
Exploiting Parts-of-Speech for Effective Automated Requirements Traceability

Nasir Alia, Haipeng Caib, Abdelwahab Hamou-Lhadjc,∗, Jameleddine Hassined

aDepartment of Computer Science, University of Memphis, Tennessee, USA
bSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, USA

cElectrical and Computer Engineering Department, Concordia University, Montréal, Canada
dDepartment of Information and Computer Science, King Fahd University of Petroleum and Minerals, Dhahran, KSA

Abstract

Context: Requirement traceability (RT) is defined as the ability to describe and follow the life of a requirement. RT helps
developers ensure that relevant requirements are implemented and that the source code is consistent with its requirement with
respect to a set of traceability links called trace links. Previous work leverages Parts Of Speech (POS) tagging of software artifacts
to recover trace links among them. These studies work on the premise that discarding one or more POS tags results in an improved
accuracy of Information Retrieval (IR) techniques.

Objective: First, we show empirically that excluding one or more POS tags could negatively impact the accuracy of existing IR-
based traceability approaches, namely the Vector Space Model (VSM) and the Jensen Shannon Model (JSM). Second, we propose
a method that improves the accuracy of IR-based traceability approaches.

Method: We developed an approach, called ConPOS, to recover trace links using constraint-based pruning. ConPOS uses major
POS categories and applies constraints to the recovered trace links for pruning as a filtering process to significantly improve the
effectiveness of IR-based techniques. We conducted an experiment to provide evidence that removing POSs does not improve the
accuracy of IR techniques. Furthermore, we conducted two empirical studies to evaluate the effectiveness of ConPOS in recovering
trace links compared to existing peer RT approaches.

Results: The results of the first empirical study show that removing one or more POS negatively impacts the accuracy of VSM and
JSM. Furthermore, the results from the other empirical studies show that ConPOS provides 11%-107%, 8%-64%, and 15%-170%
higher precision, recall, and mean average precision (MAP) than VSM and JSM.

Conclusion: We showed that ConPos outperforms existing IR-based RT approaches that discard some POS tags from the input
documents.

Keywords: Requirements Traceability (RT), Parts of Speech (POS), Information Retrieval (IR), Trace links

1. Introduction

Requirement traceability (RT) is defined as the ability to des-
cribe and follow the life of a requirement, in both a forward and
backward direction [1]. RT thus helps developers ensure that re-
levant requirements are implemented and that the source code
is consistent with its requirement [2, 3] with respect to a set
of traceability links called trace links [4]. Each trace link des-
cribes the association/connection between a requirement and a
source-code entity that implements the requirement. Intuitively,
as changes are introduced to requirements documents and/or
source code, it is desirable for RT to keep all trace links up to
date. In practice, however, developers do not always keep trace
links updated during continuous software maintenance and evo-
lution tasks [5, 6]. Thus, trace links between requirements and

∗Corresponding author
Email addresses: cnali@memphis.edu (Nasir Ali),

hcai@eecs.wsu.edu (Haipeng Cai), abdelw@ece.concordia.ca
(Abdelwahab Hamou-Lhadj), jhassine@kfupm.edu.sa (Jameleddine
Hassine)

source code entities tend to become obsolete. Manually crea-
ting trace links is an effort intensive task. Information retrie-
val (IR) techniques are often used to recover trace links semi-
automatically or automatically, with various accuracies [7, 8].
IR techniques are used to compute the similarity between the
requirements and the source code comments and identifiers. A
high similarity means a potential trace link between a require-
ment and a source code entity. IR techniques generate a ranked
list in descending order of potential trace links based on textual
similarity.

Due to noise and/or misleading textual information [9, 10]
in the requirements and the source code, IR techniques may
produce many false-positive links while pushing true-positive
links further down in the ranked list, resulting in low precision
and recall. The poor accuracy of IR techniques potentially lead
to excessive developer effort for examining the resulting trace
links, which has motivated researchers to improve IR techni-
ques. To that end, various approaches have been developed to
reduce noises in the input documents. For instance, a heuristic

Preprint submitted to Information and Software Technology September 9, 2018

is to only index nouns of software artifacts [11, 12]. However,
a requirement may not be complete without a proper verb, and
removing a verb could result in the loss of important semantic
information. For example, a requirement R1 for an email client
“Email client shall open and display a message in a single win-
dow” contains three verbs (two main verbs, i.e., open and dis-
play, and one model verb, i.e., shall) and four nouns (email,
client, message, and window). In the source code, although
class names are frequently constructed from nouns, verbs of-
ten appear in the identifiers of method names; one reason could
be that the Java Language Specification recommends that met-
hod names should be verbs or verb phrases [13, 14]. Similar
naming conventions are applicable to other languages as well
(e.g., C [15]). Several studies have shown that method names
are an important source of information for RT tasks [16, 9].
Therefore, failing to include verbs in the RT recovery process
may result in linking the requirements to the incorrect source
code snippets. For example, an IR technique may link require-
ment R1 to all classes in the source code that are responsible for
sending, receiving, and deleting “messages”, leading to large
imprecision.

To recover trace links, previous IR-based works have exploi-
ted part-of-speech (POS) tagging, a technique that marks up a
word in a given text corpus as corresponding to a particular part
of speech (e.g., noun, verb, adjective, etc.). Yet, existing POS
taggers are not 100% accurate in tagging source code identi-
fiers [17]. One of the reasons is that a POS tagger attempts
to effectively tag terms based on the context of proper English
sentences and grammatical structures [18]. However, source
code identifiers are bags of words, which do not contain such
context information. Removing one POS or combinations of
POSs from a text corpus would also result in loss of semantic
information such as word contexts that IR techniques typically
utilize. Therefore, we hypothesize that excluding one or more
major POS may have negative impact on the accuracy of the IR
techniques in recovering trace links from the text corpus. In the
rest of the paper, we use the term “all POSs” to refer to the ma-
jor POS categories, i.e., nouns, verbs, adjectives, adverbs, and
pronouns. We believe that POS categories such as prepositions,
determiners, interjection, and conjunctions are not relevant in
our context. These issues with existing RT techniques and our
observations motivated us to develop a novel approach.

Thus, towards improved RT accuracy and lowered cost for in-
specting the results of RT techniques, we propose a new appro-
ach to trace link recovery, called ConPOS. ConPOS covers two
levels of requirements (i.e., pre- and post-requirements) as well
as two different granularity levels of resulting trace links (i.e.,
class and method). A pre-requirement (resp. post-requirement)
is defined as a requirement being in its lifetime point prior to
(resp. after) its inclusion into the final requirements specifica-
tion. Feature requests in an issue tracking system could also
be considered as pre-requirements. ConPOS starts with tagging
all POSs of a requirement (without excluding any particular
POS), then uses two IR techniques, namely Vector Space Mo-
del (VSM) and Jensen-Shannon Model (JSM), to recover ba-
seline trace links between given requirements and source code
files. Next, as a critical step of our approach, false-positive trace

links are identified and cut off according to a constraint-based
pruning strategy. Given the fact that verbs play an important
role in expressing actions in both requirements and source code
(e.g., through method names), ConPOS opts for verbs as the de-
fault constraints choice for the pruning; However, other types of
POS constraints can also be used. For each link, ConPOS looks
for a tagged verb of a requirement in the linked source code fi-
les; if the verb appears in both the requirement and the source
code then ConPOS approves the link. It is important to note that
ConPOS refines the baseline trace links using the constraint as a
post-processing step after the baseline trace links are produced
using all POSs. This is drastically different from recovering the
trace links using nouns as the only POS [11, 12].

In order to validate our approach, we have conducted an em-
pirical study using four medium-size open-source systems, na-
mely iTrust, Lynx, Pooka, and SIP Communicator. We have
measured the effectiveness of our approach using precision, re-
call, and mean average precision MAP (among all trace links
produced) of those that are true-positive links. In addition,
using the same four subject software, we have evaluated the ef-
fectiveness of ConPOS compared to techniques based on the re-
moval of specific POS types from input documents (e.g., noun-
based indexing) as baselines. Our results show that ConPOS
provides 11%-107%, 8%-64%, and 15%-170% higher preci-
sion, recall, and MAP, respectively, than the baselines. Hence,
we have revealed for the first time that using all POSs is es-
sential for effective IR-based trace link recovery, which is dras-
tically different from previous findings suggest that removing
POSs could bring gains in precision/recall [11, 12]. Further-
more, using the proposed ConPOS approach, we have demon-
strated that applying constraints for pruning as a filtering pro-
cess, after recovering all trace links using all POSs, can sig-
nificantly improve the effectiveness of IR-based techniques in
recovering trace links.

It is noteworthy that trace links in practice have a broa-
der scope than what ConPOS addresses, including such links
among requirements, design documents, test cases, and bug re-
ports, etc. In this paper, however, we focus on improving the
accuracy of trace links between requirements and source code,
which is an important element of the complete trace links nee-
ded by developers. In a realistic scenario, users will use results
of ConPOS together with the other kinds of trace links produ-
ced by other, complementary approaches.

In the paper, we make the following contributions:

• We have developed a novel approach to trace link reco-
very, called ConPOS, that introduces the concept of con-
straints on POS and leverages such constraints to prune
false-positive trace links (as a post-processing step), hence
to improve RT effectiveness.

• We have conducted an empirical study to assess the ef-
fectiveness of state-of-the-art existing IR-based trace link
recovery techniques. To this end, we have used datasets
covering different granularity levels of trace links, various
levels of requirements, and several types of POSs and POS
combinations. We have shown that, generally, the removal

2

of any POS from input documents would reduce the ef-
fectiveness of these techniques and that the use of all POSs
is important for effective trace link recovery.

• We have evaluated the effectiveness of ConPOS and sho-
wed its advantages over existing IR-based trace link reco-
very techniques. We have also studied the effects of using
different types of POSs as constraints on ConPOS effecti-
veness, and showed that verbs are the most effective POSs
for the constraint-based trace link refinement.

The rest of this paper is organized as follows. In the next
section, we provide a brief description of the state-of-the-art IR
techniques and use of POS in software maintenance. Section
3 describes our proposed approach ConPOS in detail and our
implementation of ConPOS. Section 4 presents the empirical
validation of ConPOS. Sections 5 and 6 discuss more about our
study results and threats to the validity of our findings. Finally,
Section 7 provides concluding remarks of this work.

2. Related work

In the last couple of decades, automated RT has gained rese-
archers’ attention. IR techniques have shown promising results
for automated RT [19, 20]. Borg et al. [20] conducted a Sy-
stematic Mapping (SM) study on IR-based trace recovery that
contains 79 publications along with their corresponding empiri-
cal data. The authors [20] found that the majority of the studies
applied algebraic IR models [7, 21, 22, 12], e.g., Vector Space
Model (VSM) and Latent Semantic Indexing (LSI), to recover
trace links. Comparisons have been made among different IR
techniques, e.g., [23] and [19], with inconclusive results.

