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Release notes are essential documents that communicate the details of software updates to users and developers,
yet their generation remains a time-consuming and error-prone process. In this paper, we present VerLog,
a novel technique that enhances the generation of software release notes using Large Language Models
(LLMs). VerLog leverages few-shot in-context learning with adaptive prompting to facilitate the graph
reasoning capabilities of LLMs, enabling them to accurately interpret and document the semantic information
of code changes. Additionally,VerLog incorporates multi-granularity information, including fine-grained code
modifications and high-level non-code artifacts, to guide the generation process and ensure comprehensive,
accurate, and readable release notes. We applied VerLog to the 42 releases of 248 unique Android applications
and conducted extensive evaluations. Our results demonstrate that VerLog significantly (up to 18%–21%
higher precision, recall, and F1) outperforms state-of-the-art baselines in terms of completeness, accuracy,
readability, and overall quality of the generated release notes, in both controlled experiments with high-quality
reference release notes and in-the-wild evaluations.
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1 Introduction
Software development is a dynamic and iterative process, with applications constantly evolving to
meet user needs, fix bugs, and introduce new features [40]. In this ever-changing landscape, release
notes serve as a crucial bridge between developers and users, documenting the journey of software
from one version to the next [8]. These concise yet informative documents play a pivotal role in
the software lifecycle [2], offering a snapshot of what has changed and why [8, 41].
The importance of release notes extends far beyond a simple changelog [2]. For users, they

provide a roadmap to navigate new features, understand resolved issues, and adapt to changes in
functionality [46]. A well-crafted release note can enhance user experience, reduce support requests,
and foster a sense of transparency and trust between the software provider and its community. For
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developers, release notes serve as a historical record, facilitating collaboration across teams and
providing context for future modifications [41] hence potentially mitigating evolution-induced
issues such as application incompatibilities [10, 19, 50]. They are also invaluable for project managers,
offering insights into the pace of development and the focus of recent efforts [4].

Despite their importance, the generation of release notes is far from being trivial [4, 8]. Intuitively,
generating comprehensive, accurate, and useful release notes requires a deep understanding of
the changes made, the ability to distill complex technical modifications into user-friendly lan-
guage, and the foresight to anticipate what information will be most valuable to the audience [41].
Manually writing release notes is a common option, yet it is often a labor-intensive and expensive
process [31], which may lead to low-quality notes. Meanwhile, other forms of change documenta-
tion, such as commit messages and change logs, themselves may not capture the level of details
and comprehensiveness expected of a quality release note [2, 23]. This task becomes increasingly
daunting as software projects grow in complexity and the frequency of releases accelerates in the
continuous/agile development era.

Recognizing these hurdles, researchers attempted to automate release note generation [4]. Almost
all of the existing automated methods rely solely on the reorganization, summarization, or categoriza-
tion of non-code (textual) artifacts such as commit messages, pull requests, and issues [21, 23, 33, 35].
While this approach can streamline the process, it is inherently limited by the quality and compre-
hensiveness of these artifacts. For instance, commit messages may be poorly written [22, 43, 49],
issues vaguely described [51], and/or pull requests inconsistently documented [28, 44]. As a result,
release notes generated from these non-code artifacts suffer in quality. Moreover, software projects
with limited community engagement may lack the rich ecosystem of issues and pull requests that
more popular projects enjoy. Figure 1 shows an example which illustrates the limitation.

Fig. 1. Release notes written by developer (“ground truth") and generated by

existing, textual-based tools (TextRank and Changelog Generator) versus VerLog.

Figure 1 presents our
comparative analysis
of an app cityfreqs.

com.pilfershushjammer

[1] on version 4.6.0.
The figure includes four
sets of release notes:
the ground truth (a
manually crafted set of
notes by the app devel-
oper), TextRank (an ap-
proach based on text

summarization), and GitHub Changelog Generator (which relies on GitHub artifacts such as issues
and pull requests) and VerLog. TextRank (yellow background) provides only a superficial summary,
often missing the deeper context and specificity of feature updates. For example, TextRank’s output
contains generic phrases that fail to convey the precise functional changes in the software. The
GitHub Changelog Generator (blue background) is similarly limited by its dependency on external
documentation, leading to formal but incomplete summaries when issues and pull requests are
lacking or inconsistently documented. As a result, it fails to capture the nuanced changes in projects
with sparse or poorly maintained metadata. It is also worthwhile noticing that, the ground truth
(pink background), i.e., release notes written by developer, is not without drawbacks. Although
it might have covered all relevant changes, it often lacks organization and contains excessive
developer-focused, low-level details that may overwhelm end-users. This clutter can make it chal-
lenging for users to quickly grasp the key improvements or bug fixes, as the note is tailored more
to developers than to the general audience. These limitations underscore the inherent challenges in
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generating high-quality release notes from non-code artifacts alone, particularly for projects with
limited commit messages or inconsistent community contributions.

While approaches using only non-code artifacts have the merit of being language-agnostic [21,
33], a robust and accurate release note generation technique should analyze and incorporate code-
level changes—after all, the truth about software behavior lie in the code itself. Yet such techniques
are rare, represented by ARENA [31]. It summarizes code changes identified from commits and links
the summaries to information in commit notes and issue trackers. However, the code summarization
does not capture code semantics well, while the reliance on the non-code information makes it suffer
the respective drawbacks discussed earlier. Its quantitative effectiveness also remains unknown.

