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Abstract—To devise efficient approaches and tools for detecting
malicious packages in the Android ecosystem, researchers are
increasingly required to have a deep understanding of malware.
There is thus a need to provide a framework for dissecting
malware and locating malicious program fragments within app
code in order to build a comprehensive dataset of malicious
samples. Towards addressing this need, we propose in this work a
tool-based approach called HookRanker, which provides ranked
lists of potentially malicious packages based on the way malware
behaviour code is triggered. With experiments on a ground truth
set of piggybacked apps, we are able to automatically locate
the malicious packages from piggybacked Android apps with an
accuracy of 83.6% in verifying the top five reported items.

I. INTRODUCTION

Malware is pervasive in the Android ecosystem. This is

unfortunate since Android is the most widespread operating

system in handheld devices and has increasing market shares in

various smart home and office appliances. As we now heavily

depend on mobile apps in various activities that pervade our

modern lives, security issues with Android web browsers,

media players, games, social networking or productivity apps

can have severe consequences. Yet, regularly, high profile

security mishaps with the Android platform shine the spotlight

on how easily malware writers can exploit a large attack

surface, eluding all detection systems both at the app store

level and at the device level.

Nonetheless, research and practice on malware detection

have produced a substantial number of approaches and tools

for addressing malware. The literature contains a large body

of such works [1], [2], [3], [4]. Unfortunately, the proliferation

of malware [5] in stores and on user devices is a testimony

that 1) state-of-the-art approaches have not matured enough

to significantly address malware, and 2) malware writers

are still able to react quickly to the capabilities of current

detection techniques. Broadly, malware detection techniques

either leverage malware signatures or they build machine

learning (ML) classifiers based on static/dynamic features [6].

On the one hand, it is rather tedious to manually build a (near)

exhaustive database of malware signatures: new malware or

modified malware is thus likely to slip through. On the other

hand, ML classifiers are too generic to be relevant in the

wild: features currently used in the literature, such as n-

grams, permissions or system calls, allow to flag apps without

providing any hint on either which malicious actions are

actually detected, or where they are located in the app.

The challenges in Android malware detection are mainly

due to the lack of accurate understanding of what consti-

tutes a malicious code. In 2012, Zhou and Jiang [7] have

manually investigated 1260 malware samples to characterize

1) their installation process, i.e., which social engineering-

based techniques (e.g., repackaging [8], [9], [10]) are used to

slip them into users devices; 2) their activation process, i.e.,

which events (e.g., SMS_RECEIVED) are used to trigger the

malicious behaviour; 3) the category of malicious packages

(e.g., privilege escalation or personal information stealing);

and 4) how malware exploits the permission system. The

produced dataset named MalGenome, has opened several

directions in the research of malware detection, most of which

have either focused on detecting specific malware types (e.g.,

malware leaking private data [11], [12], [13]), or are exploiting

features such as permissions in ML classification [14]. The

MalGenome dataset however has shown its limitations in hunt-

ing for malware: the dataset, which was built manually, has

become obsolete as new malware families are now prevalent;

and the characterization provided in the study is too high-level

to allow for the inference of meaningful structural or semantic

features of malware.

The ultimate goal of our work is to build an approach

towards systematizing the dissection of Android malware

and automating the collection of malicious code packages

in Android apps. Previous studies have exposed statistical

facts which suggest that malware writing is performed at an

“industrial” scale and that a given malicious piece of code can

be extensively reused in a bulk of malware [15], [5]. Malware

writers can indeed simply unpack a benign, preferably popular

app, and then graft some malicious code on it before finally

repackaging it. The resulting app, which thus piggybacks

malicious packages, is referred to as a piggybacked app [16].

Our assumption that most malware are piggybacked of benign

apps is confirmed with the MalGenome dataset where over

80% of the samples were built through repackaging. For

simplicity, in this entire paper we refer to any code package

injected via piggybacking as a “malicious” package1.

1This package may directly contribute to implementing the malicious
behaviour, or further to hiding malicious actions to static analyzers, or may
simply include library code leveraged by piggybackers.



