang.String []) >($r0 , $r2);

13 }}
14
15 // Broadcast Receiver for listening PACKAGE_ADDED , CONNECTIVITY_CHANGE, and BOOT_COMPLETED events
16 + public class com.mobile.co.UR extends AdPushReceiver {...}

Listing 1. Example of Type1 and Type2 hooks. This snippet is extracted from a real piggybacked app named apscallion.sharq2. The
“+” sign indicates the code that was injected into the origin app.

Type2 hook for piggybacked malicious apps, where the

malicious rider code is triggered through the use of An-

droid event system.

The remainder of this paper is organized as follows.

Section 2 provides the necessary background informa-

tion related to piggybacked apps, including the piggy-

backing terminology to which we will refer in this pa-

per. Section 3 presents our approach for automatically

locating malicious packages in piggybacked apps. We

evaluate our work in Section 4 and discuss the threats

to validity as well as outlook in Section 5. Section 6

discusses related work and Section 7 concludes this pa-

per.

2 Preliminaries

We now provide preliminary details that are essen-

tial for understanding the purpose, techniques and key

concerns of Android piggybacking. In particular, we

first briefly introduce the terminology related to the

piggybacking process in Subsection 2.1. Then, in Sub-

section 2.2, we present the Android app launch model,

which is central to how malicious packages in piggy-

backed apps can be reached for triggering malicious be-

haviour. Next, we summarize in Subsection 2.3 the

techniques that are leveraged by malware writers to

graft piggybacking code with existing app code. Fi-

nally, in Subsection 2.4, we present the ground truth

dataset that we use in this work to evaluate the effec-

tiveness of HookRanker.

2.1 Piggybacking Terminology

We now introduce the necessary terminology to

which we will refer in the remainder of this paper.

Fig.1 shows the constituting parts of a piggybacked

malware 2○, which is built by taking a given original

app, referred to in the literature as the carrier[12], and

grafting malicious packages to it (also known as a piece

of malicious code 3○), referred to as the rider. The ma-

licious behaviour will be triggered thanks to the hook

that is inserted by the malware writer to ensure the

injected packages will be executed.

Android Apps

Malware

Piggybacked

Carrier Rider

Piggybacked
APP (a)

Hook

Original
APP (a)

Fig.1. Piggybacking terminology.

It is also noteworthy that, in this work, we make a

clear difference between piggybacking and repackaging,

two terms that are frequently used in the literature. In-

deed, unlike piggybacking, repackaging does not neces-

sarily include a modification of the bytecode of a given

2○In this work, we focus on piggybacked malicious apps, where the malicious state is ensured by the results of VirusTotal.
3○To simplify the description, in this work, we consider all the injected code as malicious, even if the actual malicious payload is

only some part of the added code.

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1111

Android app. Instead, repackaging may simply be per-

formed to change the app certificate and thus switch

the ownership. However, piggybacking always implies

repackaging.

2.2 Android App Launch Model

Android apps are made up of four types of compo-

nents:

• Activity, which represents the graphical interface

of Android apps;

• Service, which is dedicated to performing time-

intensive tasks in the background;

• Broadcast Receiver, which is used in waiting

and resolving system as well as user-defined events;

• Content Provider, which provides a standard in-

terface for other components/apps to access app data.

Unlike traditional Java applications, which include

a single entry point (i.e., the main() function) to

launch the program, Android apps contain multiple en-

try points through which some parts of the app code

can be triggered: basically every component could be

an entry point. This situation can be exploited by pig-

gybackers as opportunities for triggering the execution

of their injected malicious packages. Fig.2 summarizes

typical examples of the common launch model of An-

droid apps. It illustrates that in addition to the normal

launch process (launcher), Android apps can actually

be triggered through system events and user-defined

events.

Service

Receiver 2

Activity
Launcher

System
Events

User Events

IF

IF

IF

Activity

System

System
Intent

Fig.2. Examples of the Android app launch model. IF indicates
intent filter.

Actually, the three aforementioned entry point

types are based on the inter-component communication

(ICC) mechanism. Each entry point (i.e., component)

has to declare at least one 4○ intent filter to specify how

it could be launched. In order to be a launcher entry

point, as shown in Listing 2, the launcher component

(activity in this case) has to declare an intent filter with

an action attribute named MAIN and a category at-

tribute named LAUNCHER (lines 24∼25). Similarly,

in order to be a system event-triggered entry point, a

component (usually receiver) must declare intent filters

to listen for some system events. When the declared

system events are fired, the component will be trig-

gered. Both a launcher entry point and a system event

triggered entry point can be used to start an app, but

they differ by the fact that a launcher entry point can

also be triggered via user events, e.g., an intent object

(with MAIN and LAUNCHER attributes filled) con-

structed with explicit targets in mind.

20 <manifest package ="rapscallion.sharq2">

21 <application >
22 activity :". UnityPlayerProxyActivity"

23 intent-filter
24 action:"android .intent.action.MAIN"

25 category "android .intent.category .LAUNCHER "
26
27 receiver :"com.mobile.co.UR"

28 intent-filter
29 action:"android .intent.action. PACKAGE_ADDED"

30 data:"package "
31 intent-filter
32 action:"android .net.conn.CONNECTIVITY_CHANGE"

33 intent-filter
34 action:"android .intent.action. BOOT_COMPLETED"

35 </application ></manifest >

Listing 2. Simplified manifest of app apscallion.sharq2.

2.3 Hook Types

Given the app launch model described above, we

infer that there are two ways for piggybackers to hook

their malicious code from the carrier code, i.e., to allow

the triggering of the payload in their injected malicious

packages. We refer to these two ways as Type1 hooks

and Type2 hooks.

• Type1 hook involves method calls that explicitly

connect carrier code to rider code. In this case, we iden-

tify the hook via the point 5○ where the carrier code is

switched into the rider code in the execution flow. List-

ing 1 shows a snippet illustrating an example of Type1
hook (line 8), which is inserted immediately at the be-

ginning of the onCreate() method (line 7) of component

UnityPlayerProxyAct. As shown in Listing 2, Unity-

PlayerProxyActivity is actually the app launcher, as in-

dicated by theMAIN action and LAUNCHER category.

When users launch the app, the first lifecycle method

onCreate() of component UnityPlayerProxyActivity will

be triggered. Consequently, the malicious packages

(starting from class com.gamegod.Touydig) will immedi-

4○It is possible to declare several intent filters. As shown in Listing 2, component com.mobile.co.UR declared three intent filters.
5○In our implementation we focus on identifying the Java package.

1112 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

ately be triggered (by calling the method init()), switch-

ing the current execution context to piggybacked code.

• Type2 hook involves the use of the Android event

system. Thus, the piggybacked code hooking is done

via a component that is explicitly connected to any

code of the original app. Instead, the (malicious)

rider code will be triggered directly by system or user-

defined events. Listing 1 also includes an example

of Type2 hook (line 16), where the whole component

named com.mobile.co.UR is injected during piggyback-

ing. Listing 2 illustrates the capabilities declared for

this component, which is registered to listen to three

different system events: 1) PACKAGE ADDED will

be fired when a new app is installed on the device;

2) CONNECTIVITY CHANGE will be fired when a

change related to network connectivity has occurred;

3) BOOT COMPLETED will be fired after the booting

process has completed. When any one of the aforemen-

tioned events is broadcasted, hook com.mobile.co.UR

will be triggered and consequently the malicious pack-

ages will be executed.

It is worth noticing that thanks to the definition of

piggybacked apps, which have been grafted with ma-

licious packages, there will be no such case that nei-

ther Type1 nor Type2 hooks are applied to piggybacked

apps.

2.4 Piggybacking Ground Truth Dataset

In this work, we leverage the ground truth that we

built in previous work[13] to perform our investigation.