Amore desirable approachwouldminimize dependence on potentially unreliable non-code/textual
artifacts, while capturing the semantic essence of code changes. In recent years, Large Language
Models (LLMs) exhibit remarkable potential in both of these tasks [11, 32]. Leveraging these
advanced models presents an opportunity to automate and enhance the process of release note
generation. However, as we show in our results, straightforward use of LLMs falls short in capturing
the nuanced and structured information required for high-quality release notes, particularly in
understanding the semantic relationships between code changes, due to several major challenges.
First (Challenge-1), low-level code changes alone do not carry enough semantic information for
LLMs to understand feature-level intentions of code changes without context, while providing
more context pressurizes the limited token/context capacity of LLMs. Second (Challenge-2), those
feature-level intentions are related to knowledge specific to the functionality domain of the software,
which may be missing in LLMs. Third (Challenge-3), using coarser-grained (e.g., method-level)
change information can reduce the pressure on LLMs’ token capacity, but such information alone
may not be sufficient for LLMs to accurately comprehend subtle changes in code semantics.
In this paper, we introduce VerLog, an LLM-based technique that aims to enhance automated

generation of software release notes by combining graph-based prompting and in-context learning

on LLMs, both focused on code changes, while utilizing multi-granularity information about those
changes. Given a software release, VerLog first identifies method-level code diffs and prompts the
LLM to reason about graph-represented knowledge on the semantics of these diffs, according to the
minimum subgraph of the program call graph that covers all the changed methods and is minimally
contextualized with unchanged ones. By including context that is essential for high-level semantics
understanding with LLMs while minimizing this context to reduce token use and fit their limited
context window, this design address Challenge-1. Next, in its few-shot in-context learning, VerLog
adaptively selects prompting exemplars from a pre-curated pool according to the functionality
domain of the software under analysis while covering diverse semantic categories of changes,
which augments LLMs with necessary domain knowledge hence addresses Challenge-2. Finally, in
addition to the graph knowledge and exemplars, VerLog includes in the final prompt various other
information at multiple granularity levels: statement-level code diffs aligned with their associated
method-level diffs, commit messages, and project description, addressing Challenge-3.

We have implemented VerLog for Android apps given their broad impact and large user base [9],
and applied it to 248 releases across 42 unique popular apps. Given the lack of benchmarks with
high-quality release notes, we curated one and used it for our evaluation. Against these notes as
the ground truth, VerLog achieved substantially greater effectiveness (up to 18% higher precision,
19% higher recall, and 21% higher F1, respectively) than the state-of-the-art release note generators
both in academia and industry. Our extensive ablation studies further show that VerLog retains its
significant superiority even without using any non-code artifacts. In terms of efficiency, VerLog
produces a release note in about 30 seconds on average. For an in-the-wild evaluation via a user
study, VerLog generates high-quality release notes for 10 apps whose original notes are poor, with

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA084. Publication date: July 2025.



ISSTA084:4 Jiawei Guo, Haoran Yang, and Haipeng Cai

an average score of 3.81, 3.63, 4.56, and 3.94 in terms of completeness, accuracy, readability, and
overall quality based on participants’ Likert ratings ranging from 1 for lowest and 5 the highest.

Through our further inspection of the cases in our in-the-wild evaluation, we found that existing
release notes, even of the highly popular and impactful apps, are often of quite poor quality (e.g.,
missing a note for important changes, obscure description of changes captured, and low readability
overall). Given the high manual cost of writing high-quality release notes, VerLog can play a major
role in enhancing developer productivity in such a critical software documentation task.

The key contributions of this paper include:
• The first technique leveraging static code analysis and LLMs for release note generation, depart-
ing from traditional approaches which rely solely on textual artifacts or information retrieval.
• A novel approach to automated release note generation that exploits LLMs’ graph reasoning to
capture code-change semantics and augments them with functionality domain knowledge via
adaptive LLM prompting, while leveraging multi-granularity information (§2).
• An open-source tool that implements VerLog for Android apps and a curated benchmark of
high-quality release notes for such apps (§3.1).
• Extensive evaluations of VerLog, including controlled and in-the-wild experiments, that demon-
strates it substantial merits over research and industry state-of-the-art peer tools while revealing
major issues with real-world release notes of popular/impactful apps (§3.3).

2 Methodology
VerLog is designed to enhance the generation of software release notes by leveraging the power
of Large Language Models (LLMs) in conjunction with sophisticated code analysis techniques. Our
approach addresses the key challenges in automated release note generation by incorporating
semantic understanding of code changes, adaptive learning, and multi-granularity information
processing. Figure 2 presents an overview of VerLog’s architecture and workflow.

1 Graph Knowledge Based Prompting. This component forms the foundation of VerLog’s
semantic understanding capabilities. It constructs a partial call graph representation of the code
changes between two software versions. By encoding the changed methods and their relationships
as a graph, we enable the LLM to reason about the semantic context of the modifications, going
beyond simple textual diffs. As shown in Figure 2, this component corresponds to Phase 1 of the
whole workflow. It will take the base app and release app as input, and then find changed methods,
and then extract their callees from corresponding call graphs. With these obtained, we can slice a
subgraph which can be change-aware.