Accurately identifying and extracting malicious code in

an app is however a challenging endeavour. In any case, a

malicious behaviour can be implemented as an orchestration

of different behaviour phases in several packages. To the best

of our knowledge, the literature does not include any approach

for systematically identifying packages which are responsible

for the malicious behaviour of a malware. We propose in

this work a step towards helping analysts readily identify

malicious packages in Android apps. To that end, we build

HookRanker, a ranking approach which orders packages with

regards to the likelihood of their malicious status. Overall, we

make the following contributions:

• We propose an automated approach for locating hooks

(i.e., code that switches the execution context from be-

nign to malicious code) within piggybacked apps. Our

approach eventually yields a ranked list of most probable

malicious packages, which can benefit malware analysts

to quickly understand how the malicious behaviour is

implemented and how the malicious code is triggered.

A key characteristic of our approach is that it does

not require access to the original benign version of the

piggybacked app, which is usually hard to harvest, in

order to perform some form of diff analysis.

• We present a tool called HookRanker to automatically

recommend potential malicious packages. Evaluation on a

set of benchmark apps has demonstrated that HookRanker

is efficient to locate malicious packages of piggybacked

apps.

II. HOOK TAXONOMY

We now introduce the necessary terminology to which we

will refer in the remainder of this paper. Figure 1 shows the

constituting parts of a piggybacked malware2, which is built

by taking a given original app, referred to in the literature as

the carrier [17], and grafting to it malicious packages (also

known as a piece of malicious code3), referred to as the rider.

The malicious behaviour will be triggered thanks to the hook

that is inserted by the malware writer to ensure the injected

packages will be executed.

Android Apps

Malware

Piggybacked

Carrier Rider

piggybacked
APP (a2)

Hook

original
APP (a1)

Fig. 1. Piggybacking Terminology [18].

2In this work, we focus on piggybacked malicious apps, where the status
of each app has been confirmed by the results of VirusTotal.

3To simplify the description, in this work, we consider all the injected code
as malicious, even if the actual malicious payload is only some part of the
added code.

By investigating into the Android app launch model, we

observe that there are two ways for piggybackers to hook

their malicious code from the carrier code: i.e., to allow the

triggering of the payload in their injected malicious packages.

We refer to these two ways as type1 and type2 hooks:

1 //Type 1 hook, through method invocation

2 public class UnityPlayerProxyActivity extends

android.app.Activity {

3 protected void onCreate(android.os.Bundle) {

4 specialinvoke $r0.onCreate($r1);

5 + staticinvoke Touydig.init($r0);

6 $r2 = newarray (java.lang.String)[2];

7 }}

8 //Type 2 hook, through Broadcast Receiver

9 + public class UR extends AdPushReceiver {...}

Listing 1. An Example of Type1 and Type2 Hook. This Snippet is
Extracted from a Real Piggybacked App Named apscallion.sharq2. The
‘+’ Sign Indicates the Code that Was Injected into the Origin App.

Type1 hook involves method calls that explicitly connect

carrier code to rider code. In this case, we identify the

hook via the point where carrier code is switched into the

rider code in the execution flow. Listing 1 shows a snippet

illustrating an example of type1 hook (line 5), which is inserted

immediately at the beginning of the onCreate() method (line

4) of component UnityPlayerProxyAct. By calling the hook

method (i.e., init()), the malicious packages (starting from

class com.gamegod.Touydig) will immediately be triggered

and thereby switching the current execution context to pig-

gybacked code.

Type2 hook involves the use of the Android event system.

Thus, the piggybacked code hooking is done via a component

that is not explicitly connected to any code of the original app.

On the contrary, the (malicious) rider code will be triggered

directly by system or user-defined events.

Based on our observation, piggybacked apps often feature

both type1 and type2 hooks to ensure the execution of their

malicious payloads. In this work, we tame type1 hook only

and keep type2 hook as our future work. Our objective in

this work is thus to automatically locate suspicious method

calls for a given piggybacked malicious app and thereby to

systematically extract malicious payloads that are injected into

the piggybacked app.

III. HOOK IDENTIFICATION

Our primary objective of this work is to provide researchers

and practitioners with means to systematize the collection

of malicious packages that are used frequently by malware

writers. To that end, we propose to devise an approach for au-

tomating the identification of malicious code snippets which

are used pervasively in malware distributed as piggybacked

apps. We are thus interested in identifying malicious rider

code as well as the hook code which triggers the malicious

behaviour in rider code. To fulfil this objective we require

a set of reliable metrics to automatically identify malicious

packages within a detected piggybacked app. To the best of

our knowledge, in the literature, there are no such works that

have addressed this before.