This ground truth contains hundreds of pairs of pig-

gybacked and associated benign apps which were col-

lected from a large repository of millions of apps[14]

crawled over several months from several markets such

as the Google Play store, AppChina, and which was

used for large-scale experiments[15-17]. Each pair (ab,

am) consists of a benign app (ab) and a piggybacked

malicious app (am, where ab is the benign original coun-

terpart of am). As shown in Fig.3, we carefully ensure

that each pair of apps 1) have identical app package

name 6○, 2) are written by different authors 7○, 3) have

the same SDK version, and 4) have at least 80% similar

code[18]. The malicious state of a given app is checked

via VirusTotal 8○, which hosts over 50 anti-virus prod-

ucts from providers like Kaspersky, McAfee.

Identical Packages

543 002 Pairs (e.g., m -> b) 71 206 Pairs
Different
Authors

Malicious (m, m, ...)

Benign (b, b, ...)

1 497 Pairs

Same SDK/Version

Ground Truth (App Pairs)

VirusTotal

Similarity Results

Similarity Analysis

Ground Truth (Similarities)

Android
Apps

Fig.3. Ground truth building process.

3 Approach

Our primary objective of this work is to provide re-

searchers and practitioners with means to systematize

the collection of malicious packages that are used fre-

quently by malware writers. To that end, we propose to

devise an approach for automating the identification of

malicious code snippets which are used pervasively in

malware distributed as piggybacked apps. We are thus

interested in identifying malicious rider code as well as

the hook code which triggers the malicious behaviour

in rider code. To fulfill this objective we require a set

of reliable metrics to automatically identify malicious

packages within a detected piggybacked app.

Given a set of piggybacked malware, we aim at iden-

tifying the hooks that trigger the execution of rider

code and thereby ungrafting the malicious rider code

from piggybacked malicious apps. As introduced in

Section 2, there are two types of hooks leveraged by pig-

gybackers. These two types of hooks are significantly

different in terms of their behaviours, making it diffi-

cult to identify them through a single generic approach.

Therefore, in this work, we present two separate tech-

niques to identify the hooks. Fig.4 gives an overview

of our approach, which takes as input a single Android

app and outputs two recommended hook lists with most

likely hook code being preferentially ranked. These two

ranked lists can then be leveraged by applications or

users to support the development of many other impli-

cations such as malware detection or app repairing. We

6○App package name is specified by the package attribute of the manifest configuration (e.g., line 20 in Listing 2). Two apps with
the same app package name cannot be installed on the same device.

7○We do not consider cases where developers piggyback their own apps.
8○http://virustotal.com, Oct. 2017. We take an app as malicious if at least one anti-virus product flags it as such.

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1113

Metric

Extraction

PDGraph

Construction

Graph

Analysis

Ranked
Hooks

Metric

Extraction

Hook

Rank

Type Hook

Type Hook

Metric
Weight

Piggybacked

App

Implications

Fig.4. Overview of our approach.

now detail these two approaches in Subsection 3.1 and

Subsection 3.2 respectively.

3.1 Type1 Hook Identification

To automate this approach, we consider the iden-

tification of Type1 hook as a graph analysis problem.

Fig.5 illustrates the package dependency graph (PD-

Graph) of a piggybacked app (the same app as we used

in Listing 1). PDGraph is a directed graph which makes

explicit the dependency between packages. The values

reported on the edges correspond to the times a call is

made by code from package A to a method in package

B. These values are considered as the weights of the

relationships between packages. In some cases, how-

ever, this static weight may not reflect the relationship

strength between packages since a unique call link be-

tween two packages can be used multiple times at run-

time. To attenuate the importance of the weight we also

consider a scenario where weights are simply ignored.

com⊲umeng⊲common ↼↽

com⊲umeng⊲xp ↼↽

com⊲unityd⊲player ↼↽

com⊲gamegod ↼↽
org⊲fmod ↼↽

com⊲umeng⊲analytics ↼↽

com⊲mobile⊲co ↼↽

com⊲ah⊲mf ↼↽

com⊲android⊲kode⌢p ↼↽

1
4

4

132

1

4

4

3
6

Fig.5. Package dependency graph of a piggybacked app. Num-
bers between parentheses indicate the unweighted indegree val-
ues while numbers near edge lines indicate weighted indegree
values.

We now compute four metrics for estimating the re-

lationships between packages in an app.

1) Weighted Indegree. In a directed graph, the inde-

gree of a vertex is the number of headpoints adjacent to

the vertex. In the PDGraph, the weighted indegree of

a package corresponds to the number of calls that are

made from code in other packages to methods in that

package.

2) Unweighted Indegree. We compute the normal

indegree of a package in the PDGraph by counting the

number of packages that call its methods. The reason

why we take into account indegree as a metric is based

on the assumption that hackers take the least effort to

present the hook. As an example, com.gamegod in Fig.5

is actually the entry-point of the rider code, which has

a smallest indegree for both weighted and unweighted

indegree.

3) Maximum Shortest Path. Given a package, we

compute the shortest path to every other package, and

then we consider the maximum path to reach any ver-

tex. The intuition behind this metric is based on our

investigation with samples of piggybacked apps, which

shows that malware writers usually hide malicious ac-

tions far away from the hook, i.e., the multiple call

jumps from the triggering call. Thus, the maximum

shortest path in the rider module can be significantly

higher than that in carrier code.

4) Energy. We estimate the energy of a vertex

(package in the PDGraph) as an iterative sum of its

weighted outdegrees and that of its adjacent packages.

Thus, the energy of a package is total sum weight of all

packages that can be reached from its code. The energy

value helps to evaluate the importance of a package in

the stability of a graph (i.e., how relevant is the sub-

graph headed by this package?).

1114 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

The above metrics are useful for identifying pack-

ages which are entry-points into the rider code. We

build a ranked list of the packages based on a likeli-

hood score that a package is the entry point package of

the rider code. Let vi be the value computed for a met-

ric i described above (i = 1, 2 for in-degree metrics, the

smaller, the better; i = 3, 4 for the others, the bigger

the better), and wi is the weight associated to metric i.

For a PDGraph graph with n package nodes, the score

associated to a package p, with our proposed metrics,

is provided by (1).

sp =
2

∑

i=1

wi × (1 −
vi(p)

∑n−1
j=0 vi(j)

) +

4
∑

i=3

wi × (
vi(p)

∑n−1
j=0 vi(j)

). (1)

In our experiments, we weigh all metrics similarly

(i.e., ∀i, wi = 1). For each ranked package pr, the po-

tential rider code is constituted by all packages that are

reachable from pr. A hook is generally a method invo-

cation from the carrier code to the rider code. Thus, we

consider a Type1 hook as the relevant pair of packages

that are interconnected in the PDGraph.

Finally, to increase accuracy in the detection of

hooks, we further dismiss such packages (in stand-alone

hooks or in package-pair hooks) whose nodes in the PD-

Graph do not meet the following constraints.

• No Closed Walk. Because rider code and carrier

code are loosely connected, we consider that a hook

cannot be part of a directed cycle (i.e., a sequence of

vertices going from one vertex and ending on the same

vertex in a closed walk). Otherwise, we will have several

false positives, since typically, in a benign app module

(i.e., a set of related packages written for a single pur-

pose), packages in the PDGraph are usually involved in

closed walks as in the example of Fig.6.

com⊲facebook

com⊲facebook⊲widget

com⊲facebook⊲android

com⊲facebook⊲internal

Fig.6. Excerpt PDGraph showing a set of related packages in
the carrier code of com.gilpstudio.miniinimo.