Diff
Hunks

Exemplar Pools

Contextualized
Minimal Subgraph
Construction

Method-Level
Change

Localization

Version History
Mining

Cross-Granularity
Diff Alignment

Adaptive Exemplar Selection
(based on functionality domain
and change categories)

Release Note
Synthesis

Changed
Methods

Method-Hunk Pairs

Contextualized
Minimal Graphs

Phase 3: Adaptive Semantics Augmentation

Phase 2: Multi-granularity Feature Composition

Phase 1: Graph Knowledge Based Prompting

Base
App
Repo

Commit
Messages

Selected Exemplars

Release Notes

Release
App
Repo

Phase 4

Fig. 2. Overview of VerLog architecture and workflow.

2 Multi-granularity Feature

Composition. To provide a com-
prehensive view of the changes,
this module integrates informa-
tion at various levels of granu-
larity. It aligns fine-grained code
modifications with method-level
changes and incorporates high-
level information such as commit
messages and application descrip-
tions. This multi-faceted approach
ensures that both detailed code
changes and overarching project

context are considered in the release note generation process. In Figure 2, this part corresponds to
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Phase 2. The version history will be utilized to obtain diff hunks ,which will be further aligned with
changed methods obtained in Phase 1 to enrich the prompt.
3 Adaptive Semantics Augmentation. This component enhances the LLM’s ability to generate
contextually appropriate release notes through few-shot in-context learning. It curates and selects
exemplars based on the specific category of the application and the types of code changes, allowing
the model to adapt its output to different software domains and change patterns. This component
corresponds to Phase 3 in Figure 2.
4 In-Context Learning Based Feature Change Summarization. Leveraging the prepared
prompts and selected exemplars, this module utilizes the LLM to generate summaries of the code
changes. The LLM interprets the graph-based code representations, multi-granularity information,
and adaptive exemplars to produce detailed yet coherent descriptions of the modifications. As
shown in Figure 2, the LLM will infer and summarize from the prompt which is the combination of
the output of all three phases.
5 Summarization Synthesis. The final component in the pipeline consolidates the individual
change summaries into a cohesive and well-structured release note. It addresses challenges such as
redundancy elimination, abstraction of low-level details, and logical organization of the information
to produce a user-friendly final document.

2.1 Graph Knowledge Based Prompting (Phase 1)
LLMs are known to be capable of graph reasoning tasks represented in natural language [45] [42] [7].
We leverage this capability through a graph-based approach that serves two critical purposes. First,
by analyzing the call graph and extracting its contextualized minimal subgraph (CMG) containing
changed methods, we can naturally partition code changes into semantically coherent groups,
where each group becomes a separate prompt. Second, the extracted CMG provides rich semantic
context about method relationships and interactions, enabling LLMs to better reason about the
nature and impact of code changes.
Next, we elaborate on the two key steps of Phase 1: (1) identifying changed methods and (2)

constructing the contextualized minimal subgraphs (CMGs) that enable both effective change
grouping and semantic understanding.

2.1.1 Method-Level Change Location. We first identify changed methods via method-level dif-
ferencing and the corresponding changed classes. With app source code available, this step is
straightforward. Yet it may result in false positives due to code refactoring. We chose a light-
weight approach to mollify it by only detecting added, modified, and deleted class files, specifying
corresponding options provided by git [17].
After this differencing, we will obtain three multi-sets–added classes and their corresponding

methods (these method are intrinsically added methods, similar for deleted ones), deleted classes
and their corresponding deleted classes, and modified classes and corresponding three categories
of changed methods (added, modified, and deleted methods). Along with each method’s name and
parameters, the line numbers of the start line and end line will also be marked for the method-hunk
alignment in the next step.

2.1.2 Contextualized Minimal Subgraph (CMG) Construction. After obtaining changed methods,
we construct a contextualized minimal subgraph (CMG) that captures both the changed methods
and their semantic relationships in the codebase. The goal is to provide enough context for LLMs to
understand not just what methods changed, but how they interact with and influence other parts
of the system. For example, if a method is modified, understanding its callers and callees helps
determine whether the change affects core functionality or is localized to implementation details.
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To achieve this, we chose the call graph as the graph representation, which has been used by
prior work to provide context to enhance code summarization [29] [6].
Callees Extraction. Here we refer a method’s context as the setting in which the method is

called [24]. For each release, we checked out to the corresponding commit and build the app without
obfuscation. For each changed method, which is obtained from the previous step, we extract its
callees, i.e., the immediate successors in the call graph for the context formation in the next step.
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Fig. 3. An illustrating CMG of a real-world Android app (of Figure 4).

Context Formation. Com-
pared to one single method,
adding its callees can already
provide some context for it. How-
ever, this context is not enough
to infer the semantics of the
method in some cases. For in-
stance, if a method is added
and called by another user-
defined methods, simply using
this added method and its caller
as the context may be enough to
infer the semantics of the added
method, but will miss the seman-
tics of the caller method, which

is vital to understand the impact of the added method. Figure 3 illustrated this scenario, where two
added methods getDMSLongitude(Node 2) and getDMSLatitude(Node 3). Their functionality can
be understood even without callees. However, if their callers cannot be known(In this example, it is
updateLocation, Node 𝐸), it would be impossible to infer the end-user perceivable functionality
pertaining to this addition change. This calls for a solution especially when we are interested in
finding the functionality feature changes in the new release. The context should be able to provide
a comprehensive view of changes.
To construct a rich context, we link changed user-defined methods by examining their callees.