Borg and Runeson [24] have synthesized results from the
published empirical data corresponding to 25 studies identi-
fied in [20]. The authors [24] observed that many comparing
studies found that VSM presented the best results. In addi-
tion, four studies presented in three publications [19, 23, 25]
found that measuring similarities using Jensen-Shannon diver-
gence [26] performed trace recovery with a similar accuracy to
VSM. The results of the study [24] suggest that the classic VSM
performs better or as good as other models. Hence, VSM and
JSM perform favorably in comparison to more complex techni-
ques, such as LSI [21] or latent dirichlet allocation [27]. These
findings are also in line with the claim by Falessi et al. [28] and
Ali et al. [29], that simple IR techniques are typically the most
useful. Yet, algebraic models, e.g., VSM [7] and probabilistic
model, e.g., the JSM model [19], are a reference baseline for
both feature location [22, 30] and RT [7, 31].

IR techniques depend on textual information of documents to
recover trace links. Due to the noise in the textual information,
e.g., misleading textual information [9], IR techniques could
recover false positive links and exhibit poor accuracy [11]. To
improve the accuracy of IR techniques, some researchers have
explored the source code structure to combine it with textual
information as an extra source of information [32, 33, 34]. An-
toniol et al. [32, 33] proposed an approach for automatically re-
covering trace links between object-oriented design models and

source code. The authors used class attributes as traceability
anchors to recover trace links. McMillan et al. [34] proposed
a technique for indirectly recovering trace links by combining
textual information with structural information. The authors
conjectured that related requirements share related source code
elements. Grechnik et al. [35] proposed an approach for au-
tomating part of the process of recovering trace links between
types and variables in Java programs and elements of use-case
diagrams. Diaz et al. [36] leveraged source code ownership in-
formation to capture relationships between source code artifacts
for improving the recovery of trace links between documenta-
tion and source code.

The large number of false positive trace links and poor accu-
racy of IR techniques have persuaded researchers to propose
approaches to remove noise from the textual information, e.g.,
removing common terms [37], splitting identifiers [38], and
indexing only nouns [11, 39]. Morphological analysis, e.g.,
stemming, is used to bring back the terms to their base or root
form [37]. For example, email and emails would be converted
to email, and an IR technique would treat them as one term.
Inverse document frequency (IDF) penalizes common terms to
reduce the noise. For example, if a term appears in all the do-
cuments then IDF will assign less weight to the term [7].

The importance of a term position in different textual docu-
ments have been explored by various researchers [40, 41, 42].
They observed that if a term appears in different zones of
a document, then its importance changes. Yet, the state-of-
the-art TF/IDF is the most commonly used term weighting
scheme [20]. Dit et al. [38] used various identifier splitting
algorithms to measure their impact on IR-based feature loca-
tion. Their results show that only splitting identifiers manually
achieves slightly better accuracy.

Some researchers have explored POS tagger to analyze the
textual documents [11, 43, 44]. The POS tagger tags all the
terms in the corpora according to the context and grammar of
a sentence. It is successfully used in various software mainte-
nance tasks [11, 44, 45]. Etzkom et al. [44] used a POS tagger
to tag source code entities, i.e., attributes and method names.
They used tagged source code entities to generate meaningful
summary of the source code modules. Zou et al. [43] incorpo-
rated the use of phrases detection and construction from requi-
rements using POS tagger to dynamically trace requirements.
Their approach depends on a project glossary to find additional
phrases and weight the contribution of key phrases and terms.
Abebe and Tonella [45] used POS tagger to extracts concepts
from the source code identifiers. They parsed the source code
to build a dependency tree and extracted an ontology by map-
ping linguistic entities. The built ontology was then used to im-
prove the accuracy of concept location. Shokripour et al. [46]
extracted only nouns from the information sources, i.e., reposi-
tory commits, identifiers and comments in the source code, and
information from previously fixed bugs, to develop a bug report
assignment recommendation system. Capobianco et al. [47, 11]
proposed an heuristic to discard all POSs except nouns for a tra-
ceability task. They conjectured that keeping only nouns could
improve the accuracy of IR techniques. In some cases, their ap-
proach produced better and in some cases worse results than a

3

baseline IR technique. They observed that some incorrect POS
tagging caused poor accuracy.

3. ConPOS: Combining POS with IR Techniques

In this section, we describe our proposed ConPOS approach
to trace link recovery. Unlike other approaches in the litera-
ture, ConPOS does not exclude any POS from the input docu-
ments. However, what sets ConPOS from existing techniques
is that it leverages POS information of requirements documents
only to improve the effectiveness in trace link recovery. That
is, ConPOS does not perform any POS-tagging tasks with the
source code.

Specifically, ConPOS follows five key steps to recover trace
links:

1. It takes as input documents both the requirements and
source code, and performs POS-tagging only in the requi-
rements document.

2. It obtains the baseline trace links from existing approaches
(we refer to as baseline approaches) with both input docu-
ments.

3. For each produced baseline trace link, ConPOS looks for
a tagged verb of a requirement in the linked source code
files.

4. If a verb of the requirement is present in the linked source
code files then ConPOS approves the link; otherwise, the
link is pruned from the baseline result.

5. It outputs the remaining trace links.

Figure 1 shows the high-level architecture of ConPOS, where
the major steps are detailed in the following sections.

3.1. Requirements and Source Code Preprocessing

In order to recover trace links with IR-based approaches, we
performed a few standard document pre-processing steps. We
used a POS tagger to tag all terms in the corresponding input
documents (requirements document and source code). After
POS tagging, we did two more steps: removing stop words and
stemming [7, 21].

The specific workflow we followed includes five steps:

1. We used CamelCase and under score algorithms to split
source code identifiers into terms [48].

2. We removed non-alphabetical characters (e.g., numbers,
special characters, etc.).

3. We converted all uppercase letters into lowercase, remo-
ved punctuation, and removed stop words (e.g., “is”, “the”,
etc.).

4. We used POSSE1 [17] POS tagger to tag all the source
code identifiers. POSSE [17] is the existing best-
performing source code identifier POS tagger compared to
peer taggers according to the authors (although in absolute
terms it is still not quite accurate for tagging source code).

1https://github.com/samirgupta/POSSE/

Requirements and source code comments are written in
formal English. Thus, we used Standford POS tagger [49]
to tag requirements and source code comments. We used
tagged source code identifiers only to perform analysis on
effect of removing any POS from the whole corpora. For
example, in the case of comparison with noun-based trace
link recovery approach we used tagged source code iden-
tifiers to select only nouns.

5. We performed stemming on the remaining terms in the
input documents using the Porter [50] English stemmer,
which removes the postfix of an English term and brings
the term to its root (e.g., “creates”→ “create”).

3.2. Constraint-based Pruning

At the core of ConPOS is the process of pruning baseline
trace links using a filter (referred to as constraint). To fa-
cilitate the description of this constraint-based pruning step,
we use a set of notations as described in Table 1. Note that
α(Rn,Cs, k j) =

∣∣∣θ(Rn, k j) ∩Cs

∣∣∣.
In attempting to prune false positives from the baseline trace

links, for a trace link from a requirement Rn to associated source
code entity Cs, ConPOS calculates the similarity score of the
link with respect to constraint k j (denoted as φ(Rn,Cs, k j)) as
follows. If α(Rn,Cs, k j) ≥ 1, the score is σ(Rn,Cs)∗1.λwhere λ
is the number of occurrences of POS of the constraint type (i.e.,
k j) in Cs; otherwise, the score is 0. By assigning a zero score to
a link, ConPOS essentially removes that link, while using λ as
a reward is to push upwards trace links that have more matches
between the requirement and the source code entity with respect
to the constraint. By default, ConPOS uses verbs as constraints
for false-positive trace link pruning.

For example, if a requirement R1 is linked to source code
entity C1 with the similarity score 0.4, and R1 contains 2, i.e.,
λ = 2, verbs that are available in source code, then the new
similarity score of the trace link would be 0.48. The higher
similarity score would push link higher in the ranked list. If R1
and C1 don’t share any verb then ConPOS will discard the trace
link.

3.3. IR Engine

The IR engine in ConPOS takes as input both requirements
documents and source code documents, and produces base-
line trace links, as well as the similarity function α(Rn,Cs, k j)
to prune false-positive links based on the constraint. The IR en-
gine builds a m × n term-by-document matrix, where m is the
number of all unique terms that occur in the documents and n
is the number of documents in the corpus. Then, each cell of
the matrix contains a value wi, j, which represents the weight of
the ith term in the jth document. A weight represents the impor-
tance of a term in the corpus of all terms. Various term weig-
hting schemes are available to compute the weight of a term
[19, 7]. In this paper, we use the TF/IDF weighting scheme.

IR techniques compute the similarity between two docu-
ments based on the similarity of their terms and/or the distri-
butions thereof. A higher similarity value between two docu-
ments suggests a stronger potential trace link between them.

4

Figure 1: Overview of the proposed ConPOS approach to trace link recovery

Table 1: Summary of the Notations Used in ConPOS Description.

Notation Meaning
Rn A particular requirement
R A set of requirements
C A set of source code Entities
pi A term in a requirement

P(Rn) The set of all terms consisting of POS in a requirement Rn

k j A particular type of POS
K(Rn, k j) The set of POS of type k j in a requirement Rn

β(pi) Returns the type of a term pi

θ(Rn, k j) Returns the set K(Rn, k j) of POS of type k j from a given requirement Rn

σ(Rn,Cs) Returns the similarity between Rn and Cs

α(Rn,Cs, k j) Returns the total number of terms of type k j in a requirement Rn

that appear in a source code entity Cs

Thus, our proposed approach does not depend on a particular
IR technique: various IR techniques [19, 7, 21] can be incorpo-
rated in our approach to serve the IR engine using the similarity
function of ConPOS. The IR technique computes the baseline
trace links for ConPOS with all POSs utilized and then the si-
milarity function with the constraint used for filtering prunes
suspicious false positives from the baseline links.

4. Empirical Validation of ConPOS

Existing studies have reported that nouns and verbs are better
discriminators of a document than other kinds of POS [51, 39].
For example, Capobianco et al. [11] showed that considering
nouns only could improve the accuracy of IR-based RT appro-
aches. We have reexamined empirically such findings while
verifying our hypothesis that excluding some POSs from soft-
ware artifacts could negatively impact the accuracy of IR-based
trace link recovery techniques (see research question RQ1 and
its corresponding Hypothesis 1 (Sect. 4.2)). Furthermore, we
have conducted an empirical study to evaluate the effectiveness
of ConPOS in recovering trace links compared to existing peer
RT approaches (see research question RQ2 and its correspon-
ding Hypothesis 2 (Sect. 4.2)). Finally, to gauge and understand
the improvement of ConPOS over existing peer approaches, we
compared the effectiveness of ConPOS with existing IR-based
and Nn-based RT approaches—as per the scope and focus of
this work, we consider (and compare our work with) only ap-
proaches that use POS as a major means to recover trace links.