• Limited Clustering Coefficient. A hook must be

viewed as the connection link between carrier code and

rider code via two packages. Since both packages belong

to different (malicious and benign) parts of the app,

they should not tend to cluster together in the package

dependency graph as it would otherwise suggest that

they are tightly coupled in the design of the app. To

implement this constraint, we measure the local cluster-

ing coefficient[19] of the vertex representing the carrier

entry package. This coefficient quantifies how close its

adjacent vertices are to be a clique (i.e., forming a com-

plete graph). Given v, a vertex, and n, the number of its

neighbors, the vertex’s coefficient cc(v) is constrained

by (2).
{

cc(v) <
C2

n−1

C2
n

, if n > 2,

cc(v) = 0, otherwise.
(2)

3.2 Type2 Hook Identification

We leverage three metrics to assess the likelihood

for a given app component to be a Type2 hook. These

metrics are designed based on the following Android

concepts used in Type2 hooking.

1) Intent Filter. In Android, an Intent is a spe-

cific type of object that is dedicated to support inter-

component communication (ICC) within or across An-

droid apps. Incoming Intents are then resolved based

on Intent Filter declarations in apps’ Manifest files.

Components generally declare intent filters to describe

their capabilities, i.e., what kind of actions they can

perform (e.g., they can open audio files, view PDF files)

or which types of events they are waiting for to engage

in some processing (e.g., when bootup is completed,

when Wi-Fi status changes). The more intent filters

a component declares, the more intents it will catch,

and consequently, and the more likely its code will be

executed.

The example shown in Listing 2 presents such a

case where a component, namely com.mobile.co.UR, in

a piggybacked app, is associated with three unrelated

intent filters. This suggests that piggybackers are maxi-

mizing the opportunities for triggering the execution of

their injected malicious packages.

2) Action. In Android, action is dedicated to spec-

ifying the generic activity, such as view, that compo-

nents can perform. Intent filters leverage this attribute

to describe their capabilities. Generally, the more ac-

tions declared for a component, the most likely the com-

ponent will be triggered.

3) Category. Together with action attribute,

category provides additional information about the

kind of intent that components should handle. Basi-

cally, category raises the bar for a given component to

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1115

resolve incoming intents because both actions and cat-

egories need to be matched. As a result, the more cate-

gories declared for a given intent filter (or component),

the less likely the component will be executed.

The above information can be used as metrics for

computing the likelihood scores of components to be

used as Type2 hooks. Based on these scores, we can

build a ranked list of the components to recommend

potential Type2 hooks. Let m be the total number of

intent filters declared by component c, fi be the score

of the i-th intent filter of component c, and wi be the

weight associated to fi, the score of the component sc
can be computed through (3).

sc =

m
∑

i=1

wi × fi. (3)

We can further calculate fi through (4), where p

and q denote the number of actions and categories of fi
respectively, aj and gk stand for the score of the j-th

action and the k-th category of fi respectively while wj

and wk are the weights associated to aj and gk, respec-

tively.

fi =

p
∑

j=1

wj × aj −

q
∑

k=1

wk × gk. (4)

In our experiments, we give a base score 1 to all ac-

tions and categories appearing for intent filters of com-

ponents, i.e., ∀j, k, aj = 1 and gk = 1. We also weight

all metrics except action similarly, i.e., ∀i, k, wi = 1 and

wk = 1. For metric action, because of its importance,

we weight it through a mapping illustrated in Table 1.

The “count” column shows the number of occurrences

of the action indicated in the first column in all the pig-

gybacked apps that we have considered. The weight is

computed through the natural logarithm (base 10) of

the count number (e.g., 4 = ⌈log(1 693)⌉).

Table 1. Mapping from Action to Its Weight

Action Count Weight

android.intent.action.PACKAGE ADDED 1 693 4

android.net.conn.CONNECTIVITY CHANGE 1 560 4

android.intent.action.USER PRESENT 1 279 4

android.intent.action.CREATE SHORTCUT 359 3

android.intent.action.PACKAGE REMOVED 281 3

android.intent.action.BOOT COMPLETED 239 3

android.intent.action.MAIN 118 3

android.intent.action.VIEW 36 2

android.intent.action.SIG STR 26 2

android.provider.Telephony.SMS RECEIVED 23 2

android.net.wifi.WIFI STATE CHANGED 22 2

android.intent.action.CHINAMOBILE OMS GAME 13 2

Other - 1

3.3 Implementation

We now briefly introduce the implementation de-

tails of our tool-based approach called HookRanker.

HookRanker is implemented on top of Soot[20], which is

a well-known framework for analyzing and transform-

ing Java and Android apps. HookRanker works at the

Jimple level, where Jimple is an intermediate repre-

sentation (IR) of Soot. The transformation from An-

droid Dalvik bytecode to Jimple code is performed by a

tool called Dexpler[21], which now has been integrated

into Soot. The package dependency graph (PDGraph)

we build for pinpointing Type1 hooks is supported by

GraphStream[22], which is a Java library for modeling

and analyzing dynamic graphs. The reason why we

select GraphStream to build the PDGraph is that it

provides a toolkit, where a lot of common graph-based

algorithms such as computing the clustering coefficients

are already implemented and thus can be simply ap-

plied.

4 Evaluation

We now evaluate our approach that automates the

dissection of piggybacked malware to identify rider and

hook code. Our evaluation aims at answering the fol-

lowing research questions.

RQ1. How are Type1 and Type2 hooks distributed

in piggybacked apps?

RQ2. Are our proposed metrics capable of locating

Type1 and Type2 hooks in piggybacked Android apps?

If so, what is the accuracy?

RQ3. Can we leverage rider code to hunt malware

in the Android ecosystem?

Experimental Setup. All the experiments discussed

in this section are performed on a Core i7 CPU and

on a Java VM with a maximum 8 GB heap size. Al-

though the piggybacking dataset contains corner cases

where the difference of apps in piggybacking pairs still

does not clearly provide the ground truth of Type1 and

Type2 hooks, we are able to consider from the dataset

500 pairs from which we could build a benchmark for

our evaluation.

4.1 RQ1 — Distribution of Hook Types

Fig.7 illustrates the distribution of piggybacked

apps on Type1 and Type2 hooks. As shown in Fig.7(a),

159 piggybacked apps (32%) do not contain any Type1

hook, while the majority of piggybacked apps (54%)

contain only one Type1 hook.

1116 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

0
32%

1
54%

2
7%

3
3%

>3
4%

0
15%

1
10%

2
19%

3
25%

>3
31%

(a)

(b)

Fig.7. Distribution of piggybacked apps on Type1 and Type2
hooks. The text in each fan (i.e., x

y%
) shows that y% of evalu-

ated apps contain x hooks. (a) Type1 hook. (b) Type2 hook.

Fig.7(b) reveals that piggybackers are injecting

more Type2 hooks than Type1 hooks. Indeed, over

80% of evaluated piggybacked apps have injected Type2

hooks. The most common number of injected Type2

hooks is three, which is used in 126 (25.2%) piggy-

backed apps. This preference was expected for two rea-

sons. 1) On the one hand, piggybackers do not need to

pay any effort for understanding the carrier code in be-

nign apps since no connection between carrier and rider

code is needed. 2) On the other hand, the more Type2

hooks injected, the more likely the injected malicious

packages will be executed. In contrast, the more Type1
hooks are needed, the more effort piggybackers have

to put to inject them safely. Instead, we find that, in

several cases, piggybackers combine Type1 and Type2

hooks to increase the opportunities of executing mali-

cious packages.

Fig.8 further compares the distribution of piggy-

backed apps on Type1 and Type2 hooks. The median

number for Type1 hook is 1 while for Type2 is around

3. Clearly, Type2 hooks are much more favored by

piggybackers, compared with Type1 hooks. We ensure

this difference of median numbers between the datasets

is significant by performing a Mann-Whitney-Wilcoxon

(MWW) test. The resulting p-value confirms that the

difference is significant at a significance level 9○ of 0.001.