We form a context when a callee of a changed method is also a changed method, including both
methods and their callees. This process continues recursively until no more changed methods
are found in the callees. The resulting context forms a tree structure where: (1) Root nodes are
changed methods not called by other changed methods, (2) Non-leaf nodes are changed user-defined
methods and (3) Leaf nodes are unchanged user-defined methods or external methods.

To elucidate the context formation, we provide an example in Figure 3 and present Algorithm 1.
The algorithm processes two sets of changed methods: the Reference set 𝑅 (old version) and the
Target set 𝑇 (new version), each containing methods and their respective callees. It outputs a set of
change-aware contextualized subgraphs 𝐶𝑆 that capture the structural and semantic relationships
between changes.
The algorithm first identifies entry methods - changed methods not called by other changed

methods - which serve as natural starting points for analysis (lines 2-3). Using these entry points,
it constructs subgraphs for both reference and target versions (lines 4-5), capturing the call rela-
tionships between changed methods and their surrounding context.
The core analysis phase (lines 7-19) compares and categorizes changes by examining each

method’s presence across versions. Methods present in both versions are merged to represent
modifications (lines 10-11), while methods unique to the reference or target versions are marked as
deleted (lines 12-14) or added (lines 15-17) respectively. This process creates a unified view that
preserves both the individual changes and their relationships.
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Algorithm 1: Change-aware Context Formation
Input :Reference set 𝑅, Target set𝑇 of changed methods

and their callees
Output :Set of Change-aware contextualized subgraphs𝐶𝑆

1 𝐶𝑆 ← ∅
2 𝑅𝑒𝑛𝑡𝑟𝑦 ← FindEntryMethods(𝑅)
3 𝑇𝑒𝑛𝑡𝑟𝑦 ← FindEntryMethods(𝑇 )
4 𝑅𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← BuildSubgraphs(𝑅𝑒𝑛𝑡𝑟𝑦 , 𝑅)
5 𝑇𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← BuildSubgraphs(𝑇𝑒𝑛𝑡𝑟𝑦 ,𝑇 )
6 𝑎𝑙𝑙_𝑟𝑜𝑜𝑡𝑠 ← {𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ.𝑟𝑜𝑜𝑡 | 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ∈

𝑅𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ∪𝑇𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 }
7 foreach 𝑟𝑜𝑜𝑡 ∈ 𝑎𝑙𝑙_𝑟𝑜𝑜𝑡𝑠 do
8 𝑟_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ← FindSubgraph(𝑅𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 , 𝑟𝑜𝑜𝑡 )
9 𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ← FindSubgraph(𝑇𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 , 𝑟𝑜𝑜𝑡 )

10 if 𝑟_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ≠ ∅ ∧ 𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ≠ ∅ then
11 𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ←

MergeSubgraphs(𝑟_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
𝐶𝑆 ← 𝐶𝑆 ∪ {𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}

12 else if 𝑟_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ≠ ∅ then
13 𝑟_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ.𝑟𝑜𝑜𝑡 .𝑙𝑎𝑏𝑒𝑙 ← “ − ”
14 𝐶𝑆 ← 𝐶𝑆 ∪ {𝑟_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}
15 else

16 𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ.𝑟𝑜𝑜𝑡 .𝑙𝑎𝑏𝑒𝑙 ← “ + ”
17 𝐶𝑆 ← 𝐶𝑆 ∪ {𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}
18 end

19 end

20 return𝐶𝑆

21 Function FindEntryMethods(𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡 ):

22 𝑎𝑙𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ← {𝑚.𝑛𝑎𝑚𝑒 |𝑚 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡 }
23 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 ← ⋃

𝑚∈𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡 𝑚.𝑐𝑎𝑙𝑙𝑒𝑒𝑠

24 return

{𝑚 |𝑚 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑒𝑡 ∧𝑚.𝑛𝑎𝑚𝑒 ∉ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 }
25 Function BuildSubgraphs(𝐸𝑛𝑡𝑟𝑦𝑀𝑒𝑡ℎ𝑜𝑑𝑠,𝐴𝑙𝑙𝑀𝑒𝑡ℎ𝑜𝑑𝑠):

26 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← ∅
27 foreach 𝑒𝑛𝑡𝑟𝑦 ∈ 𝐸𝑛𝑡𝑟𝑦𝑀𝑒𝑡ℎ𝑜𝑑𝑠 do

28 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ←
BuildSubgraphRecursive(𝑒𝑛𝑡𝑟𝑦,𝐴𝑙𝑙𝑀𝑒𝑡ℎ𝑜𝑑𝑠 )
𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ∪ {𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}

29 end

30 return 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

31 Function MergeSubgraphs(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ1, 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ2):
32 𝑚𝑒𝑟𝑔𝑒𝑑 ←

MergeNodes(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ1.𝑟𝑜𝑜𝑡, 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ2.𝑟𝑜𝑜𝑡 )
33 return CreateSubgraph(𝑚𝑒𝑟𝑔𝑒𝑑 )

The final output, a set of Change-aware
CMGs (line 20), offers a rich, structured rep-
resentation of how changes in one part of the
system relate to and influence others, enabling
more accurate reasoning about the impact and
scope of modifications.