The improvement is expected to bring reduction of the effort of
software maintenance practitioners in tracing requirements and
validating trace links to source code entities (see RQ3 and its
corresponding Hypothesis 3 (Sect. 4.2)).

The main goals of our empirical study can be stated as fol-
lows:

• Goal 1: Provide sufficient empirical evidence that remo-
ving any POS does not improve the accuracy of IR techni-
ques (Our proposed ConPOS considers all POSs). This
goal is formulated using the following research question:
RQ1: Does removing any major POS improve the
accuracy of IR techniques?

• Goal 2: Provide sufficient empirical evidence that the pro-
posed ConPOS approach would lead to better accuracy
compared to IR-based RT approaches. This goal is for-
mulated using the following research question:
RQ2: Does ConPOS lead to better accuracy than IR-
based RT approaches?

• Goal 3: Provide sufficient empirical evidence that the pro-
posed ConPOS approach produces a better accuracy of the
trace links compared to noun-based indexing approaches.
This goal is formulated using the following research ques-
tion:
RQ3: How does the accuracy of the trace links recove-
red by ConPOS compare with a noun-based indexing
approach?

5

4.1. Study Setup

In this section, we describe our empirical validation follo-
wing the templates and recommendations presented in Wohlin
et al. [52], Juristo and Moreno [53], Kitchenham et al. [54], and
Jedlitschka and Ciolkowski [55].

4.1.1. Software Subjects
We have chosen four subject software systems for our stu-

dies, as described in Table 2. For each subject, the table gives
the major characteristics relevant to our experiments wherever
available, including version, number of source lines of code
(SLOC), the primary programming language in which the sub-
ject is written (PL), number of requirements (#Reqs), number
of classes (#Classes), number of methods (#Methods), and the
number of true-positive (ground-truth) trace links (#TP Links).
In selecting these subjects, we used the following three crite-
ria. First, we chose open-source systems to facilitate the re-
production of our experiments by other researchers. Second,
we avoided small systems that are not representative of most
systems handled by developers in practice. The four chosen
systems are all medium-sized systems—we gauged the size of
software in terms of its number of source lines of code (SLOC),
and regarded over 10,000 SLOC as a medium size. We did not
choose very-large ones because using large systems will make
it hard to manually recover and validate their trace links for
ground-truth construction. Third, we chose subjects such that
different granularity levels of trace links are covered. For ex-
ample, the Lynx subject contains method-level trace links (i.e.,
links from requirements to methods) while all the other three
subjects contain class-level trace links (i.e., links from require-
ments to classes).

iTrust2 is an application that provides patients with a means
to keep up with their medical history and records as well as
communicate with their doctors. Lynx3 is a basic textual web
browser entirely written in C. Pooka4 is an e-mail client written
in Java using the JavaMail API. SIP5 is an audio/video Inter-
net phone and instant messenger. These subjects covered both
pre- and post-requirements. Specifically, Pooka, SIP, and Lynx
contain pre-requirement and iTrust contains post-requirements.
In comparison, pre-requirements contain less and more vague
textual information [12], whereas post-requirements are more
detailed.

True-positive (ground-truth) trace links: We manually
created the ground-truth trace links for these subjects. Pooka
and SIP datasets were not specifically created for this study.
Both of the datasets are used in other studies as well [56, 57].
For the sake of completeness, we briefly explain the process
of building trace links for Pooka and SIP. Three Ph.D. students
recovered trace links between the requirements and associated
source code of each subject. All the students have more than 3
years of Java programming experience and similar experience

2http://agile.csc.ncsu.edu/iTrust/
3http://lynx.isc.org/
4http://www.suberic.net/pooka/
5http://www.jitsi.org

in the C programming language. The students read the requi-
rements and manually searched for source code snippets that
implemented corresponding requirements. They used Eclipse
source code search feature to perform source code searches. For
example, if a requirement is related to “send an email” then the
students used such search queries as “send email”, “send mail”,
and “email send” to locate source code snippets that implement
the “send an email” feature. The students stored all manually-
built trace links in a CSV file. Each CSV file contains source
and target document names. Then, three software engineering
professors, who have deep knowledge on software requirements
and RT along with rich experience in Java and C, followed the
same process as the students to link requirements to the source
code. At the end, a majority-voting mechanism was used to
accept or reject such trace links—a link was accepted if two
or three professors agreed on that link being correct. We did
not use, at any point of the process, any automated technique
to build the oracles (ground truth). For iTrust, we used the
traceability oracle provided by the original developers of this
software. For Lynx, we used the traceability oracle provided
by [58]. To facilitate replication and reuse, all our experimen-
tal datasets including the ground-truth trace links are publicly
available6.

4.1.2. Baseline Approaches and Baseline trace links
We have selected two baseline approaches, JSM and VSM,

and took their resulting trace links as the baseline RT results.
The selection of these two techniques as baseline approaches
was motivated by the facts that (1) they were shown to out-
perform peer techniques according to previous comparative
studies on the effectiveness of IR-based traceability approa-
ches [19, 23], and (2) they do not depend on any parametric tu-
ning, hence potentially reducing internal validity threats to our
study results. Table 3 shows the used baseline approaches as
well as their corresponding POS-based approaches, where the
approach subscript denotes the type of used POS, e.g., Adj, Nn,
Vb, Adj+Nn, Adj+Vb, or Nn+Vb. For example, VS MAd j+Vb

denotes the VSM approach using adjectives and verbs as POS
categories.

To recover baseline trace links, we followed the same steps
as described in [7] and [19].

4.2. Hypotheses

The experiments were planned with the purpose of testing
the following hypotheses:

1. Hypothesis 1: To answer RQ1, we use all major POSs and
their combinations to recover trace links. Table 4 shows
the selected POS sub-categories, divided into three main
classes: Adj (adjective), Nn (noun), and Vb (verb). We
compare the average precision (AP) of POS-based (e.g.,
noun-based [11]) RT approaches with the two baseline
(IR-based) approaches. Our null hypothesis is as follows:

6http://factrace.net/nasir/emse/

6

Table 2: Characteristics of Software Systems Used as Experimental Subjects

Subject Version SLOC PL #Reqs #Classes #Methods #TP Links
iTrust 10 19,604 Java 35 218 – 186
Pooka 2.0 244,870 Java 90 298 – 507
Lynx 2.8.5 – C 128 – 2,067 376
SIP 1.0 486,966 Java 82 1,771 – 871

Table 3: Baseline approaches and corresponding POS-based approaches

Baseline approach Corresponding POS-based approach
VSM VSMAd j, VSMNn, VSMVb, VSMAd j+Nn, VSMAd j+Vb, VSMNn+Vb

JSM JSMAd j, JSMNn, JSMVb, JSMAd j+Nn, JSMAd j+Vb, JSMNn+Vb

Table 4: Main and Sub Categories of POS

Main POS Sub Categories of POS
1 Adjectives (Adj) Comparative adjective

Superlative adjective
2 Nouns (Nn) Singular noun

Plural noun
Proper singular noun
Proper plural noun
Personal pronoun
Possessive pronoun

3 Verbs (Vb) Adverb
Comparative adverb
Superlative Adverb
Verb, past tense
Verb, gerund/present participle
Verb, past participle
Verb, non 3rd ps. sing. present

H0- JSM-JSMPOS : There is no statistical difference in
the average preicison of the recovered trace links be-
tween JSM and JSMPOS approaches.

where POS could be Adj, Nn, Vb, Adj+Nn, Adj+Vb, or
Nn+Vb. Similarly, we have six null hypotheses for VSM
also (i.e., H0- VSM-VSMPOS).

2. Hypothesis 2: To answer RQ2, we use our proposed ap-
proach ConPOS to recover trace links and compare the
average precision with baseline IR-based RT approaches
JSM and VSM. For RQ2, we formulate the following null
hypothesis:

H01JS M: There is no statistical difference in the average
precision of the recovered trace links between JSM
and ConPOSJS M .

We have similar null hypotheses H01VS M for VSM.
3. Hypothesis 3: To answer RQ3, we use our proposed ap-

proach ConPOS to recover trace links and compare the
average precision with Nn-based RT approach [11]. For
RQ3, we formulate the following null hypothesis:

H01JS MNn : There is no statistical difference in the average
precision of the recovered trace links between JSMNn

and ConPOSJS M .

We have similar null hypotheses for H01VS MNn .

4.3. Analysis Approach

In this section, we briefly present the used accuracy metrics
and discuss the significance of the statistical analysis.

4.3.1. Accuracy Metrics
In our studies, we use four standard metrics for evaluating the

effectiveness of an IR-based RT approach, as defined below.
Precision is defined as the ratio of the number of relevant

trace links retrieved to the total number of retrieved links by
an approach. If precision is 1 (or 100%) then all the recovered
trace links are relevant ones (i.e., true positives).

Precision =
|{relevant links} ∩ {retrieved links}|

|{retrieved links}|

Recall is defined as the ratio of the number of relevant trace
links retrieved to the total number of relevant trace links. If
recall is 1 (or 100%), then all relevant (true-positive) trace links
have been retrieved by an approach.

Recall =
|{relevant links} ∩ {retrieved links}|

|{relevant links}|

Average Precision: While precision and recall together cap-
ture the accuracy of an RT approach, high accuracy does not
imply that all true-positive links would be placed at the top of
the resulting list of trace links. In fact, it is quite possible that
a RT approach provides better accuracy than other approaches
yet all the true-positive links are down in that list, with which
a developer would have to manually discard false-positive links
before reaching a true-positive link. Thus, beyond high accu-
racy, it also is important to bring the true-positive links up in
the results in order to save developers’ effort. Therefore, to
measure trace link recovery effectiveness, we also consider the
average precision (AP) [59, 60] of true-positive trace links in
the result of a RT approach. We considered all the candidate
links retrieved for a requirement.

7

AP =
1
|R|
•

n∑
i=1

(Prec(i) • relevance(i))

Where:

• |R|: total number of relevant documents

• Prec(i): precision at top i documents

• relevance(i): relevance of the document at rank i, equaling
1 if the document is relevant, 0 otherwise

Mean Average Precision: To compute mean average precision
(MAP) [59, 60], we consider a requirement as a topic/query and
retrieved source code snippets as documents. Thus, MAP for a
set of queries is the mean of the average precision scores for
each query.

MAP =
AP
Q

Where Q is the number of queries.

4.3.2. Statistical Analysis
It is quite possible that an approach has better MAP than the

others, but is the approach statistically significant? To make
sure, improvement in MAP is statistically significant, we per-
form statistical analysis on AP of each requirement. To evalu-
ate the performance of each requirement’s trace, we select AP
metric to accept or reject our null hypothesis. We use each AP
value as a datapoint in our statistical test to measure the signifi-
cant difference of accuracy.