T
y
p
e

1

H
o
o
k

T
y
p
e

2

H
o
o
k

0 1 2 3 4 5 6 7

Number of Hooks

Fig.8. Distribution of piggybacked apps on Type1 and Type2
hooks.

Answer to RQ1. Both Type1 and Type2 hooks are

commonly implemented in piggybacked apps. However,

compared with Type1 hooks, Type2 hooks are much

more favored by piggybackers.

4.2 RQ2 — Hook Identification

The output of our hook identification approach,

namely HookRanker, consists of two ranked lists of po-

tential hooks (packages 10○ for Type1 hooks and compo-

nents for Type2 hooks). Our evaluation consists in ver-

ifying the percentage of hooks in the top 5 items (i.e.,

accuracy@5) in the list that are correctly identified.

To support the verification, we first automatically

build the baseline of comparison by computing the diff

(difference) between each of the selected piggybacked

apps and its corresponding original app. With this

diff (difference), we can identify the rider code and

the hook (including Type1 and Type2 hooks). Then,

we apply our dissection approach by only considering

the piggybacked apps 11○, and compare the top ranked

packages against the baseline. Table 2 enumerates the

verification results reported by our approach. Our ver-

ification is performed in two cases: Match Any Hook

and Match All Hooks. In the case of Match Any Hook,

9○Given a significance level α = 0.001, if p-value < α, there is one chance in a thousand that the difference between the compared
two datasets is due to a coincidence.

10○Packages encompass sufficient information for analysts to quickly locate the relevant pair of packages that are interconnected in
the PDGraph. For simplicity, we only consider packages in this work.

11○We remind the readers that our goal is to identify hooks of piggybacked apps without knowing their original counterparts, i.e.,
the “diff” cannot be computed in practice.

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1117

where we consider an app verified as long as one of its

hooks is located, HookRanker yields an accuracy@5 (we

check the top 5 packages) of 89.4% for Type1 hooks and

an accuracy@5 (we only check the top 5 components)

of 99.5% for Type2 hooks if any one hook is matched.

In the case of Match All Hooks, where we consider an

app is verified if and only if all of its hooks are located,

HookRanker yields an accuracy@5 of 83.6% for Type1

hooks and an accuracy@5 of 82.2% for Type2 hooks.

For such apps that have more than five hooks, we con-

sider them to be not verified.

Table 2. Hook Identification Results (Accuracy@5)

Type Hook-Infected/Total Match Match

Apps Any Hook All Hooks

Type1 341/500 305 (89.4%) 285 (83.6%)

Type2 428/500 426 (99.5%) 352 (82.2%)

Our manual analysis on the dissecting results fur-

ther provides some insights into how malware writ-

ers perform piggybacking at a large scale. Table 3

and Table 4 present five samples of Type1 hooks (at

the package level) and Type2 hooks (at the compo-

nent level), respectively. Both tables show that some

malicious packages are repeatedly injected into (diffe-

rent) Android apps. For example, com.google.ads, an

AD-related package, has been injected into seven be-

nign apps while package com.fivefeiwo.coverscreen.SR

appears in 50 distinct piggybacked apps. This repeat-

ing phenomenon suggests that piggybacking could be

performed in batches.

Table 3. Five Ranked Type1 Hook Samples and

Their Affected Number of Apps

Type1 Hook Number of

Affected Apps

com.unity3d.player → com.gamegod 12

com.unity3d.player → com.google.ads 7

com.unity3d.player → com.basyatw.bcpawsen 5

com.ansca.corona → com.google.ads 3

com.g5e → com.geseng 2

Table 4. Five Ranked Type2 Hook Samples and

Their Affected Number of Apps

Type2 Hook Type Number of

Affected Apps

com.fivefeiwo.coverscreen.SR Receiver 50

net.crazymedia.iad.AdPushReceiver Receiver 48

com.kuguo.ad.MainReceiver Receiver 48

com.zpvg.cvjaoyt.BawnHawn Receiver 33

com.czvzoytyttq.fbmszy.Laoenawy Receiver 33

Now, let us look one step deeper into the fre-

quency of injected Type1 hooks (in Table 3): piggy-

backers often connect their packages to the carrier via

one of its included libraries. Thus, malware can sys-

tematize the piggybacking operation by targeting apps

that use some popular libraries. For example, package

com.unity3d.player is the infection point in 65 (out

of the 500) piggybacked apps. In 12 of these apps, the

entry package of the rider code is com.gamegod.

We further summarize the type of located Type2

hooks in Fig.9. Clearly, receiver is the most imple-

mented component type of Type2 hooks. This find-

ing is actually what we expected, because receiver is

much easier to trigger compared with other component

types. Indeed, in addition to user-defined events, re-

ceiver can also listen to system events. Whenever a

broadcast event arrives, receiver with the corresponding

capability declared will be triggered and consequently

propagate the execution to other code.

43

295

1 353

0 200 400 600 800 1000 1200 1400 1600

Service

Activity

Receiver

Fig.9. Distribution of the component type of Type2 hooks.

As shown in Fig.9, after receiver, the second ap-

pearing component type for Type2 hooks is activity.

The fact that activity is more favored than service is

actually surprising to us. Compared with activity, ser-

vice does not need to be involved in user interfaces and

thus can be executed stealthily. This feature should be

more fit for the requirements of piggybackers. There-

fore, we go one step deeper to investigate the reason

why this happens. To this end, we summarize the capa-

bilities leveraged by the newly injected activities. The

most declared activity-based action appears to be CRE-

ATE SHORTCUT, which is used for creating shortcuts

for Android apps, resulting in an alternative way to

launch the apps (the code executed in this way can be

totally independent from the true app code). This fact

suggests that piggybackers are intended to maximize

the possibility of triggering the execution of their in-

jected malicious packages.

1118 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

Answer to RQ2. HookRanker is efficient in locating

both Type1 and Type2 hooks. Our in-depth analysis

on the located malicious packages further discloses that

1) piggybacking process is likely performed in batches;

2) Broadcast Receiver is the most adopted component

type for implementing Type2 hooks.

4.3 RQ3 — Rider-Based Malware Detection

After collecting snippets of malicious rider code

from piggybacked apps, we now explore their potential

for improving malware detection approaches.

4.3.1 Basic Malware Detection

In a first scenario, we consider the case of machine

learning (ML) based malware detection leveraging fea-

tures of the identified rider code in our ground truth

of piggybacked apps. The malware prediction in this

case is a one-class classification problem as we only con-

sider features (malicious packages) that malware sam-

ples exhibit. For this experiment, we consider each

malicious package as a distinct feature, e.g., package

“com.gamegod” shown in Fig.5 is thus a feature in our

feature set; if a given app has a package starting with

“com.gamegod”, we set the value of (“com.gamegod”)

feature to “TRUE” (“FALSE”, otherwise). We first

apply the classifier built with these new features on our

ground truth. In 10-fold cross-validation experiments,

using the RandomForest classification algorithm[23], we

have recorded an accuracy of 91.6% in identifying An-

droid malware. These results suggest that rider code

features are effective in detecting piggybacked malware.

It is worth mentioning that our objective in this

work is not to propose an ML-based malware detection

approach that outperforms the state of the art. Instead,

we simply show that collected malicious packages are

recurrent and promising ingredients for discriminating

malware from benign apps. Therefore, it is expected

that the accuracy achieved by our approach may not

be so good as the state-of-the-art ones. Nevertheless,

we believe well-designed fine-grained features based on

such collected malicious packages would lead to better

results. However, to explore this interesting direction

is out of the scope of this work and therefore we take it

as our future work.