GraphRepresentation. Given that we have
obtained the CMGs, the next step is to repre-
sent them in a way that can be easily under-
stood by the LLM. To achieve this, we adopted
the graph representation proposed by prior
work [42], which has been shown to boost the
performance of LLM in graph reasoning tasks.
This representation will give the LLM both

nodes and edges of the partial call graph sep-
arately. Each node will be represented by the
method signature and a prefix number as an
index. The index, instead of the method signa-
ture, will be used in the edge representation.
This representation, as per the prior work [42],
can not only help to overcome the limitation
of LLM understanding graph structure in pure
textual form but also reduce the token used for
each prompt. Figure 4 shows an example of this
representation, i.e., how a CMG is encoded in
the prompt. This prompt corresponds to the
CMG in Figure 3. The entry method node 𝐸 in
the CMG corresponds to line 2 in the prompt,
whereas Nodes 1—9 correspond to the same
label of method signature starting from line
27. The edges are shown in the bottom of the
prompt, starting from line 73.

2.2 Multi-Granularity Feature Composition (Phase 2)
We enhance our LLM prompts by incorporating fine-grained code changes alongside method-
level context. This approach leverages developers’ full source code access, enabling the LLM to
capture detailed semantic changes. Additionally, we include commit messages, drawing from
version history research. This multi-layered input—combining coarse and fine-grained changes
with commit insights—allows the LLM to generate more accurate and comprehensive release notes
while balancing information richness with LLM capacity constraints.

2.2.1 Cross-Granularity Diff Alignment. To incorporate fine-grained code changes, we developed a
heuristic algorithm for hunk-method alignment in diff files. This approach addresses the limitations
of existing tools that struggle with aggregating changes across multiple commits between releases.
Our algorithm categorizes alignments into three cases: one hunk to one method, one hunk to

multiple methods, and multiple hunks to one method. Considering the three types of method
changes (added, modified, deleted), we identified nine possible alignment scenarios, with two being
practically impossible. (One added/deleted method matches with multiple hunks)
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Algorithm 2: Method-Hunk Alignment
Input :Method𝑀 , Change Category𝐶 , Set of Hunks 𝐻
Output :Set of Matched Lines 𝐿

1 𝐿 ← ∅
2 foreach hunk ℎ ∈ 𝐻 do

3 if 𝐶 = MODIFIED then

4 𝐿 ← 𝐿 ∪MatchModifiedMethod(𝑀,ℎ)
5 else if 𝐶 = ADDED then

6 𝐿 ← 𝐿 ∪MatchAddedMethod(𝑀,ℎ)
7 else if 𝐶 = DELETED then

8 𝐿 ← 𝐿 ∪MatchDeletedMethod(𝑀,ℎ)
9 end

10 end

11 return 𝐿

12 Function MatchModifiedMethod(𝑀,ℎ):

13 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 ← GetMethodLines(𝑀 )
14 if ℎ.targetStart ≤ 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑒𝑛𝑑 ≤ ℎ.targetEnd then

15 return ExtractMethodLines(ℎ,𝑀 )
16 else if 𝑠𝑡𝑎𝑟𝑡 ≤ ℎ.targetStart ≤ 𝑒𝑛𝑑 then

17 return

ExtractPartialMethodLines(ℎ,𝑀, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 )

18 else

19 return ∅
20 end

21 Function MatchAddedMethod(𝑀,ℎ):

22 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 ← GetMethodLines(𝑀 )
23 if ℎ.targetStart ≤ 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑒𝑛𝑑 ≤ ℎ.targetEnd then

24 return ExtractMethodLines(ℎ,𝑀 )
25 else

26 return ∅
27 end

28 Function MatchDeletedMethod(𝑀,ℎ):

29 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 ← GetMethodLines(𝑀 )
30 if ℎ.sourceStart ≤ 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑒𝑛𝑑 ≤ ℎ.sourceEnd then

31 return ExtractMethodLines(ℎ,𝑀 )
32 else

33 return ∅
34 end

The algorithm processes four key hunk at-
tributes: target start line, target length, source
start line, and source length. It determines
the quantitative relationship between these at-
tributes and the method’s start and end lines.
For instance, an added method is aligned with
a hunk if the hunk’s target range fully encom-
passes the method’s lines.

To illustrate the method-hunk alignment pro-
cess, we present Algorithm 2. The algorithm
aligns method changes with their correspond-
ing diff hunks by taking a method𝑀 , its change
category𝐶 (MODIFIED, ADDED, or DELETED),
and a set of git diff hunks 𝐻 as input. It outputs
a set of matched lines 𝐿 that precisely capture
the changes specific to the input method.
The algorithm matches each hunk (lines 2-

10) based on the method’s change category. For
modified methods (lines 3-4), it identifies over-
lapping regions between the method’s bound-
aries and the hunk, handling both full and
partial containment cases. For added methods
(lines 5-6), it checks if the method appears en-
tirely within the hunk’s target lines, while for
deleted methods (lines 7-8), it examines the
hunk’s source lines.
Each matching considers four hunk at-

tributes: target start line, target length, source
start line, and source length. By comparing them with the method’s start and end lines, the al-
gorithm determines the precise portions of the hunk that correspond to the method’s changes.
The matched lines from all relevant hunks are accumulated (lines 4, 6, and 8) to create a complete
representation of the method’s modifications. In Figure 4, lines marked in blue correspond to the
matched diff hunks.