For that purpose, we needed to perform appropriate statisti-
cal tests with respect to the distribution of the datapoints (i.e.,
the metric values). We first used a Shapiro-Wilk test to ana-
lyze the distribution and found that our data set does not follow
a normal distribution. Thus, we chose a non-parametric test
(Mann-Whitney test in this work), which does not require the
underlying data set to be normally distributed, for our hypothe-
sis testing. We use the α = 0.05 to accept or refute null hypot-
heses. We test multiple hypotheses, therefore the likelihood of
incorrectly rejecting a null hypothesis (i.e., making Type-I er-
ror) increases. Therefore, we perform Bonferroni, (i.e., m/α
where, m is total number of null hypothesis), correction on α.
We apply Bonferroni correction by dividing 0.05/6, 0.05/1, and
0.05/1 to adjust α value for Hypothesis-2, and Hypothesis-3 re-
spectively.

4.4. Variables

We use AP as the dependent variable. As per the independent
variables, we use all RT approaches (listed in Table 3) to ve-
rify our first hypothesis and only JSM, VSM, JSMNn, VSMNn,
ConPOSJS M , and ConPOSVS M to verify Hypotheses 2 and 3.

4.5. Experimental Procedure

To verify our first hypothesis (i.e., Hypothesis 1), we pro-
ceeded as follows (see Fig. 2). For each subject, to obtain
trace links from a POS-based approach XPOS , we first tag-
ged all terms in the two input documents (requirements and
source code) using POSSE [17]. Then, we divided each tagged
document D into six segmental documents: DAd j, DNn, DVb,
DAd j+Nn, DAd j+Vb, and DNn+Vb, which contains only adjectives,
nouns, verbs, adjectives and nouns, adjectives and verbs, and
nouns and verbs, of the original document D, respectively. For
example, to generate DNn from D, we removed all terms ot-
her than nouns from D—as a result, the content of DNn may
not consist of complete/readable sentences. Next, we used the
baseline approach (X, which is JSM or VSM) associated with
the POS-based approach (XPOS) to recover trace links from the
two segmental documents. As such, we performed seven trace
link recovery tasks per baseline approach and subject: one task
with the baseline approach itself using the two original input
documents, and six tasks each with one of the six POS-based
approaches corresponding to the baseline approach using the
two segmental documents derived from those two original do-
cuments. As mentioned earlier, in each of these tasks, we ge-
nerated t (where t is total number of requirements) sets of trace
links.

To verify our second and third hypotheses (i.e., Hypothesis 2
and Hypothesis 3) and in addition to precision, recall, and MAP
metrics, we have also computed the improvement percentage7

as an intuitive indicator for improvement. We also adopted the
same statistical analyses as in the exploratory study to measure
the significance of such improvements. We have only consi-
dered three baseline approaches: (i) VSM, representative of
the algebraic family of RT techniques, (ii) JSM, representative
of the probabilistic family of RT techniques, and (iii) the Nn-
based indexing approach to trace link recovery[11], representa-
tive of POS-based RT techniques. We denote as ConPOSVS M

and ConPOSJS M the variants of ConPOS using VSM and JSM
as the IR technique that produces the baseline trace links (be-
fore the constraint-based pruning), respectively. Contrary to
our first experiment, we did not perform POS tagging in source
code because ConPOS does not need/use POS information from
source code. As mentioned earlier, ConPOS only performs POS
tagging in the requirements documents. We adopted the de-
fault constraint in ConPOS (i.e., using verbs as the constraint).
For each of the four studied subjects, we gave the input requi-
rements and source code of the subject to ConPOS as its in-
puts. ConPOS generates the trace links by first computing the
baseline lines using the underlying baseline approach (VSM or
JSM) and then applies the constraint-based pruning with the si-
milarity function, as described in Section 3. ConPOS discards
a baseline trace link if the similarity function returns 0 with that
link. To recover trace links using Nn-based indexing, we follow
the same steps as Capobianco et al. [11]. For each requirements
document and source code file, we tagged the terms in the input

7Given x (new value) and y (base value) the average percentage impro-
vement is computed as: (x−y)

y %

8

Source Code Requirement
Document

Tagging all terms
using POSSE

Generate a document
for each POS tag (adj,

verbs, etc.)

Apply JSM or VSM on
each document

Generate trace link
sets

Figure 2: Procedure for verifying Hypothesis 1

text using the POSSE tagger and only kept the terms that are
tagged as nouns. Finally, the baseline trace links from JSM and
VSM were drawn from our first experiment.

4.6. Experimental Results

This section presents the results of our experimental studies
as guided by the three research questions defined earlier.

4.6.1. RQ1: Does removing any POS improve the accuracy of
IR techniques?

The effectiveness results of the baseline IR-based approaches
and corresponding POS-based approaches are listed in Table 7.
Moreover, Figure 5 depicts the effectiveness results for all the
threshold points we considered for a deeper analysis. Figure 6
provides an overview of an AP.

As shown in Table 7, in 83% (120/144) of the cases, using a
single POS or combination of two of the POS provides signi-
ficantly lower accuracy than a baseline RT approach (VSM or
JSM). For AP metric, only 12.5% of the times results were sig-
nificant. Thus, we cannot reject our null hypotheses H0- JSM-
JSMPOS and H0- VSM-VSMPOS for all the comparisons. These
results suggest that all the POS are important to recover RT
trace links. However, some POS are more important than ot-
hers. Results show that nouns and verbs are better discrimina-
tors of a document than other kinds of POS [51, 39]. However,
excluding adjectives could cause loss of semantic information
and negatively impacts the accuracy of IR-based RT approa-
ches. For example, in the case of JSMNn+Vb and VSMNn+Vb,
62.5% (5/8), 62.5% (5/8), and 50% (4/8) of the cases using only
Nn+Vb improved precision, recall, and MAP, respectively. In
the case of iTrust and Lynx, excluding any POS negatively af-
fected the precision and the AP. Only in some of the cases for

iTrust and Lynx, recall was improved. Next, we discuss the
effect of each POS on IR-based RT-link recovery in detail.

Adjectives only:. Table 7 shows that in all the cases using only
Adjs provides lower accuracy than the baseline IR-based RT
approaches. Adj provides extra information about a noun an-
d/or a verb. Thus, removing nouns and verbs left the input text
with incomplete information. Consequently, incomplete textual
information led to lower accuracy. Figure 5 and Figure 6 show
that keeping only adjectives in the source code documents pro-
vides the lowest accuracy compared to baseline RT approaches
and other POS-based approaches.

Nouns only:. We also compare baseline RT approaches with
the heuristics proposed by Capobianco et al. [10, 11]. Capobi-
anco et al. [11] only considered Nns to remove the noise from
the data. Their results show that in some cases (e.g., tracea-
bility from UML interaction diagrams to source code classes),
Nn-based indexing did not provide any better results than an
IR-based technique. The results of our exploratory study show
that Nn-based indexing, in 21% (5/24, in the table for the rows
JSMNn and VSMNn) of the cases, improve the accuracy of IR-
based RT approaches. The results show that 79% (19/24) of the
cases Nn-based indexing provides lower accuracy than baseline
RT approaches.

Additionally, in all the cases, by averaging the precision of
POS-based approaches was always lower than that of the corre-
sponding baseline IR-based approach. However, in 73% cases,
using only Nns provides slightly better recall and MAP than
the baseline technique. Figure 5 shows that the Nn-based RT
approach provides better results only at some threshold points
compared to the baseline approach. Figure 6 shows that Nn-
based RT approach has similar AP as VSM.

Verbs only:. In the case of using only verbs, we observed a
drastic decrease in both precision, recall, MAP values, in com-
parison to the corresponding baseline. We examined the tagged
verbs of source code documents and requirements and found
that due to the lack of context many of the verbs in source code
documents were tagged as adjectives or nouns (e.g., “access”,
“open”, and “show”). Thus, removing adjectives and nouns
caused loss of semantic information, hence poor accuracy. This
observation supports our conjecture that without proper contex-
tual and grammatical information, a POS tagger could incor-
rectly tag source code terms. The worst-case results were seen
with Lynx when using verbs only. One reason could be that
the selected POS-tagger has lower accuracy on C source code,
as shown by Gupta et al. [17]. In addition, Lynx has method
bodies used as source-code documentation, with which there
is little textual information available and very few terms were
tagged as verbs.

POS combinations:. In 58% (14/24) of the cases, using
nouns+verbs provides better results than the baseline RT ap-
proach. Only in the case of Pooka, for all accuracy matrices,
removing a POS (adj) provides slightly better results than the
baseline IR techniques. (For brevity, we discuss in detail the

9

0 20 40 60 80 100

0
20

40
60

80
10

0

JSM
ConPOSJSM

(a) iTrust

0 20 40 60 80 100

0
20

40
60

80
10

0

VSM
ConPOSVSM

(b) iTrust

0 20 40 60 80 100

0
20

40
60

80
10

0

JSM
ConPOSJSM

(c) Lynx

0 20 40 60 80 100

0
20

40
60

80
10

0

VSM
ConPOSVSM

(d) Lynx

0 20 40 60 80 100

0
20

40
60

80
10

0

JSM
ConPOSJSM

(e) Pooka

0 20 40 60 80 100

0
20

40
60

80
10

0

VSM
ConPOSVSM

(f) Pooka

0 20 40 60 80 100

0
20

40
60

80
10

0

JSM
ConPOSJSM

(g) SIP

0 20 40 60 80 100

0
20

40
60

80
10

0

VSM
ConPOSVSM

(h) SIP

Figure 3: Precision (y axis) and recall (x axis) of ConPOSJS M versus JS M and ConPOSVS M versus VS M on the four subjects, with the similarity threshold t
varying from 0.01 to 1 by step of 0.01.

10

JSM ConPOSJSM

0
20

40
60

80
10

0

(a) iTrust

VSM ConPOSVSM

0
20

40
60

80
10

0

(b) iTrust

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

JSM ConPOSJSM

0
20

40
60

80
10

0

(c) Lynx

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

VSM ConPOSVSM

0
20

40
60

80
10

0

(d) Lynx

JSM ConPOSJSM

0
20

40
60

80
10

0

(e) Pooka

●

●

●

VSM ConPOSVSM

0
20

40
60

80
10

0

(f) Pooka

●

●

JSM ConPOSJSM

0
10

0
20

0
30

0
40

0

(g) SIP

●

●

●

VSM ConPOSVSM

0
10

0
20

0
30

0
40

0

(h) SIP

Figure 4: Distribution of average precision (AP) (y axis) of ConPOSJS M versus JS M and ConPOSVS M versus VS M (x axis) on the four subjects.

11

results on Pooka and with one baseline VSM only; similar, de-
tailed results on other subjects and with the other baseline JSM
are all available online6).

Figure 5 and 6 shows that using Nn+Vb provides better re-
sults on all the threshold points. In fact, Pooka is the only sub-
ject out of the four studied with which we observed this consis-
tent contrast.