To automate the identification approach, we consider the

identification of type1 hook as a graph analysis problem.

Figure 2 illustrates the package dependency graph (PDGraph)

of a piggybacked app (the same app as we used in Listing 1).

PDGraph is a directed graph which makes explicit the depen-

dency between packages. The values reported on the edges

correspond to the number of times a call is made by code

from a package A to a method in package B. These values

are considered as the weights of the relationships between

packages. In some cases however, this static weight may

not reflect the relationship strength between packages since

a unique call link between two packages can be used multiple

times at runtime. To attenuate the importance of the weight

we also consider a scenario where weights are simply ignored.
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Fig. 2. Package Dependency Graph of a Piggybacked app.

We now compute four metrics for estimating the relation-

ships between packages in an app:

1) weighted indegree: In a directed graph, the indegree of

a vertex is the number of edges pointing to the vertex.

In the PDGraph, the weighted indegree of a package

corresponds to the number of calls that are made from

code in other packages to methods in that package.

2) unweighted indegree: We compute the normal indegree

of a package in the PDGraph by counting the number

of packages that call its methods. The reason why we

take into account indegree as a metric is based on the

assumption that hackers take the least effort to present

the hook. As an example, com.gamegod in Figure 2 is

actually the entry point of the rider code, which has

the smallest indegree for both weighted and unweighted

indegree.

3) maximum shortest path: Given a package, we compute

the shortest path to every other package, then we con-

sider the longest path to reach any vertex. The intuition

behind this metric is based on our investigation with

samples of piggybacked apps which shows that malware

writers usually hide malicious actions far away from the

hook, i.e., multiple call jumps from the triggering call.

Thus, the maximum shortest path in rider module can

be significantly higher than in carrier code.

4) energy: we estimate the energy of a vertex (package

in the PDGraph) as an iterative sum of its weighted

outdegrees and that of its adjacent packages. Thus, the

energy of a package is total sum weight of all packages

that can be reached from its code. The energy value

helps to evaluate the importance of a package in the

stability of a graph (i.e., how relevant is the sub-graph

rooted at this package?).

The above metrics are useful for identifying packages which

are entry-points into the rider code. We build a ranked list of

the packages based on a likelihood score that a package is

the entry point package of the rider code. Let vi be the value

computed for a metric i described above (i = 1, 2 for in-degree

metrics, the smaller the better; i = 3, 4 for others, the bigger

the better), and wi the weight associated to metric i. For a

PDGraph graph with n package nodes, the score associated

to a package p, with our proposed metrics, is provided by

formula (1).

sp =

2
∑

i=1

wi∗(1−
vi(p)

∑n−1

j=0
vi(j)

)+

4
∑

i=3

wi∗(
vi(p)

∑n−1

j=0
vi(j)

) (1)

In our experiments, we weight all metrics equally (i.e.,

∀i, wi = 1). For each ranked package pr, the potential rider

code is constituted by all packages that are reachable from

pr. A hook is generally a method invocation from the carrier

code to the rider code. Thus, we consider a type1 hook as

the relevant pair of packages that are interconnected in the

PDGraph.

com.facebook

com.facebook.widget

com.facebook.android

com.facebook.internal

Fig. 3. A Partial PDGraph Showing a Set of Related Packages in the Carrier
Code of com.gilpstudio.miniinimo.

Finally, to increase accuracy in the detection of hooks we

further dismiss such packages (in stand-alone hooks or in

package-pair hooks) whose nodes in the PDGraph do not meet

the following constraints:

• No closed walk: Because rider code and carrier code

are loosely connected, we consider that a hook cannot

be part of a directed cycle (i.e., a sequence of vertices

going from one vertex and ending on the same vertex

in a closed walk). Otherwise, we will have several false

positives, since typically, in a benign app module (i.e.,

a set of related packages written for a single purpose),

packages in the PDGraph are usually involved in closed

walks as in the example of Figure 3.