2.2.2 Feature Summarization Enhancement. To enhance the LLM’s understanding of changes and
the application context, we incorporate system and package-level information into our prompt.
Specifically, we include commit messages and application descriptions. Commit messages serve
as valuable reference material for the LLM. They help verify the summarization results and often
provide insights into system or package-level changes that may not be evident from code changes
alone, such as policy or license updates. This additional context ensures that important non-code
modifications are captured in the generated release notes. Application descriptions offer a high-
level overview of the app’s functionality, target audience, and key features. By including this
information, we enable the LLM to contextualize code changes within the broader scope of the
application’s purpose and user expectations. This comprehensive understanding allows the LLM to
generate release notes that are more aligned with user interests, highlighting changes that are most
relevant and impactful from a user perspective. In Figure 4, the blue area that covers line 1 to line 8
belongs to the information for the example shown. By combining method-level change context,
fine-grained code changes, commit messages, and application descriptions, we provide the LLM
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with a multi-faceted view of the software changes. This approach results in more comprehensive,
contextually aware, and user-focused release notes.

2.3 Adaptive Semantics Augmentation (Phase 3)
With multi-granularity information available, we design the LLM prompt to ensure accurate
interpretation and desired summarization. We leverage the LLM’s in-context learning ability
by adding exemplars to each prompt, a technique proven effective in code summarization and
generation tasks. In Figure 4, the top area (below system message, above code) shows an example.

Our exemplar curation process covers various code change categories, including bug fixes, new
features, and refactoring. This approach enables LLM to learn different types of code changes and
generate appropriate summarizations. For instance, when encountering minor refactoring changes
unrelated to functionality, it can produce an empty summarization based on learned exemplars.

We implement category-wise adaptive exemplar selection to accommodate the diverse behaviors
and requirements of different app types. This approach ensures the LLM receives contextually
relevant examples, enhancing its ability to understand and summarize code changes accurately. For
a Reading app, we select exemplars from other Reading apps within the dataset, providing similar
feature types and code structures for more applicable and understandable release note generation.

Our exemplars cover a comprehensive range of code modifications. They include bug fixes (e.g.,
correcting a parsing error in an eBook format), new feature additions (e.g., implementing a dark
mode for night-time reading), and refactoring efforts (like improving code maintainability through
code reorganization). Based on previous studies [38], we prioritize "New Feature" and "Bug fix"
exemplars, which are more frequent in Android app evolution. We also include exemplars showing
refactoring changes with empty outputs to guide the LLM to rule out refactoring interference.

2.4 Release Note Synthesis (Phase 4)
After generating individual summarizations for a release, we synthesize them into cohesive and
comprehensive release notes, addressing three key challenges. First, we tackle the lack of holistic
context in individual summarizations, which can lead to redundancy or conflicts. Our synthesis
process integrates these pieces, eliminating duplicates and presenting a unified view of changes.
Second, we address the issue of overly technical LLM-generated summarizations. The synthesis
transforms these into higher-level descriptions, highlighting key updates and improvements for
non-technical users, or removes unnecessary low-level details. Lastly, we improve the logical
organization of the content. LLM-generated summarizations may lack a coherent order, so our
synthesis process structures the content, grouping related changes and presenting them in a logical
sequence. This comprehensive approach ensures the final release notes are user-friendly, accurate,
and logically organized, significantly enhancing their overall effectiveness and readability.

3 Evaluation
Our evaluation of VerLog is guided by following questions:
RQ1 How effective is VerLog in generating accurate and comprehensive release notes?

RQ2 How does VerLog’s performance compare to other baselines in release note generation?

RQ3 What is the impact of VerLog’s individual components on its overall performance?

RQ4 How efficient is VerLog in terms of computational resources and generation time?

RQ5 How well does VerLog perform in real-world scenarios as evaluated by software developers?

To answer these questions, we first describe the dataset we used for evaluation, metrics, and the
setup. After that, we will answer all of them.
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Multi-granularity-info Graph Knowledge

System Message:
You are an Android expert. You will analyze the information about an **Entry** method and its reachable methods on the call graph in two release versions......

Exemplar 3:
**App Description**: NS-USBloader is USB/WiFi data transfer helper for N Switch homebrew apps
**Entry Method Signature**: + <com.blogspot.developersu.ns_usbloader.AboutActivity: void donateLiberaOnClickAction(android.view.View)>  ......

Exemplar 2:
**App Description**: Transfer files seamlessly between all your devices - Snapdrop
**Entry Method Signature**: + <com.fmsys.snapdrop.FloatingTextActivity: void onCreate(android.os.Bundle)> .....

Exemplar 1:
**App Description**: Connect to your car's OBD system
**Entry Method Signature**: <com.fr3ts0n.prot.StreamHandler: void firePropertyChange(java.beans.PropertyChangeEvent)> ......

Answer：
{Added display of latitude and longitude in Degrees, Minutes, Seconds (DMS) format alongside decimal coordinates.}

- Adds a DMS representation of coordinates
- Adds the ability to share coordinates in a raw decimal form "{lat}, {lon}"
- ...