Our results show that removing any POS could cause loss of
semantic information and consequently negatively affects the
accuracy of IR-based RT approaches. To the best of our know-
ledge, this is the first study that shows that all POSs are impor-
tant for an IR-based technique to recover trace links.

Results of our exploratory study support our conjecture
that excluding any POS from software artifacts could
negatively affect the accuracy of IR-based trace link re-
covery techniques.

4.6.2. RQ2: Does ConPOS lead to better accuracy than IR-
based RT approaches?

Figure 3 depicts the precision and recall of ConPOSJS M ,
ConPOSVS M versus JSM and VSM, respectively. The charts
show that ConPOS achieved constantly higher effectiveness
than both baseline techniques. It is worth noting that the ad-
vantage of ConPOS was exhibited at any of the 100 threshold
points, although the magnitude of improvement varied with dif-
ferent thresholds.

In the cases of Lynx and SIP, at threshold 0 ConPOS missed
five (1.5%) and three (0.33%) true-positive links, respectively,
which led to low recall at that threshold point. We further ex-
amined these bad cases and found that in all true-positive links
that ConPOS missed the source code entities implementing the
corresponding requirement do not use any verbs tagged from
the requirement. In consequence, those links were discarded by
ConPOS since it used verbs as the default constraint for pru-
ning. On the other hand, however, for Lynx and SIP ConPOS
was able to remove up to 82% and 70% of false-positive links,
respectively, at the cost of missing only few true positive links.

Table 5 summarizes average precision and recall achieved by
the two variants of ConPOS and the two baseline approaches,
along with the magnitude of improvements of each variant of
ConPOS over its corresponding baseline approach (as shown in
the parentheses). Overall, ConPOS improved the accuracy, on
average, by up to 107% in precision, 64% in recall, and 170%
MAP over the baseline approaches. We further performed the
statistical tests as described in Section 4.3.2 to verify whet-
her or not the average improvements are statistically significant.
Our statistical analysis results provided sufficient evidence to
reject all the null hypotheses related to RQ2: in any of the com-
parisons, the difference between ConPOS and the compared IR-
based approach was statistically significant as supported by the
fact that the p-values of all corresponding statistical tests were
well below the standard significant value (i.e., 0.05).

These results show that using verbs as constraints can greatly
enhance the accuracy of an IR-based RT technique in recove-
ring trace links.

ConPOS provides 107%, 64%, and 170% better pre-
cision, recall, and MAP, respectively, than both base
approaches VSM and JSM.

Table 5 summarizes the MAP. Figure 4 gives the distribution
of the AP of all true-positive trace links. The boxplots confir-
med that ConPOS always placed true-positive links at higher
ranks, potentially saving the effort of practitioners in inspecting
the RT results. Moreover, ConPOS lowered the rankings of
true-positive links substantially compared to the two IR-based
baseline approaches. Note that here the smaller the ranking
numbers, the higher the ranks (i.e., the higher the true-positive
links were placed in the ranked list), hence the better. For exam-
ple, in the case of Lynx (VSM), on average, ConPOSVS M raised
the rank of true-positive trace links up from 23.88 to 6.20.

On average, ConPOS decreased the ranking of true-
positive trace links by (67%-74%); thus, it places true-
positive trace links substantially higher in ranked lists
when compared to the baseline IR-based RT approa-
ches.

4.6.3. RQ3: How does the accuracy of the trace links recove-
red by ConPOS compare with a noun-based indexing
approach?

Table 6 shows average precision, recall, and MAP of Con-
POS (including its variants ConPOSJS M and ConPOSVS M) and
Nn-based indexing approaches (VSMVn and JSMVn). Results
show that ConPOS provides 11%-107%, 8%-64%, and 15%-
170% better precision, recall, and MAP, respectively, than the
Nn-based indexing approach, which missed quiet a few true-
positive links at 0 threshold. Additionally, putting together
this table and the exploratory study results in Tables 7 reveals
that ConPOS is not only more effective than Nn-based index-
ing approaches, but also more effective than IR-based approa-
ches with input documents from which other types of POS (Vb
and Adj) or different combinations of POS (Adj+Vb, Adj+Nn,
Vb+Nn) are removed.

Further, results of our statistical analyses (same as those for
RQ2) suggest rejecting all the null hypotheses related to RQ3:
in any of the comparisons, the difference between ConPOS and
compared Nn-based indexing approach was statistically signifi-
cant as per the p value being far below the standard significant
value 0.05.

ConPOS provides 11%-107%, 8%-64%, and 15%-
170% better precision, recall, and MAP, respectively,
and decreased the rank of true-positive trace links by
67%-74%, than the Nn-based indexing approach.

In summary, as corroborated by our substantial empirical
evidences, ConPOS achieves constantly better effectiveness,
in terms of any of the three metrics (precision, recall, and
MAP of true-positive links), than any of the baseline approa-
ches we studied, with strong statistical significance. The key
of the ConPOS approach is augmenting IR techniques with
constraint-based pruning with the full use of POS information

12

Table 5: Average precision, recall, and MAP of ConPOS versus the two IR-based baseline approaches (JSM and VSM), along with the average percentage of
improvement of ConPOS over the baseline in each of these effectiveness metrics (in the parentheses). For all comparisons, p-values are below α = 0.05.

Precision (%) Recall (%) MAP
VSM ConPOSVS M VSM ConPOSVS M VSM ConPOSVS M

iTrust 48.89 67.56 (38%+) 23.40 27.78 (19%+) 0.27 0.46 (70%+)
Lynx 65.85 74.46 (13%+) 38.26 41.31 (8%+) 0.63 0.74 (17%+)
Pooka 41.31 63.96 (55%+) 10.70 17.56 (64%+) 0.23 0.47 (104%+)
SIP 14.14 29.29 (107%+) 13.06 19.16 (47%+) 0.12 0.29 (142%+)

JSM ConPOSJS M JSM ConPOSJS M JSM ConPOSJS M

iTrust 34.70 49.92 (44%+) 40.58 46.25 (14%+) 0.33 0.48 (45%+)
Lynx 60.30 66.68 (11%+) 41.35 44.76 (8%+) 0.60 0.69 (15%+)
Pooka 32.24 56.67 (76%+) 12.69 19.94 (57%+) 0.17 0.41 (141%+)
SIP 18.45 29.43 (60%+) 17.07 23.75 (39%+) 0.10 0.27 (170%+)

Table 6: Precision, recall, and MAP of ConPOS versus the Nn-based indexing approach as the baseline, along with the average percentage of improvement of
ConPOS over the baseline in each of these effectiveness metrics (in the parentheses).

Precision (%) Recall (%) MAP
VSMNn ConPOSVS M VSMNn ConPOSVS M VSMNn ConPOSVS M

iTrust 36.79 67.56 (84%+) 24.93 27.78 (11%+) 0.25 0.46 (84%+)
Lynx 45.13 74.46 (65%+) 36.17 41.31 (14%+) 0.43 0.74 (72%+)
Pooka 35.17 63.96 (82%+) 13.02 17.56 (35%+) 0.19 0.47 (147%+)
SIP 8.40 29.29 (249%+) 16.51 19.16 (16%+) 0.10 0.29 (190%+)

JSMNn ConPOSJS M JSMNn ConPOSJS M JSMNn ConPOSJS M

iTrust 27.36 49.92 (82%+) 42.95 46.25 (8%+) 0.26 0.48 (85%+)
Lynx 39.95 66.68 (67%+) 39.03 44.76 (15%+) 0.42 0.69 (64%+)
Pooka 26.05 56.67 (118%+) 14.75 19.94 (35%+) 0.16 0.41 (156%+)
SIP 8.15 29.43 (261%+) 22.54 23.75 (5%+) 0.09 0.27 (200%+)

(in both requirements and source code for the IR technique
to produce baseline trace links, and in the requirements only
for the constraint-based pruning to largely remove false positi-
ves). Pruning the baseline links with a particular type of POS
used as the constraint turned out to be very effective. This fin-
ding implies that the baseline approach produces a lot of false-
positive links, possibly because of the inaccurate POS tagging
in the source code—note that again during the constraint-based
pruning, ConPOS does not tag source code but only tags the
requirements, thus overcomes the limitations of existing POS
taggers. Moreover, ConPOS improves in the rankings of true-
positive links as well, which can be largely attributed to the
use of the degree of matching between requirements and source
code (i.e., λ) as a reward in the constraint-based similarity
function of ConPOS. Note that the use of this reward turned
out to increase the recall of ConPOS versus the baseline appro-
aches; some of the links that would be cut off (as their simila-
rity score fell below the threshold) were recovered by ConPOS
since the reward led to higher similarity score for those links.

5. Discussion

We now provide in-depth analysis of our proposed approach
and discuss observations from our empirical evaluation of Con-
POS.

5.1. Discarding False-Positive Links

ConPOS not only helps to improve the accuracy of IR-based
RT approaches but it also automatically removes up to 82% of
false-positive links. Figure 7 shows the percentage of all remo-
ved false-positive links. For Lynx, ConPOS removes more (hig-
her percentage of) false-positive links than for the other three
subjects (especially than for Pooka and SIP).

We also observed that for Lynx ConPOS mistakenly removed
five (1.5%) true-positive links (because the source code entities
implementing linked requirements do not contain any verbs tag-
ged in the requirements, as explained in Section 4.6). However,
on average ConPOS rightly removed up to 82% false-positive
links at the cost of only missing a few of true-positive links.
Another finding is that generally the constraint-based trace link
pruning (at the core of ConPOS) had almost the same effects
on JSM and VSM, albeit with iTrust and SIP ConPOSVS M re-
moved slightly higher percentages of false-positive trace links
than ConPOSJS M while with the other two subjects the contrast
is reversed (also with very-small differences).

Recall that the Lynx datasets contain trace links between re-
quirements and source code at the level of methods, while the
trace links are all at class level for the other subjects. Interes-
tingly, ConPOS tends to remove more false-positive links on
a finer-grained granularity level than on a coarser-grained gra-

13

Table 7: Effectiveness (precision, recall, and MAP) of baseline IR-based approaches and corresponding POS-based approaches. Reported values are average of all
the precision and recall computed on threshold t varying from 0.01 to 1 by step of 0.01. Reported MAP values are independent of any threshold. Boldface indicates
a POS-based approach’s result that improves over that of the corresponding IR-based baseline approach.