We further investigate the MalGenome dataset to

determine the proportion of malicious apps which share

the same malicious packages with the piggybacked apps

of our ground truth. To that end we consider the pack-

age dependency graph of each app of the MalGenome

dataset and map them with the collection of rider

package pairs collected in our ground truth. 125

MalGenome apps contain only one package. They are

thus irrelevant for our study. Among those apps with

several packages, 252 (i.e., 22.2%) contain rider code

features of our ground truth. With a malware detec-

tion tool based on our rider code collection, we could

have directly flagged such apps with no further analysis.

4.3.2 Malware Family Classification

In a second scenario, we consider the case of classi-

fying malware to specific families based on the rider

features. To that end, we consider the apps of our

ground truth dataset and apply our dissection ap-

proach. We then collect the identified rider pack-

ages of all apps where each package represents a dis-

tinct feature, and apply the Expectation-Maximization

(EM)[24] algorithm on the edges related to rider code

in the app PDGraph to cluster them. This leads to the

construction of five clusters of varying sizes. Here the

number of clusters (5) is directly computed by the EM

algorithm, which is able to infer a suitable number of

clusters to optimize the distance among clusters. Our

objective is then to investigate whether the clusters of

rider code are also related to specific malware families.

In this paper, we consider the labels 12○ that anti-virus

products from VirusTotal provide after analysing the

piggybacked apps corresponding to the rider code in

each cluster. Other familial classification studies such

as the one presented by Fan et al.[25], where frequent

subgraph (to represent the common behavior or mal-

ware) is leveraged, could be also leveraged to achieve

the same purpose (i.e., to build Android malware fam-

ilies).

dJaccard(fa, fb) =
|fa ∪ fb| − |fa ∩ fb|

|fa ∪ fb|
, (5)

fa =

k
⋃

i=1

Li. (6)

We compute the Jaccard distance (5) between the

sets of labels for the different clusters. As an example,

given a cluster a, fa denotes a union set of anti-virus

labels, which can be computed through (6), where Li

stands for a set of anti-virus labels that VirusTotal gives

for appi. The results summarized in Table 5 and Table 6

reveal that the malware labels in a given cluster are

12○An anti-virus label (e.g., Android.Trojan.DroidKungFu2.A) represents the signature identified in a malicious app.

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1119

distant from those of any other clusters. This suggests

that the dissected rider code contributes to malware of

specific families.

Table 5. Number of Apps and Anti-Virus Labels of the

Clusters Built Based on Rider Code

C1 C2 C3 C4 C5

Number of apps 10 236 27 7 37

Number of anti-virus labels 22 269 51 5 27

Table 6. Jaccard Distance (Dissimilarity) of Malware Label

Sets Between Clusters Built Based on Rider Code

C1 C2 C3 C4 C5

C1 0.00 0.96 0.89 0.92 0.88

C2 0.96 0.00 0.91 0.99 0.96

C3 0.89 0.91 0.00 0.94 0.94

C4 0.92 0.99 0.94 0.00 0.95

C5 0.88 0.96 0.94 0.95 0.00

We also consider clustering the piggybacked apps

based directly on the malware labels. The EM algo-

rithm produces six clusters. We then compute the Jac-

card distance between each of those clusters and the

five clusters of apps previously constructed based on

rider code. Table 7 and Table 8 summarize the results

which reveal that each cluster (built based on malware

labels) is much closer to a single cluster (built based on

rider code) than to any other clusters. The difference is

not significantly high for clusters C1 and C4, two cases

where the contained app sets are small. Nevertheless,

these experimental results overall illustrate that the

malicious packages ungrafted from piggybacked apps

indeed represent a signature of a malware family.

Table 7. Number of Apps and Anti-Virus Labels of the

Clusters Built Based on Anti-Virus Labels

MC1 MC2 MC3 MC4 MC5 MC6

Number of apps 90 44 69 47 14 53

Number of anti-virus labels 170 82 35 57 13 67

Table 8. Jaccard Distance of Malware Label

Sets Between Clusters of Apps

MC1 MC2 MC3 MC4 MC5 MC6

C1 0.90 0.90 0.84 0.87 0.97 0.91

C2 0.43 0.70 0.88 0.79 0.96 0.85

C3 0.91 0.90 0.93 0.89 0.93 0.24

C4 0.99 0.94 0.95 0.97 0.94 0.96

C5 0.96 0.93 0.73 0.94 0.55 0.95

Note: MCi is a cluster built based on anti-virus labels, while Ci

is a cluster built based on rider code features.

Answer to RQ3. The located rider code is help-

ful for supporting malware detection approaches. Our

empirical experiment further illustrates that malicious

packages incorporate good features for grouping mali-

cious apps into families.

5 Discussion

Our approach and the experiments presented in this

work introduce a few threats to validity.

• First, our dissection is at the granularity level of

packages. Additional efforts may apply if one wants to

infer low-level artifacts (e.g., class or method). How-

ever, based on our experiments, it is relatively easy to

infer the low-level method/class calls involved in a hook

code (because of weak connection) once the correspond-

ing packages have been identified.

• Second, in order to present a fast solution, we

construct the PDGraph in a context-insensitive man-

ner and we take no account of inter-component com-

munication (ICC), reflective calls (including dynami-

cally loaded code) and native code. This trade-off may

result in false positives. In our future work, we plan to

integrate IccTA[7] and DroidRA[26] into our approach

for taking care of ICC and reflective calls.

• Third, HookRanker is implemented based on the

assumption that malicious code and the original benign

code are loosely coupled. However, this assumption

may not always be true and hence may lead to a ranked

list that is irrelevant to the desired malicious packages,

unfortunately resulting in more efforts for security an-

alysts to identify the real malicious code. However, as

demonstrated by Li et al.[9], attackers (or piggybackers)

usually want to make the least effort to inject their mali-

cious payloads, generally resulting in only small changes

being made, and therefore leading to loosely coupled

benign and malicious packages. In other words, our

assumption should remain valid for most piggybacked

malicious apps, making our approach relevant for many

cases.

• Fourth, our approach has no specific treatment

to deal with obfuscation. Theoretically, HookRanker

should not be impacted by basic obfuscation techniques

such as renaming but would be impacted by advanced

techniques such as control flow alterations. Nonethe-

less, deobfuscation approaches such as DeGUARD[27]

and the one presented by Wang and Rountev[28] could

be applied to limit the impact of obfuscation. So far,

because of Android app packers such as Bangcle, Ijiami,

1120 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

which aim at preventing Android apps from being re-

verse engineered and further repackaged, HookRanker

is also not able to tackle packed piggybacked mali-

cious apps. Fortunately, state-of-the-art approaches

including DexHunter[29] and PackerGrind[30] have al-

ready demonstrated promising results for extracting

DEX code from those packed apps, making it still pos-

sible for HookRanker to tackle packed apps and thereby

to locate malicious packages.

• Finally, it is hard to know whether a given mal-

ware is piggybacked from other apps (because of lack-

ing ground truth) or is built from scratch by “bad”

guys. As HookRanker will attempt to yield ranked

lists of packages and components in any case, apply-

ing our approach to non-piggybacked malware may

result in false alarms. In other words, HookRanker

should not be applied to normal malware developed

from scratch, because the enumerated potential hooks

might mislead the analysis of security analysts. To mit-

igate this, we argue that there is a need to automati-

cally infer piggybacked apps, even when the original

app is not “known” (e.g., identifying piggybacked apps

through machine learning based techniques[31] or symp-

toms based approaches[32]). Nonetheless, it is out of

the scope of this paper to automatically identify piggy-

backed apps. We take it as our future work.