Ground Truth Release Note

Fig. 4. An illustrating example of the complete prompting design including the LLM response in VerLog.
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3.1 Experimental Setup
3.1.1 Dataset. The selection of our dataset was primarily driven by the need for high-quality
release notes, which are crucial for a robust evaluation of our technique. We define high-quality
release notes based on three key criteria: (1) completeness: comprehensive coverage of all significant
changes including new features, bug fixes, and breaking changes; (2) accuracy: factually correct
descriptions that align with code changes, commit messages, and related discussions; and (3)
readability: well-structured, concise content that is easily understood by the target audience.

To establish reliable ground truth, we followed a systematic negotiated agreement procedure [5].
First, each author independently drafted the release note of each app using the above quality criteria
while analyzing the same materials (app metadata and its source code, code diffs, commit messages,
and related documentation). Then, via a consensus process, authors collaborated to merge their
drafts and resolve any discrepancies, hence producing the final release notes as the ground truth.

Release note generation tools, including VerLog, typically require access to source code, reposi-
tory metadata, and version histories. These artifacts are often unavailable in closed-source projects.
On the other hand, the intended users of VerLog are developers who have access to their own
codebases, whether proprietary or open-source. Therefore, we curated our evaluation dataset from
F-droid [14], an open-source Android app repository, using a multi-stage selection process. We first
filtered F-droid metadata for Java apps with changeLog field and GitHub-hosted repositories. This
was followed by manual verification of URL validity and the presence of high-quality release notes
in the app’s history. We then downloaded and attempted to compile the selected apps to obtain
unobfuscated APKs. The final dataset comprises 42 unique apps that were successfully built and
processed, coming with 248 release notes—found in our artifact package.

3.1.2 Metrics. To evaluate VerLog’s performance, we employed a combination of automated
metrics and user studies, to cover both quantitative and qualitative evaluation.
During the dataset selection phase, we ensured that the ground truth release notes were easily

verifiable, as mentioned previously. We then manually compared the VerLog-generated release
notes with the ground truth. To minimize subjectivity, three authors as evaluators independently
assessed each entry in the generated notes, making binary decisions (Match or No Match) based on
semantic correspondence with ground truth entries. After independent assessment, we discussed
any disagreements to reach a final consensus. Based on these manual consensus, we compute
precision= Matched Entries

Total Generated Entries and recall=
Matched Entries

Total Ground-Truth Entries , and then F1 score=2×
Precision×Recall
Precision+Recall—

i.e., matched entries are true positive, whereas non-matches are false positive or false negative. This
human-in-the-loop approach allowed for nuanced judgments that account for semantic equivalence,
even when there are syntactic differences. It aligns more closely with user needs, as in practical
scenarios, users of release notes are primarily concerned with whether the important changes and
updates are accurately captured, rather than the specific phrasing used.

Traditional metrics like BLEU and ROUGE, while useful for many NLP tasks and used in related
work [23] [35] [21], have limitations when applied to LLM-generated content, especially in special-
ized domains like software documentation. They primarily measure word or phrase overlap, which
can be misleading when evaluating LLM outputs that often involve paraphrasing or reformulation.
These metrics can unfairly penalize semantically correct but lexically different variations, which are
common and often desirable in LLM-generated text. Moreover, they may not capture the nuanced
accuracy required in technical documentation like release notes, where precise conveyance of
information is more critical than exact wording.

For user study, to assess qualitative aspects, we conducted a user study where participants rated
VerLog’s output, baselines, and ground-truth on a 5-point Likert scale for: (1) Overall Quality, (2)
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Completeness, (3) Accuracy, (4) Readability, and (5) Preference. This approach combines quantitative
assessment of semantic accuracy with qualitative evaluation of usability and effectiveness.

3.1.3 Baselines. We selected five state-of-the-art (SOTA) baselines to demonstrate the merits of
VerLog, as summarized and justified below.

(1) TextRank: A text summarization technique adapted for release note generation [34]. It uses
commit messages and pull-request titles, employing the GloVe [39] word embedding for
keyword extraction.

(2) GitHub Changelog Generator (GCG): An industry-standard tool with over 7,400 GitHub
stars, representing a widely-adopted solution to automated change-log creation [12].

(3) DIFF: A simple but potentially strong approach using LLMs to generate release notes from
raw diff hunks. This baseline represents a pure code-summarization approach, comparable to
recent pre-trained models for code-change tasks [26] [27] [15].

(4) GPT-4o: a general, powerful foundation LLM [37] that has the potential to directly serve
software change documentation purposes.

(5) CodeLlama: Similar to the above but using a code-specific LLM [30] which might work
better for coding tasks such as change documentation than general-purpose LLMs.

The overall baseline selection is further justified by that (1) they cover both traditional/non-LLM-
based (i.e., the first two) and LLM-based (i.e., the other three) techniques, (2) DIFF represents
approaches specialized for summarizing code changes, and (3) the last two baselines directly
leverage both general-purpose and code-specific foundation LLMs, for which we chose GPT-4o
released in May 2024 and CodeLlama-70b-instruct, respectively, as they were SOTA LLMs in
their respective class by the time VerLog’s base model was released.