Precision Recall MAP
iTrust Lynx Pooka SIP iTrust Lynx Pooka SIP iTrust Lynx Pooka SIP

VSM 48.89 65.85 41.31 14.14 23.40 38.26 10.70 13.06 0.2679 0.6272 0.2267 0.1217
VSMAd j 14.65 0.09 6.34 2.13 15.85 0.845 1.98 1.385 0.1268 0.0006 0.0125 0.0073
VSMNn 36.79 45.13 35.17 8.40 24.93 36.17 13.02 16.51 0.2499 0.4349 0.1909 0.1028
VSMVb 30.50 0.59 16.97 10.20 12.72 0.94 6.09 9.26 0.1481 0.0123 0.0914 0.0695
VSMAd j+Nn 41.94 53.81 28.01 13.52 24.37 36.45 10.30 16.14 0.2701 0.4906 0.2025 0.1057
VSMAd j+Vb 31.43 0.42 18.52 22.56 18.19 1.53 5.53 8.35 0.1978 0.0057 0.0926 0.0657
VSMNn+Vb 39.07 60.09 52.68 15.58 23.26 38.87 14.49 16.45 0.2635 0.5494 0.2561 0.1282
JSM 34.70 60.30 32.24 18.45 40.58 41.36 12.69 17.07 0.3253 0.6018 0.1656 0.1032
JSMAd j 10.53 0.09 5.46 1.50 31.69 1.12 2.21 1.79 0.1400 0.0006 0.0138 0.0073
JSMNn 27.36 39.95 26.05 8.15 42.95 39.03 14.75 22.54 0.2600 0.4155 0.1617 0.0909
JSMVb 28.54 0.25 14.70 10.52 22.94 1.08 7.67 13.71 0.1708 0.0025 0.0900 0.0711
JSMAd j+Nn 30.32 45.41 24.72 10.00 42.59 40.93 11.02 21.15 0.2944 0.4655 0.1594 0.0958
JSMAd j+Vb 32.21 0.24 24.82 17.66 31.57 2.42 6.40 12.16 0.2334 0.0040 0.0913 0.0688
JSMNn+Vb 35.19 52.26 41.67 16.95 40.61 43.77 16.30 20.84 0.3022 0.5486 0.2176 0.1368

0 20 40 60 80 100

0
20

40
60

80
10

0

VSM
Adj
Nn
Vb
Adj+Nn
Adj+Vb
Nn+Vb

Figure 5: Precision (y axis) and recall (x axis) of trace links for Pooka produced
by VSM and corresponding POS-based approaches (listed in the legend), with
the threshold t varying from 0.01 to 1 by step of 0.01.

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

VSM Adj Nn Vb Adj+Nn Adj+Vb Nn+Vb

0
50

10
0

15
0

Figure 6: Distribution of average precision (AP) of true-positive links (y axis)
among all trace links for Pooka produced by VSM and corresponding POS-
based approaches (x axis)).

14

Figure 7: Percentage of false-positive trace links removed by ConPOS.

nularity level (e.g, class level). On the other hand, however,
ConPOS tends to provide better accuracy on the coarser-grained
granularity level than on the finer-grained granularity level. Ho-
wever, we cannot generalize this finding. This is because we
would need more fine-grained datasets to do so, which is part
of our future work (i.e., applying ConPOS to recover trace links
at a larger variety of granularity levels each with a larger num-
ber of data samples).

5.2. Alternative Choices of Constraint (Nn and Adj)

While by default we use verbs as the constraint in ConPOS,
ConPOS allows for any other types of POS to be used as the
constraint as well. As we mentioned earlier, the justification
for choosing verbs as the default constraints is that verbs define
actions in requirements, thus the source code entity must im-
plement the action of a requirement and/or an action term of a
requirement must be present in the source code entity. In our
evaluation study, we used the default type of constraint. Our
evaluation results show that using a constraint on verbs provi-
des better precision, recall, and MAP than VSM, JSM, and the
Nn-based indexing approach. To understand the impact of the
choice of constraint, we further studied two alternative choices:
using Nn or Adj as the constraint in ConPOS. For example, with
Nn used as the constraint, ConPOS approves an trace link if a
noun (e.g., “email”) that appears in a requirement is also present
in the source code entity linked to that requirement; otherwise,
the trace link will be pruned. We refer to this as ConPOSX.y the
variant of ConPOS using X as the baseline IR-based technique
with the type y of POS as constraint, where X ∈ {VS M, JS M}
and y ∈ {Nn,Vb, Ad j}.

Table 8 shows that defining constraints on nouns led to slig-
htly better precision 25% (2/8) of the cases, recall 75% (6/8)
of the cases, and MAP 38% (3/8) of the cases, than the base-
line RT approaches. Only for SIP (ConPOSJS M), using nouns
as constraint brought higher recall than the baseline and using
constraint on verbs. In most of the cases, at t = 0, the total num-
ber of trace links recovered by ConPOS is almost the same as
the baseline RT approaches, regardless of which types of POS
is used as constraint.

We observed that nouns are a very common type of POS in
the input documents, which explains why using constraints on
nouns could not remove false-positive links substantially. For
example, in the requirement of “Email client shall open and
display a message in a single window”, using a constraint on
the term “message” will not help remove false-positive links
to source code entities containing “receive, send, delete messa-
ges”. Because ConPOS (using nouns as constraint) will find
a matched noun (i.e., “messages”) in a class responsible for
receiving, sending, and deleting messages. Therefore, using
constraints on nouns can provide better accuracy but may not
remove significant numbers of false-positive links.

For a deeper analysis, Figures 8 and 9 show the detailed
effectiveness results (for all the 100 threshold points) on one
of the four subjects Pooka with VSM used as the baseline IR
technique for ConPOS. The results show that defining con-
straints on nouns produced better precision and recall for this
subject at some threshold points only in comparison to the ba-
seline. In contrast, for this particular subject, defining con-
straints on adjectives did not produce better precision and re-
call; it led to higher precision and recall only at a couple of
threshold points.

In all, defining constraints on adjectives or nouns never resul-
ted better results than defining constraints on verbs for the pro-
posed ConPOS approach. Our results reveal that defining con-
straints could improve the effectiveness of baseline RT approa-
ches for a variety of constraint choices, yet the most effective is
to use verbs as constraint as the default option of ConPOS.

5.3. Other Observations
Typically POS taggers tag a term based on the context and

grammar of a sentence. For example, a requirement for Pooka
is “Email client shall open and display a message in a single
window”. Here the term “open” is an action and POS tagger
tagged it as a verb. MessageFrame.java is the source code file
responsible to implement the requirement. POS tagger tagged
term “open” as an adjective based on the context in the source
code file. Thus, in the case of only noun and verbs, removing a
term “open” from source code file caused low similarity value
between a requirement and source code file. The low similarity
value pushed true-positive links down in the ranked list.

A source code document is a mixture of some terms without
any context and proper grammar. A POS tagger could incor-
rectly tag terms because of missing context and proper English
sentences. Filtering terms from source code entities based on
POS tagger could remove some important semantic informa-
tion, and thus lead to inaccurate tagging by the POS tagger.
Capobianco et al. [10, 11] also observed that in some cases in-
correct POS tagging caused poor accuracy.

Therefore, our proposed approach ConPOS only uses POS
tagger on requirements and look for the same terms, tagged as
verbs, in the source code. We are not concerned whether the
same verb is tagged as a verb in a source code entity. For ex-
ample, in our previous example, ConPOS will recover a link
between the requirement and MessageFrame.java because
MessageFrame.java contains the term “open”. It is quite pos-
sible that using such a constraint may not remove all false posi-

15

Table 8: Effectiveness (precision, recall, and MAP) of ConPOS variants using different POS as constraint versus baseline IR-based approaches. CP is short for
ConPOS. Boldface indicates a ConPOS approach’s result that improves over that of the corresponding IR-based baseline approach.

Precision (%) Recall (%) MAP
iTrust Lynx Pooka SIP iTrust Lynx Pooka SIP iTrust Lynx Pooka SIP

VSM 48.89 65.85 41.31 14.14 23.40 38.26 10.70 13.06 0.27 0.63 0.23 0.12
CPVS M.Vb 67.56 74.46 63.96 29.29 27.78 41.31 17.56 19.16 0.46 0.74 0.47 0.29
CPVS M.Ad j 49.82 65.22 41.85 17.47 26.07 17.33 5.16 11.95 0.27 0.30 0.13 0.11
CPVS M.Nn 35.58 62.42 35.98 7.73 29.84 29.50 10.96 18.02 0.27 0.45 0.23 0.13
JSM 34.70 60.30 32.24 18.45 40.58 41.36 12.69 17.07 0.33 0.60 0.17 0.10
CPJS M.Vb 49.92 66.68 56.67 29.43 46.25 44.76 19.94 23.75 0.48 0.69 0.41 0.27
CPJS M.Ad j 33.13 57.30 33.69 20.19 45.52 19.47 6.285 16.11 0.33 0.29 0.10 0.11
CPJS M.Nn 29.39 56.48 32.47 20.35 51.30 31.67 12.96 20.83 0.33 0.44 0.18 0.15

0 20 40 60 80 100

0
20

40
60

80
10

0

VSM
ConPOSVSM.Adj

ConPOSVSM.Nn

Figure 8: Precision (y axis) and recall (x axis) of ConPOS using VSM and
the baseline approach on the Pooka subject, with various types of POS used as
constraint for ConPOS and with the threshold t varying from 0.01 to 1 by step
of 0.01.

●

●

●

VSM ConPOSVSM.Nn ConPOSVSM.Adj

0
20

40
60

80
10

0

Figure 9: Distribution of average precision (AP) of true-positive links of Con-
POS using VSM and the baseline approach on the Pooka subject, with various
types of POS used as constraint for ConPOS.

16

tive links. Nevertheless, our evaluation study has shown that the
constraint-based pruning in ConPOS can drastically improve
the effectiveness in recovering trace links over all the baseline
RT approaches we considered.

5.4. Comparison with related work

Our conjecture stems from the work of Capobianco et al. [10,
11]. We conjecture that source code entities are mixture of
terms without any context and proper grammar. A POS tag-
ger could tag a term incorrectly because of the missing context
and grammar. Thus, discarding terms based on incorrect POS
tagging could yield semantic information loss. In addition, a
verb defines the action of a requirement and removing verbs
and only keeping nouns from a requirement could produce more
false positive links.

The work presented in this paper is different from the heuris-
tics proposed by Capobianco et al. [10, 11]. We do not discard
any POS from the documents because we conjecture all POS
contain important semantic information. We use POS of requi-
rements to define some constraints on the trace links to discard
false positive trace links. In addition, to the best of our kno-
wledge, this paper is the first attempt to analyze the impact of
various POS, i.e., adjectives, nouns, and verbs, on RT.

Table 9 shows the summary of the related work. The column
POS Tagging on SD and POS Tagging on TD in Table 9 shows
whether the proposed approach use POS tagging on source and
target documents. Existing POS taggers are not 100% accu-
rate yet [17]. Thus, as opposed to existing work, we did not
tag source code identifiers in this paper. Many researchers have
used POS to improve IR techniques accuracy to perform vari-
ous software maintenance [39, 64, 11, 12, 46, 63, 63]. For ex-
ample, [65, 66, 61] integrated POS information in a term weig-
hting scheme to improve the accuracy of IR techniques. The
column Combination of POS in Table 9 shows whether the ex-
isting works have explored the impact of a single, multiple, or
a combinations of different POS on recovering trace links. The
column Constraint on POS shows whether existing works have
used any kind of constraint on a POS. The work presented in
this paper is complementary to existing IR-based techniques be-
cause it uses current state-of-the-art techniques to recover links
and uses a constraint on POS to filter out false-positive links
and improve the accuracy.