As for future work, we also plan to directly per-

form our graph analysis in the class or method level,

where the fine-grained results could be more accurate

for analysts to identify malicious behaviours and for

rider-based malware classifiers. Furthermore, we would

like to investigate other means (e.g., community de-

tection on the built graph) to improve the accuracy

of our approach. Finally, we plan to conduct a user

study and consequently to understand to what ex-

tend HookRanker can help analysts dissect piggybacked

apps, where their original counterparts are unknown.

Last but not the least, the findings of our ap-

proach, namely the hook and the rider code, could be

used to boost many more implications. In addition

to the one we have demonstrated in RQ3, where we

have shown how our results can be leveraged for mal-

ware detection, another potential implication is to ex-

ploit the hook/rider code to develop an automatic app

repair/blocking approach which disconnects the rider

code or disassembles the hook so that the malicious

payload would not be triggered. As demonstrated by

Li et al.[9], third-party libraries are frequently compro-

mised to include malicious payloads. Therefore, based

on a whitelist of known libraries[15,33-35], it is possible

to supplement this work with a comparison between

released and in-app library code. If the in-app library

code is substantially different from the known publicly

released version, it hints on probable attack on the li-

brary code (e.g., hook introduction to trigger malicious

code). Moreover, since our approach provides quanti-

tative outputs (i.e., the rank), it could be utilized to

rank Android apps based on the extent of the suspi-

ciousness on their malicious status. This ranking can

benefit app vetting processes for both end users and

security analysts.

6 Related Work

In a recent study with anti-virus products, re-

searchers have shown that malware is still widespread

within Android markets[36]. This finding is in line

with regular reports from anti-virus companies where

they reveal that Android has become the most tar-

geted platform by malware writers. Research on sys-

tematic detection of Android malware is nevertheless

still maturing[9]. Machine learning techniques, by al-

lowing sifting through large sets of applications to de-

tect malicious applications based on measures of simi-

larity of features, appear to be promising for large-scale

malware detection[4,37-39].

Cesare and Xiang[40] proposed to use similarity on

control flow graphs to detect variants of known mal-

ware. Chen et al.[10] presented an approach named

MassVet that compares a submitted app with all those

existing ones in a market, vetting Android apps based

on the commonality in UI structures and differences

in components. Eventually, their approach suspects a

given app of being malicious based on unusual compo-

nents. Our work however focuses on analyzing each app

to highlight potential components which contribute to

the malicious payloads. Hu et al.[41] described SMIT,

a scalable approach relying on pruning function Call

Graphs of x86 malware to reduce the cost of computing

graph distances. SMIT leverages a vantage point tree

but for large-scale malware indexing and queries. Simi-

larly, BitShred[42] focuses on large-scale malware triage

analysis by using feature hashing techniques to dramat-

ically reduce the dimensions in the constructed malware

feature space. After reduction, pair-wise comparison is

still necessary to infer similar malware families[43].

PiggyApp[12] is the work that focuses on piggy-

backed app detection. The authors improved over their

previous work, namely DroidMoss[44], which was deal-

ing with repackaged app detection. PiggyApp, simi-

lar to our approach, is based on the assumption that

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1121

a piece of code added to an already existing app will

be loosely coupled with rest of the application’s code.

Consequently, given an app, PiggyApp builds its pro-

gram dependency graph, and assigns weights to the

edges in accordance to the degree of relationship be-

tween the packages. Then, it uses an agglomerative

algorithm to cluster the packages and thereby to select

the primary module of the app, which is further lever-

aged to highlight piggybacked apps by comparing with

other selected primary modules. To escape the scala-

bility problem with pair-wise comparisons, the authors

of [12] relied on the vantage point tree data structure

to partition the metric space and eventually to detect

piggybacked apps. The identified piggybacked apps can

be taken as the input of our approach.

Researchers use a set of diverse features to detect

malware. In 2012, Sahs and Khan[4] built an Android

malware detector with features based on a combina-

tion of Android-specific permissions and a control-flow

graph representation. Use of permissions and API calls

as features was proposed by Wu et al.[45] In 2013, Amos

et al.[46] leveraged dynamic application profiling in their

malware detector. Demme et al.[1] also used dynamic

application analysis to profile malware. Yerima et al.[2]

built malware classifiers based on API calls, external

program execution and permissions. Canfora et al.[3]

experimented feature sets based on SysCalls and per-

missions. Zhang et al.[47] used weighted contextual API

dependency graphs as program semantics to classify

Android malware, where they leveraged graph simila-

rity metrics to disclose homogeneous app behavior.

Unfortunately, through extensive evaluations, the

community of ML-based malware detection has not

yet shown that current malware detectors for Android

are actually efficient in detecting malware in the wild.

Chief reason among the candidate ones to this situation

is the fact that features are “elaborated” by research

teams based on the behaviour of specific malware fami-

lies whose behavioural description has provided the in-

tuitions for constructing the classifiers. Furthermore,

because most malware is actually piggybacked from be-

nign apps, the ML-based features are probably similar

to those extracted from benign apps, making them in-

distinguishable for ML-based malware detection (e.g.,

due to the multi-generation repackaging problem[48]).

Indeed, as pointed out by Meng et al.[49], the cur-

rent feature-based malware detection approaches are

not enough because they cannot provide detailed in-

formation beyond their mere detection. They thus

proposed an alternative approach that leverages se-

mantic features (based on deterministic symbolic au-

tomaton (DSA)) to comprehensive Android malware

and thereby to detect and classify them. As another

example, Tian et al.[50] proposed an approach that

leverages code heterogeneity analysis to detect repack-

aged Android malware. Given an Android app, they

strategically partitioned its code structure into multi-

ple dependence-based regions, where each region is a

basic unit that will be independently classified on its

behavioural features.

Our work differs from them in a way that we actu-

ally focus on extracting the malicious packages (rider

code) from piggybacked apps. Based on the located

rider code, our approach can be used to compliment

those approaches by allowing them for better represen-

tation of features and better classification of malware,

e.g., through the implementation of multi-classifiers,

taking into account the different ways that exist for

writing malware (and indirectly different structures and

behaviours of malware).

7 Conclusions

We proposed in this paper an approach for dissect-

ing piggybacked apps to locate and collect malicious

samples. Through extensive evaluations, we demon-

strated the performance of our approach, i.e., the pre-

cision of locating hook/rider code. We also experimen-

tally showed that the collected malicious packages (i.e.,

rider code) can be leveraged to detect new malicious

apps. Further investigations revealed that rider code

clusters strongly correlated with the clusters character-

ized via malware signatures given by anti-virus prod-

ucts.

References

[1] Demme J, Maycock M, Schmitz J, Tang A, Waksman A,

Sethumadhavan S, Stolfo S. On the feasibility of online

malware detection with performance counters. In Proc. the

40th Annual Int. Symp. Computer Architecture, June 2013,

pp.559-570.

[2] Yerima S Y, Sezer S, McWilliams G, Muttik I. A new An-

droid malware detection approach using Bayesian classifi-

cation. In Proc. the 27th IEEE Int. Conf. Advanced Infor-

mation Networking and Applications (AINA), March 2013,

pp.121-128.

[3] Canfora G, Mercaldo F, Visaggio C A. A classifier of ma-

licious Android applications. In Proc. the 8th Int. Conf.

Availability, Reliability and Security (ARES), September

2013, pp.607-614.

1122 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

[4] Sahs J, Khan L. A machine learning approach to Android

malware detection. In Proc. European Intelligence and Se-

curity Informatics Conf (EISIC), August 2012, pp.141-

147.

[5] Symantec. 2015 Internet Security Threat Report: Attackers

are bigger, bolder, and faster. https://www.symant-

ec.com/connect/blogs/2015-internet-security-threat-repor-

t-attackers-are-bigger-bolder-and-faster, Oct. 2017.