• Limited clustering coefficient: A hook must be viewed

as the connection link between carrier code and rider code

via two packages. Since both packages belong to different

(malicious and benign) parts of the app, they should not

tend to cluster together in the package dependency graph

as it would otherwise suggest that they are tightly coupled

in the design of the app. To implement this constraint we

measure the local clustering coefficient [19] of the vertex

representing the carrier entry package. This coefficient

quantifies how close its adjacent vertices are to being a



clique (i.e., forming a complete graph). Given v, a vertex,

and n, the number of its neighbors, its coefficient cc(v)
is constrained by formula (2).

cc(v)

{

<
C2

n−1

C2
n

, n ≥ 2

= 0, n < 2
(2)

IV. EVALUATION

We now evaluate our approach that automates the dissection

of piggybacked malware to identify rider and hook code. Our

evaluation aims at answering the following research questions:

RQ 1: How are type1 hooks distributed in piggybacked

apps?

RQ 2: Is our proposed metrics capable of locating type1
hooks in piggybacked Android apps? If so, what is the

accuracy?

Experimental Setup. The experiments of this work are con-

ducted on a benchmark of piggybacking pairs provided by Li

et al. [15]. Because of some corner cases, where our tool fails

to rank the potential hooks, we eventually consider a set of

500 pairs from which we could build a benchmark for our

evaluation.

A. RQ1 - Distribution

Fig. 4 illustrates the distribution of piggybacked apps on

type1 hooks, where the median number of type1 hook for

the investigated apps is one. Among the 500 investigated

piggybacked apps, 159 (32%) of them do not contain any

type1 hook, while the majority of piggybacked apps (54%)

contains only one type1 hook. This distribution demonstrates

that piggybackers attempts to change as less as possible (one

method call for over half of the investigated cases) for the

original app in order to trigger the execution of their injected

payloads.

0.0 0.5 1.0 1.5 2.0

The Number of Hooks

Fig. 4. Distribution of Type1 Hooks.

B. RQ2 - Hook Identification

The output of our hook identification approach, namely

HookRanker, is a ranked list of hooks (packages which en-

compass sufficient information for analysts to quickly locate

the relevant pair of packages that are interconnected in the

PDGraph. For simplicity, we only consider packages in this

work.). Our evaluation consists in verifying the percentage of

hooks in the top 5 items (i.e., accuracy@5) in the list that are

correctly identified.

To support the verification, we first automatically build

the baseline of comparison by computing the diff between

each of the selected piggybacked apps and its corresponding

original app. With this diff, we can identify the rider code

and the hook. Then, we apply our dissection approach by

only considering the piggybacked apps4, and compare the

top ranked packages against the baseline. Our verification

is performed in two cases: Match Any Hook and Match All

Hooks. In the case of Match Any Hook, where we consider an

app verified as long as one of its hooks is located, HookRanker

yields an accuracy@5 (we check the top 5 packages) of 89.4%

for type1 hook. In the case of Match All Hooks, where we

consider an app is verified if and only if all of its hooks

are located, HookRanker yields an accuracy@5 of 83.6% for

type1 hook. For such apps that have more than five hooks, we

consider them to be not verified.

Our manual analysis on the dissecting results further pro-

vided some insights into how malware writers perform pig-

gybacking at a large scale. Table I presents five samples

of type1 hook at the package level. It shows that some

malicious packages are repeatedly injected into (different)

Android apps. For example, com.google.ads, an ad-related

package, has been injected into seven benign apps while

package com.fivefeiwo.coverscreen.SR appears in 50 distinct

piggybacked apps. This repeating phenomenon suggests that

piggybacking could be performed in batches.

Now, let us look one step deeper into the frequency of

injected type1 hooks (in Table I): piggybackers often connect

their packages to the carrier via one of its included

libraries. Thus, malware can systematize the piggybacking

operation by targeting apps that use some popular libraries. For

example, package com.unity3d.player is the infection

point in 65 (out of the 500) piggybacked apps. In 12 of those

apps, the entry package of the rider code is com.gamegod.

TABLE I
TYPE1 HOOK SAMPLES AND THEIR AFFECTED NUMBER OF APPS.

Type1 Hook Apps (#.)

com.unity3d.player → com.gamegod 12
com.unity3d.player → com.google.ads 7

com.unity3d.player → com.basyatw.bcpawsen 5
com.ansca.corona → com.google.ads 3

com.g5e → com.geseng 2

V. CONCLUSION

We have proposed in this paper an approach for dissecting

piggybacked apps to locate and collect malicious samples.

Through extensive evaluations, we have demonstrated the

performance of our approach, i.e., the precision of locating

hook/rider code. We have also experimentally shown that

piggybacking could be conducted in batches and piggybackers

often connect their malicious payloads to the carrier via one

of its included libraries.
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