6. Threats to Validity

Some threats could potentially limit the validity of our expe-
riments. We now discuss potential threats and how we control
or mitigate them, following the categorization of validity threats
proposed in [52].

Construct validity. Construct validity concerns the relation be-
tween theory and observations [52]. To mitigate construct va-
lidity threats, in our empirical study, we used widely adopted
metrics, precision, recall, and MAP, to assess various baseline
techniques and ConPOS as well as the improvement achieved
by ConPOS. The ground-truth trace links (traceability matrix)

used to evaluate the tracing accuracy is another threat to the
construct validity of our results. These links were created by
a few students at a local institution, thus the validity of the
ground-truth is potentially subject to human biases or mistakes.
To mitigate this threat, after the students manually recovered
the trace links, two professors verified their results to reduce
the possibility of errors in the dataset. The ground-truth links
were all approved by the professors before they were used in
our studies. Also, all but one of the participants who created
the oracles were unaware of the purpose of this process or de-
tails about this work. Finally, for iTrust, we used the oracle
recovered by the original developers of this software. The de-
velopers of iTrust were not aware of the goal of our empirical
study either.

Internal Validity. The internal validity of the study is the ex-
tent to which a treatment affects change in the dependent varia-
ble [54, 52]. The internal validity of our empirical study could
be threatened by our choice of verb for the constraint used in
ConPOS: constraints using other types of POS could lead to
different results. To mitigate this threat, we performed more
experiments (i.e., constraints on nouns and adjectives) to ex-
amine the impact of the choice of constraints in ConPOS on
its effectiveness and found that using verbs as constraint pro-
vides the best results. The choice of source code tagger could
also impact our empirical study results; hence the use of a dif-
ferent POS tagger might lead to different results. To mitigate
this threat, we used POSSE [17], an effective source code POS
tagger that outperforms other existing POS taggers, as shown
by the authors [17]. However, in general, the POS taggers are
not 100% accurate yet. Thus, using more accurate POS taggers
in future could lead to better/different results relative to ours.

External Validity. The external validity of the study relates to
the extent to which we can generalize its results [54, 52]. Our
empirical study is limited to four datasets iTrust, Lynx, Pooka,
and SIP. Yet, our approach is applicable to any other software
systems. However, we cannot claim that the same results would
be achieved with other systems. Different systems with diffe-
rent POS, requirements, reverse engineering tools, and source
code may lead to different results. However, the four selected
datasets have different POS information, requirements, and
source code quality. Our datasets selection reduces the threat
to external validity. However, more studies, preferably on in-
dustrial datasets, are required to generalize the results of our
empirical study.

Another possible threat to external validity lies in the poten-
tial biases due to the fact that we used the same set of experi-
mental data (subjects and corresponding ground-truth links) for
both the empirical validation of ConPOS (that addressed RQ2
and RQ3) and the study (the exploratory study that addressed
RQ1) that motivated the development of ConPOS. However,
we only drew observations from the exploratory study to moti-
vate the design of ConPOS, yet ConPOS itself did not directly
use any parameters derived from the exploratory study, nor does
ConPOS’s internal workings depend/rely on any findings from
that study.

17

Table 9: Comparison between ConPOS and related works. PREQ: POS tagging on requirements document; PSRC tagging on source code; CombP: combinations
of POS; PCon: POS used as constraint.

Adjectives Nouns Verbs PREQ PSRC CombP PCon Tasks

This work ! ! ! ! ! ! Traceability
[11] ! ! ! Traceability
[61] ! ! ! Traceability
[47] ! ! ! Traceability
[62] ! ! ! ! Feature Location
[12] ! ! ! Feature Location
[46] ! Bug Report Assignment
[63] ! Tag Recommendation

In addition, we concluded that removing POS can negatively
impact the effectiveness of IR-based RT approaches, which is
almost contradictory to the conclusion in previous work [11]
that discarding some POS information can help improve the
accuracy of IR-based RT approaches. A possible threat to our
conclusion is that the drastic difference could be partially con-
nected to the fact that we used a different set of subjects and
a different POS tagger from what was used in that work. Ho-
wever, we attempt to use the best POS tagger (POSSE) in the
literature (as claimed by the authors of the tagger) at the time
this work was undertaken (The POSSE authors also acknowled-
ged that this tagger can be inaccurate in tagging source code,
yet is still more accurate in doing so than peer taggers at the
time). Ideally, we should have used the same experimental da-
taset as used in [11]. However, we could not use their datasets
for requirements to code traceability because the datasets are in
Italian.

Conclusion validity. Conclusion validity threat deals with the
relation between the treatment and the outcome [52]. We miti-
gate this threat by paying attention to the distribution of our em-
pirical study results. We verified the data distribution of our re-
sults using Shapiro-Wilk test. We further used a non-parametric
statistical test (i.e Mann-Whitney), because our performance of
the Shapiro-Wilk test revealed that our data is not normally dis-
tributed.

7. Conclusion

In this paper, we propose a novel approach, called ConPOS,
to recover trace links using constraint-based pruning. ConPOS
uses all major POS categories and applies constraints on top of
the recovered trace links for pruning as a filtering process that
can significantly improve the effectiveness of IR-based techni-
ques in recovering trace links. To demonstrate that excluding
one or more POSs from software artifacts could negatively im-
pact the accuracy of IR-based RT techniques, we conducted an
empirical study to verify this conjecture, and our results show
that indeed having more semantic information (i.e., all POS)
is better for effectively recovering trace links. One of the rea-
sons could be that POS taggers used on source code identifiers

are not 100% accurate yet. Thus, using POS on source code to
recover trace links may not be very effective.

In addition, we conducted two empirical studies to evaluate
the effectiveness of ConPOS in recovering trace links compared
to existing peer RT approaches. Results show that constraint-
based pruning (as the core of ConPOS) can bring significant
improvement in every aspect of effectiveness (precision, recall,
and MAP of true-positive links) over existing IR-based RT ap-
proaches and approaches that removed one or more POSs from
input documents. Furthermore, we also found that using verbs
as the constraint is the most effective choice of the constraint
for ConPOS.

In the future, we plan to integrate ConPOS with other RT ap-
proaches, e.g., LSI and LDA, to analyze the improvement made
by ConPOS. We also plan to perform a user study to analyze
how effectively ConPOS helps developers recover trace links
and how much time it saves for developers. To generalize the
finding of this paper, we plan to perform more extensive empi-
rical studies, preferably on industrial datasets and with hetero-
geneous types of software artifacts. We observed in a couple of
cases, that only keeping nouns slightly improved recall. In fu-
ture, we plan to analyze a wide variety of datasets to find pattern
characterizing the cases where removing a POS could improve
the accuracy of an IR approach.

Acknowledgment

We thank Samir Gupta, Sana Malik, Lori Pollock and K.
Vijay-Shanker for providing us their POS tagger tool.

References

[1] O. C. Z. Gotel, C. W. Finkelstein, An analysis of the requirements trace-
ability problem, 1st International Conference on Requirements Engineer-
ing (1994) 94–101.

[2] J. Cleland-Huang, M. Heimdahl, J. H. Hayes, R. Lutz, P. Maeder, Trace
queries for safety requirements in high assurance systems, in: Require-
ments Engineering: Foundation for Software Quality, Springer, 2012, pp.
179–193.

[3] J. Hill, S. Tilley, Creating safety requirements traceability for assuring and
recertifying legacy safety-critical systems, in: 18th IEEE International
Requirements Engineering Conference (RE), IEEE, 2010, pp. 297–302.

18

[4] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. Maletic, P. Mäder, Tracea-
bility fundamentals, in: J. Cleland-Huang, O. Gotel, A. Zisman (Eds.),
Software and Systems Traceability, Springer London, London, 2012, pp.
3–22. doi:10.1007/978-1-4471-2239-5_1.
URL https://doi.org/10.1007/978-1-4471-2239-5_1

[5] T. C. Lethbridge, J. Singer, A. Forward, How software engineers use do-
cumentation: The state of the practice, IEEE software 20 (6) (2003) 35–
39.

[6] T. Gorschek, M. Svahnberg, Requirements experience in practice: Studies
of six companies, in: Engineering and Managing Software Requirements,
Springer, 2005, pp. 405–426.

[7] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo, Recovering
traceability links between code and documentation, IEEE Transactions
on Software Engineering 28 (10) (2002) 970–983. doi:10.1109/TSE.
2002.1041053.
URL http://dx.doi.org/10.1109/TSE.2002.1041053

[8] N. Ali, Y.-G. Guéhéneuc, G. Antoniol, Trustrace: Mining software repo-
sitories to improve the accuracy of requirement traceability links, IEEE
Transactions on Software Engineering 39 (5) (2013) 725–741. doi:

10.1109/TSE.2012.71.
URL http://dx.doi.org/10.1109/TSE.2012.71

[9] N. Ali, Y.-G. Gueheneuc, G. Antoniol, Requirements traceability for
object oriented systems by partitioning source code, in: Proceedings
of the 2011 18th Working Conference on Reverse Engineering, WCRE
’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 45–54.
doi:10.1109/WCRE.2011.16.
URL http://dx.doi.org/10.1109/WCRE.2011.16

[10] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella,
On the role of the nouns in ir-based traceability recovery, in: 17th IEEE
International Conference on Program Comprehension (ICPC’09), IEEE,
2009, pp. 148–157.

[11] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, S. Panichella,
Improving ir-based traceability recovery via noun-based indexing of soft-
ware artifacts, Journal of Software: Evolution and Process 25 (7) (2013)
743–762.

[12] S. Zamani, S. P. Lee, R. Shokripour, J. Anvik, A noun-based approach to
feature location using time-aware term-weighting, Information and Soft-
ware Technology 56 (8) (2014) 991–1011.

[13] Java language and virtual machine specifications, https://docs.

oracle.com/javase/specs/, last accessed: June 2018.
[14] Z. P. Fry, D. Shepherd, E. Hill, L. Pollock, K. Vijay-Shanker, Analysing

source code: looking for useful verb–direct object pairs in all the right
places, IET software 2 (1) (2008) 27–36.

[15] T. Hoff, C Coding Standard, https://users.ece.cmu.edu/~eno/

coding/CCodingStandard.html, last accesses: June 2018 (2008).
[16] N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, G. Antoniol, An empirical study on

requirements traceability using eye-tracking, in: 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 191–200.