[6] Zhou Y J, Jiang X X. Dissecting Android malware: Char-

acterization and evolution. In Proc. IEEE Symp. Security

and Privacy (SP), May 2012, pp.95-109.

[7] Li L, Bartel A, Bissyandé T F, Klein J, Le Traon Y, Arzt S,

Rasthofer S, Bodden E, Octeau D, Mcdaniel P. IccTA: De-

tecting inter-component privacy leaks in Android apps. In

Proc. the 37th Int. Conf. Software Engineering, May 2015,

pp.280-291

[8] Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K.

DREBIN: Effective and explainable detection of Android

malware in your pocket. In Proc. Network and Distributed

System Security Symp. (NDSS), February 2014.

[9] Li L, Li D Y, Bissyande T F, Klein J, Le Traon Y, Lo D,

Cavallaro L. Understanding Android app piggybacking: A

systematic study of malicious code grafting. IEEE Trans.

Information Forensics and Security, 2017, 12(6): 1269-

1284.

[10] Chen K, Wang P, Lee Y, Wang X F, Zhang N, Huang H Q,

Zou W, Liu P. Finding unknown malice in 10 seconds: Mass

vetting for new threats at the Google-play scale. In Proc. the

24th USENIX Conf. Security Symp., August 2015, pp.659-

674.

[11] Li L, Li D Y, Bissyandé T F, Klein J, Cai H P, Lo D,

Le Traon Y. Automatically locating malicious packages in

piggybacked Android apps. In Proc. the 4th IEEE/ACM

Int. Conf. Mobile Software Engineering and Systems (MO-

BILESoft), May 2017, pp.170-174.

[12] Zhou W, Zhou Y J, Grace M, Jiang X X, Zou S H. Fast,

scalable detection of “piggybacked” mobile applications. In

Proc. the 3rd ACM Conf. Data and Application Security

and Privacy, February 2013, pp.185-196.

[13] Li L, Li D Y, Bissyandé T F D A, Lo D, Klein J, Le Traon Y.

Ungrafting malicious code from piggybacked Android apps.

Technical Report, University of Luxembourg, 2016.

[14] Li L, Gao J, Hurier M, Kong P F, Bissyandé T F,

Bartel A, Klein J, Le Traon Y. AndroZoo++: Col-

lecting millions of Android apps and their metadata

for the research community. arXiv: 1709.05281, 2017.

https://arxiv.org/abs/1709.05281, October 2017.

[15] Li L, Bissyandé T F, Klein J, Le Traon Y. An investigation

into the use of common libraries in Android apps. In Proc.

the 23rd IEEE Int. Conf. Software Analysis, Evolution, and

Reengineering (SANER), March 2016, pp.403-414.

[16] Li L, Martinez J, Ziadi T, Bissyandé T F, Klein J, Le Traon

Y. Mining families of Android applications for extractive

SPL adoption. In Proc. the 20th Int. Systems and Software

Product Line Conf., September 2016, pp.271-275.

[17] Allix K, Bissyandé T F, Jérome Q, Klein J, State R, Le

Traon Y. Empirical assessment of machine learning-based

malware detectors for Android. Empirical Software Engi-

neering, 2016, 21(1): 183-211.

[18] Li L, Bissyandé T F, Klein J. SimiDroid: Identifying and ex-

plaining similarities in Android apps. In Proc. IEEE Trust-

com/BigDataSE/ICESS, August 2017, pp.136-143.

[19] Watts D J, Strogatz S H. Collective dynamics of ‘small-

world’ networks. Nature, 1998, 393(6684): 440-442.

[20] Lam P, Bodden E, Lhotak O, Hendren L. The soot frame-

work for Java program analysis: A retrospective. In Proc.

Cetus Users and Compiler Infastructure Workshop (CE-

TUS2011), October 2011.

[21] Bartel A, Klein J, Le Traon Y, Monperrus M. Dexpler: Con-

verting Android Dalvik bytecode to Jimple for static anal-

ysis with Soot. In Proc. ACM SIGPLAN Int. Workshop

on State of the Art in Java Program Analysis, June 2012,

pp.27-38.

[22] Dutot A, Guinand F, Olivier D, Pigné Y. GraphStream:

A tool for bridging the gap between complex systems and

dynamic graphs. In Proc. ECCS, October 2007.

[23] Breiman L. Random forests. Machine Learning, 2001,

45(1): 5-32.

[24] Dempster A P, Laird N M, Rubin D B. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the

Royal Statistical Society, 1977, 39(1): 1-38.

[25] Fan M, Liu J, Luo X P, Chen K, Chen T Y, Tian Z Z, Zhang

X D, Zheng Q H, Liu T. Frequent subgraph based familial

classification of Android malware. In Proc. the 27th IEEE

Int. Symp. Software Reliability Engineering (ISSRE), Oc-

tober 2016, pp.24-35.

[26] Li L, Bissyandé T F, Octeau D, Klein J. DroidRA: Tam-

ing reflection to support whole-program analysis of Android

apps. In Proc. the 25th Int. Symp. Software Testing and

Analysis, July 2016, pp.318-329.

[27] Bichsel B, Raychev V, Tsankov P, Vechev M. Statisti-

cal deobfuscation of Android applications. In Proc. ACM

SIGSAC Conf. Computer and Communications Security,

October 2016, pp.343-355.

[28] Wang Y, Rountev A. Who changed you? Obfuscator iden-

tification for Android. In Proc. the 4th IEEE/ACM Int.

Conf. Mobile Software Engineering and Systems, May 2017,

pp.154-164.

[29] Zhang Y Q, Luo X P, Yin H Y. DexHunter: Toward extract-

ing hidden code from packed Android applications. In Proc.

the 20th European Symp. Research in Computer Security,

September 2015, pp.293-311.

[30] Xue L, Luo X P, Yu L, Wang S, Wu D H. Adaptive unpack-

ing of Android apps. In Proc. the 39th Int. Conf. Software

Engineering, May 2017, pp.358-369.

[31] Shao Y R, Luo X P, Qian C X, Zhu P F, Zhang L. Towards a

scalable resource-driven approach for detecting repackaged

Android applications. In Proc. the 30th Annual Computer

Security Applications Conf., December 2014, pp.56-65.

[32] Gonzalez H, Kadir A A, Stakhanova N, Alzahrani A J,

Ghorbani A A. Exploring reverse engineering symptoms in

Android apps. In Proc. the 8th European Workshop on Sys-

tem Security, April 2015, Article No. 7.

[33] Li M H, Wang W, Wang P, Wang S, Wu D H, Liu J, Xue

R, Huo W. LibD: Scalable and precise third-party library

detection in Android markets. In Proc. the 39th Int. Conf.

Software Engineering, May 2017, pp.335-346.

Li Li et al.: On Locating Malicious Code in Piggybacked Android Apps 1123

[34] Ma Z A, Wang H Y, Guo Y, Chen X Q. LibRadar: Fast

and accurate detection of third-party libraries in Android

apps. In Proc. the 38th Int. Conf. Software Engineering

Companion, May 2016 pp.653-656.

[35] Wang H Y, Guo Y. Understanding third-party libraries in

mobile app analysis. In Proc. the 39th IEEE/ACM Int.

Conf. Software Engineering Companion, May 2017, pp.515-

516.

[36] Nagappan M Shihab E. Future trends in software engi-

neering research for mobile apps. In Proc. the 23rd IEEE

Int. Conf. Software Analysis, Evolution, and Reengineering

(SANER), March 2016, pp.21-32.

[37] Kolter J Z Maloof M A. Learning to detect and classify

malicious executables in the wild. The Journal of Machine

Learning Research, 2006, 7: 2721-2744.

[38] Zhang B Y, Yin J P, Hao J B, Zhang D X, Wang S L. Mali-

cious codes detection based on ensemble learning. In Proc.

the 4th Int. Conf. Autonomic and Trusted Computing, July

2007, pp.468-477.

[39] Perdisci R, Lanzi A, Lee W. McBoost: Boosting scalability

in malware collection and analysis using statistical classifi-

cation of executables. In Proc. Annual Computer Security

Applications Conf., December 2008, pp.301-310.

[40] Cesare S, Xiang Y. Classification of malware using struc-

tured control flow. In Proc. the 8th Australasian Symp.

Parallel and Distributed Computing, January 2010, pp.61-

70.

[41] Hu X, Chiueh T C, Shin K G. Large-scale malware index-

ing using function-call graphs. In Proc. the 16th ACM Conf.

Computer and Communications Security, November 2009

pp.611-620.

[42] Jang J, Brumley D, Venkataraman S. BitShred: Feature

hashing malware for scalable triage and semantic analysis.

In Proc. the 18th ACM Conf. Computer and Communica-

tions Security, October 2011 pp.309-320.

[43] Linares-Vásquez M, Holtzhauer A, Poshyvanyk D. On auto-

matically detecting similar Android apps. In Proc. the 24th

IEEE Int. Conf. Program Comprehension (ICPC), May

2016.

[44] Zhou W, Zhou Y J, Jiang X X, Ning P. Detecting repack-

aged smart phone applications in third-party Android mar-

ketplaces. In Proc. the 2nd ACM Conf. Data and Applica-

tion Security and Privacy, February 2012, pp.317-326.

[45] Wu D J, Mao CH, Wei TE, Lee HM, Wu KP. DroidMat:

Android malware detection through manifest and API calls

tracing. In Proc. the 7th Asia Joint Conf. Information Se-

curity (AsiaJCIS), August 2012, pp.62-69.

[46] Amos B, Turner H, White J. Applying machine learning

classifiers to dynamic Android malware detection at scale.

In Proc. the 9th Int. Wireless Communications and Mobile

Computing Conf. (IWCMC), July 2013, pp.1666-1671.

[47] Zhang M, Duan Y, Yin H, Zhao Z R. Semantics-aware

Android malware classification using weighted contextual

API dependency graphs. In Proc. ACM SIGSAC Conf.

Computer and Communications Security, November 2014,

pp.1105-1116.

[48] Li L, Bissyandé T F, Bartel A, Klein J, Le Traon Y. The

multigeneration repackaging hypothesis. In Proc. the 39th

IEEE/ACM Int. Conf. Software Engineering, May 2017

pp.344-346.

[49] Meng G Z, Xue Y X, Xu Z Z, Liu Y, Zhang J, Narayanan A.

Semantic modelling of Android malware for effective mal-

ware comprehension, detection, and classification. In Proc.

the 25th Int. Symp. Software Testing and Analysis, July

2016, pp.306-317.

[50] Tian K, Yao D F, Ryder B G, Tan G. Analysis of code

heterogeneity for high-precision classification of repackaged

malware. In Proc. IEEE Security and Privacy Workshops

(SPW), May 2016 pp.262-271.

Li Li is a research associate at

Interdisciplinary Center for Security,

Reliability and Trust (SnT), University

of Luxembourg, Luxembourg, and a

honorary research associate at the

CREST group, University College

London, London. He received his

Ph.D. degree in computer science from the University of

Luxembourg, Luxembourg. His research interests are in

the fields of Android security, static code analysis, and

machine learning. Dr. Li received a Best Paper Award at

the ERA Track of IEEE SANER 2016.

Daoyuan Li is currently working

towards his Ph.D. degree at University

of Luxembourg, Luxembourg. His

research is mainly focused on machine

learning, especially time series classi-

fication and its applications in smart

buildings, IoT and FinTech. He loves

(open source) software and writes code

to get his thoughts straight or to prove a point. Previously

he worked as technical director in a startup company in

China and before that was a research scientist at Ericsson

Research NomadicLab, Finland.

Tegawendé F. Bissyandé is a

research scientist with Interdisciplinary

Center for Security, Reliability and

Trust (SnT), University of Luxem-

bourg, Luxembourg. He received his

Ph.D. degree in computer science from

the University of Bordeaux, Bordeaux,

in 2013. His work is mainly related to software engineering,

specifically empirical software engineering, reliability and

debugging as well as mobile app analysis. His studies were

presented in major conferences such as ICSE, ISSTA and

ASE, and published in top journals such as Empirical

Software Engineering and IEEE TIFS. He has received a

Best Paper Award at ASE 2012, and has served in several

program committees including ASE-Demo, ACM SAC,

ICPC.

1124 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

Jacques Klein is senior research sci-

entist at the University of Luxembourg,

Luxembourg, and at the Interdisci-

plinary Centre for Security, Reliability

and Trust (SnT). He received his Ph.D.

degree in computer science from the

University of Rennes, Rennes, in 2006.

His main areas of expertise are threefold: 1) mobile

security (malware detection, prevention and dissection,

static analysis for security, vulnerability detection, etc.); 2)

software reliability (software testing, semi-automated and

fully-automated program repair, etc.); 3) data analytics

(multi-objective reasoning and optimization, model-driven

data analytics, time series pattern recognition, etc.). In

addition to academic achievements, Dr. Klein has also

standing experience and expertise on successfully running

industrial projects with several industrial partners in

various domains by applying data analytics, software

engineering, information retrieval, etc., to their research

problems.

Haipeng Cai received his Ph.D.

degree in computer science and engi-

neering from the University of Notre

Dame, Notre Dame, in 2015. He worked

on computer graphics and visualizations

during his previous graduate studies

and was a software developer in Internet

search services and embedded systems.

He is currently an assistant professor in the School of Elec-

trical Engineering and Computer Science at Washington

State University, Pullman. His research interests are in

software engineering and software systems in general with

emphasis on program analysis and its applications for the

quality, security and reliability of evolving software. He is

a member of ACM and IEEE.

David Lo is an associate professor

in School of Information Systems,

Singapore Management University,

Singapore. He is working in the

intersection of software engineering

and data mining research. He is an

active researcher in the emerging field

of software analytics that focuses on

the design and development of specialized data analysis

techniques to solve software engineering problems. He has

received a number of international awards including two

ACM Distinguished Paper Awards. He has contributed

as an organizing committee member of many conferences;

the upcoming ones include serving as a program co-chair

of the 34th IEEE International Conference on Software

Maintenance and Evolution (ICSME’18) and workshop

co-chair of the 41st ACM/IEEE International Conference

on Software Engineering (ICSE’19). He serves/served in

the steering committee of the IEEE International Confe-

rence on Software ANalysis, Evolution and Reengineering

(SANER), IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM), and

IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE). He is an editorial board member

of Empirical Software Engineering, Journal of Software:

Evolution and Process, Information and Software Techno-

logy, Information Systems, and Neurocomputing.

Yves Le Traon is professor at Uni-

versity of Luxembourg, Luxembourg,

where he leads the SERVAL (SEcurity,

Reasoning and VALidation) research

team. His research interests within

the group include 1) innovative testing

and debugging techniques, 2) Android

apps security and reliability using static

code analysis, and machine learning techniques, and 3)

model-driven engineering with a focus on IoT and CPS.

He has been General Chair of major conferences in the do-

main, such as the 2013 IEEE International Conference on

Software Testing, Verification and Validation (ICST), and

Program Chair of the 2016 IEEE International Conference

on Software Quality, Reliability and Security (QRS). He

serves at the editorial boards of several internationally-

known journals (STVR, SoSym, IEEE Transactions on

Reliability) and is author of more than 160 publications in

international peer-reviewed conferences and journals.