[17] S. Gupta, S. Malik, L. Pollock, K. Vijay-Shanker, Part-of-speech tag-
ging of program identifiers for improved text-based software engineering
tools, in: 21st IEEE International Conference on Program Comprehen-
sion (ICPC), 2013, pp. 3–12.

[18] J. Giménez, L. Marquez, SVMTool: A general pos tagger generator based
on support vector machines, in: In Proceedings of the 4th International
Conference on Language Resources and Evaluation, pp. 43–46.

[19] A. Abadi, M. Nisenson, Y. Simionovici, A traceability technique for spe-
cifications, in: The 16th IEEE International Conference on Program Com-
prehension (ICPC 2008), 2008, pp. 103 –112.

[20] M. Borg, P. Runeson, A. Ardö, Recovering from a decade: A syste-
matic mapping of information retrieval approaches to software traceabi-
lity, Empirical Softw. Engg. 19 (6) (2014) 1565–1616. doi:10.1007/

s10664-013-9255-y.
URL http://dx.doi.org/10.1007/s10664-013-9255-y

[21] A. Marcus, J. I. Maletic, Recovering documentation-to-source-code tra-
ceability links using latent semantic indexing, in: Proceedings of 25th
International Conference on Software Engineering, IEEE CS Press, Port-
land Oregon USA, 2003, pp. 125–135.

[22] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, V. Ra-
jlich, Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval, IEEE Transactions

on Software Engineering 33 (6) (2007) 420–432. doi:http://doi.

ieeecomputersociety.org/10.1109/TSE.2007.1016.
[23] R. Oliveto, M. Gethers, D. Poshyvanyk, A. De Lucia, On the equivalence

of information retrieval methods for automated traceability link recovery,
in: Proceedings of the 2010 IEEE 18th International Conference on Pro-
gram Comprehension, ICPC ’10, IEEE Computer Society, Washington,
DC, USA, 2010, pp. 68–71.

[24] M. Borg, P. Runeson, Ir in software traceability: From a bird’s eye
view, in: 2013 ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, 2013, pp. 243–246. doi:10.1109/
ESEM.2013.39.

[25] M. Gethers, R. Oliveto, D. Poshyvanyk, A. D. Lucia, On integrating
orthogonal information retrieval methods to improve traceability reco-
very, in: 27th IEEE International Conference on Software Maintenance
(ICSM), 2011, pp. 133–142.

[26] S.-H. Cha, Comprehensive survey on distance/similarity measures bet-
ween probability density functions, International Journal of Mathematical
Models and Methods in Applied Sciences 1 (4) (2007) 300–307.

[27] H. U. Asuncion, A. U. Asuncion, R. N. Taylor, Software traceability with
topic modeling, in: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, ACM, 2010, pp. 95–104.

[28] D. Falessi, G. Cantone, G. Canfora, Empirical principles and an industrial
case study in retrieving equivalent requirements via natural language pro-
cessing techniques, IEEE Transactions on Software Engineering 39 (1)
(2013) 18–44. doi:10.1109/TSE.2011.122.

[29] N. Ali, Y.-G. Guéhéneuc, G. Antoniol, Factors impacting the inputs of tra-
ceability recovery approaches, in: A. Zisman, J. Cleland-Huang, O. Gotel
(Eds.), Software and Systems Traceability, Springer-Verlag, New York,
2011, Ch. 7.

[30] W. Zhao, L. Zhang, Y. Liu, J. Sun, F. Yang, Sniafl: Towards a static nonin-
teractive approach to feature location, ACM Trans. Softw. Eng. Methodol.
15 (2006) 195–226.

[31] A. D. Lucia, F. Fasano, R. Oliveto, G. Tortora, Recovering traceability
links in software artifact management systems using information retrieval
methods, ACM Trans. Softw. Eng. Methodol. 16 (4) (2007) 13. doi:

10.1145/1276933.1276934.
URL http://doi.acm.org/10.1145/1276933.1276934

[32] G. Antoniol, B. Caprile, A. Potrich, P. Tonella, Design-code traceabi-
lity recovery: selecting the basic linkage properties, Science of Computer
Programming 40 (2-3) (2001) 213–234.

[33] G. Antoniol, B. Caprile, A. Potrich, P. Tonella, Design-code traceability
for object-oriented systems, Annals of Software Engineering 9 (1) (2000)
35–58.

[34] C. McMillan, D. Poshyvanyk, M. Revelle, Combining textual and struc-
tural analysis of software artifacts for traceability link recovery, in: ICSE
Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE’09), IEEE, 2009, pp. 41–48.

[35] M. Grechanik, K. McKinley, D. Perry, Recovering and using use-case-
diagram-to-source-code traceability links, in: Proceedings of the the 6th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering,
ACM, 2007, pp. 95–104.

[36] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, A. De Lucia,
Using code ownership to improve ir-based traceability link recovery, in:
21st IEEE International Conference on Program Comprehension (ICPC),
2013, pp. 123–132.

[37] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,
Addison-Wesley, 1999.

[38] B. Dit, L. Guerrouj, D. Poshyvanyk, G. Antoniol, Can better identifier
splitting techniques help feature location?, in: 19th IEEE International
Conference on Program Comprehension (ICPC), IEEE, 2011, pp. 11–20.

[39] A. Chowdhury, M. C. McCabe, Improving information retrieval systems
using part of speech tagging, Tech. rep. (1998).

[40] G. Kowalski, Information retrieval architecture and algorithms, Springer-
Verlag New York Inc, 2010.

[41] B. Erol, K. Berkner, S. Joshi, Multimedia thumbnails for documents, in:
Proceedings of the 14th annual ACM international conference on Multi-
media, MULTIMEDIA ’06, ACM, New York, NY, USA, 2006, pp. 231–
240.

[42] Y. Sun, P. He, Z. Chen, An improved term weighting scheme for vector
space model, in: Proceedings of 2004 International Conference on Ma-

19

chine Learning and Cybernetics, Vol. 3, IEEE, 2004, pp. 1692–1695.
[43] X. Zou, R. Settimi, J. Cleland-Huang, Phrasing in dynamic requirements

trace retrieval, in: Computer Software and Applications Conference,
2006. COMPSAC’06. 30th Annual International, Vol. 1, IEEE, 2006, pp.
265–272.

[44] L. H. Etzkorn, L. L. Bowen, C. G. Davis, An approach to program under-
standing by natural language understanding, Natural Language Engineer-
ing 5 (3) (1999) 219–236.

[45] S. L. Abebe, P. Tonella, Natural language parsing of program element
names for concept extraction, in: Program Comprehension (ICPC), 2010
IEEE 18th International Conference on, IEEE, 2010, pp. 156–159.

[46] R. Shokripour, J. Anvik, Z. M. Kasirun, S. Zamani, A time-based appro-
ach to automatic bug report assignment, J. Syst. Softw. 102 (C) (2015)
109–122. doi:10.1016/j.jss.2014.12.049.
URL http://dx.doi.org/10.1016/j.jss.2014.12.049

[47] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella,
Traceability recovery using numerical analysis, in: 16th Working Confe-
rence on Reverse Engineering (WCRE’09), IEEE, 2009, pp. 195–204.

[48] E. Hill, D. Binkley, D. Lawrie, L. Pollock, K. Vijay-Shanker, An empiri-
cal study of identifier splitting techniques, Empirical Software Engineer-
ing 19 (6) (2014) 1754–1780.

[49] K. Toutanova, D. Klein, C. D. Manning, Y. Singer, Feature-rich part-of-
speech tagging with a cyclic dependency network, in: Proceedings of the
2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1,
Association for Computational Linguistics, 2003, pp. 173–180.

[50] M. F. Porter, An algorithm for suffix stripping (1997) 313–316.
[51] D. A. Evans, C. Zhai, Noun-phrase analysis in unrestricted text for in-

formation retrieval, in: Proceedings of the 34th annual meeting on As-
sociation for Computational Linguistics, Association for Computational
Linguistics, Morristown, NJ, USA, 1996, pp. 17–24.

[52] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2000.

[53] N. Juristo, A. M. Moreno, Basics of Software Engineering Experimenta-
tion, 1st Edition, Springer Publishing Company, Incorporated, 2010.

[54] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, K. E.
Emam, J. Rosenberg, Preliminary guidelines for empirical research in
software engineering, IEEE Trans. Software Eng. 28 (8) (2002) 721–734.

doi:10.1109/TSE.2002.1027796.
[55] A. Jedlitschka, D. Pfahl, Reporting guidelines for controlled experi-

ments in software engineering, in: 2005 International Symposium on
Empirical Software Engineering (ISESE 2005), 17-18 November 2005,
Noosa Heads, Australia, 2005, pp. 95–104. doi:10.1109/ISESE.

2005.1541818.
[56] N. Ali, W. Wu, G. Antoniol, M. D. Penta, Y.-G. Guéhéneuc, J. H. Hayes,

A novel process and its implementation for the multi-objective miniaturi-
zation of software, Tech. Rep. EPM-RT-2010-04, Ecole Polytechnique de
Montreal, technical Report (2010).

[57] N. Ali, Y. Gueneuc, G. Antoniol, Trustrace: Mining software reposito-
ries to improve the accuracy of requirement traceability links, Software
Engineering, IEEE Transactions on 39 (5) (2013) 725–741.

[58] J. H. Hayes, G. Antoniol, Y.-G. Guéhéneuc, Prereqir: Recovering pre-
requirements via cluster analysis, in: Reverse Engineering, 2008. WCRE
’08. 15th Working Conference on, 2008, pp. 165 –174.

[59] E. M. Voorhees, Variations in relevance judgments and the measurement
of retrieval effectiveness, Information processing & management 36 (5)
(2000) 697–716.

[60] M. D. Smucker, J. Allan, B. Carterette, A comparison of statistical signi-
ficance tests for information retrieval evaluation, in: Proceedings of the
sixteenth ACM conference on Conference on information and knowledge
management, ACM, 2007, pp. 623–632.

[61] A. Mahmoud, N. Niu, On the role of semantics in automated requirements
tracing, Requirements Engineering (2014) 1–20.

[62] W. Zhao, L. Zhang, Y. Liu, J. Sun, F. Yang, Sniafl: Towards a static non-
interactive approach to feature location, ACM Transactions on Software
Engineering and Methodology (TOSEM) 15 (2) (2006) 195–226.

[63] entagrec.
[64] Z. P. Fry, D. Shepherd, E. Hill, L. Pollock, K. Vijay-Shanker, Analysing

source code: looking for useful verb–direct object pairs in all the right
places, IET software 2 (1) (2008) 27–36.

[65] C. Lioma, R. Blanco, Part of speech based term weighting for information
retrieval, in: Advances in information retrieval, Springer, 2009, pp. 412–
423.

[66] A. Mahmoud, N. Niu, Using semantics-enabled information retrieval in
requirements tracing: An ongoing experimental investigation, in: 34th
IEEE Annual Computer Software and Applications Conference (COMP-
SAC), IEEE, 2010, pp. 246–247.

20