For TextRank and GCG, we adopted their original/default settings. For the last two LLM baselines,
CodeLlama and GPT-4o, we use the same multi-granularity information (i.e., app description,
commit messages, and changed methods with detailed line-level changes) taken by VerLog as
their input. We prompt the LLMs to generate release notes using the template in Figure 5. For DIFF,
we use the same LLM underlying VerLog (i.e., GPT-4o-mini) for fair comparisons, and the same
template but without providing app description and commit messages.
3.1.4 Environment. We ran all our experiments on a sever with Threadripper PRO 3995WX, four
A6000 GPUs, and Ubuntu 20.04 as operating system. For the specific large language model used, we
chose ChatGPT-4o-mini [36], which is among the most cost-efficient while reasonably intelligent.

3.2 Evaluation Procedure
For RQ1 (effectiveness), we evaluated VerLog’s ability to generate accurate and comprehensive
release notes using Precision, Recall, and F1 score. These metrics were computed by comparing the
generated release notes with the ground truth, focusing on the semantic correspondence between
entries rather than lexical similarity.
To address RQ2 (comparison to baselines), we applied the same metrics used in RQ1 to our

baseline approaches which are configured as described above. For the shared types of information,
all the baselines and VerLog are fed with the same inputs.
For RQ3 (ablation study), we created several variants of VerLog, each with a key component

removed or modified. We evaluated these variants using the same metrics as in RQ1 and RQ2.
RQ4 (efficiency) was addressed by measuring three key aspects: token usage, time cost, and peak

memory usage for generating release notes.
Finally, for RQ5 (in-the-wild evaluation), we conducted a user study with experienced software

developers. In total 10 participants were asked to rate the automatically generated release notes on
a 5-point Likert scale across several dimensions that cover what defines a high-quality release note.
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3.3 Results and Analysis
3.3.1 RQ1: Effectiveness of VerLog. To evaluate the effectiveness of VerLog in generating release
notes, we compare these generated notes against the ground truth. The reliability of our evaluation
is demonstrated by strong inter-rater agreement scores before consensus building: Cohen’s Kappa
scores between pairs of raters are 0.7844 (Rater-1, Rater-2), 0.7376 (Rater-1, Rater-3), and 0.8320
(Rater-2, Rater-3), and Fleiss’ Kappa score across all raters (0.7842) indicate substantial agreement.
# Role
You are an Android expert. You will analyze the
information about changed methods between two release
versions (marked as ‘v1‘ and ‘v2) of an Android app
and then output a release note based on the analysis
of changes.
# Input Content
1. App Description: [will be provided]
2. Method Signature: [will be provided]
3. Commit Messages Between Two Versions: [will be
provided]
4. Changed Statements: [will be provided. The diff
hunks of the changed user-defined method]
# Task
Summarize the functionality changes as a concise
release note, focusing on end-user-perceivable
features between ‘v1‘ and ‘v2‘ based on the code
changes and other information provided above.
# Input Template
{App Description}
{Commit Messages}
{All Changed Methods with statements}

Fig. 5. Prompt template used for LLM-

based baselines CodeLlama and GPT-4o.

As shown in Table 1, the effectiveness results demon-
strateVerLog’s strong performance in generating release
notes. The precision of 0.7077 indicates that a significant
majority of the entries in the generated release notes accu-
rately correspond to actual changes in the software. This
high precision suggests that VerLog is effective at avoid-
ing the inclusion of irrelevant or incorrect information in
its output. The recall of 0.8002 is particularly noteworthy,
as it shows that VerLog successfully captures a large pro-
portion of the relevant changes that should be included in
the release notes. This high recall indicates that VerLog
is comprehensive in its analysis, rarely missing important
updates or modifications that users and developers would
need to know about. However, for uncaptured but impor-
tant changes, our analysis reveals that they often belong
to non-code changes, e.g., UI changes. The F1 score of

0.7111, which provides a balanced measure of precision and recall, further confirms VerLog’s
overall effectiveness. This score suggests that VerLog achieves a good balance between including
relevant information and avoiding unnecessary details. The high recall, in particular, is crucial
for ensuring that users are informed about all significant changes, while the solid precision helps
maintain the readability and relevance of the generated notes.

VerLog achieves precision of 0.71, recall of 0.80, and an F1 score of 0.71, indicating that it is capable

of generating release notes that are both accurate and comprehensive.

Table 1. Effectiveness versus baselines

Precision Recall F1

VerLog 0.7077 0.8002 0.7111

TextRank 0.3602 0.8011 0.4473
GCG 0.1731 0.1932 0.1909
DIFF 0.2499 0.5532 0.3166
CodeLlama 0.4220 0.5627 0.4300
GPT-4o 0.6002 0.6713 0.5874

3.3.2 RQ2: Comparison with Baselines. The chosen base-
lines represent different approaches to automated release
note generation, ranging from text summarization tech-
niques to widely-used tools and both simple and advanced
LLM applications. Table 1 shows the results.

For textual-based techniques, TextRank achieved an F1
score of 0.4473, significantly lower than VerLog’s 0.7111.
While TextRank shows high recall, comparable to VerLog’s, its precision is considerably lower,
suggesting it struggles to distill the most relevant information for release notes. GCG achieved the
lowest scores across all metrics, indicating significant limitations in capturing nuanced changes
and producing notes that align with human-written references.
Among LLM-based approaches, DIFF showed moderate performance with higher recall than

precision, suggesting it captures many changes but struggles to focus on the most important
ones. CodeLlama achieved moderate performance with balanced precision and recall, while GPT-
4o showed stronger results with improved precision and recall. However, both still fall short
of VerLog’s performance, highlighting that merely applying powerful language models without
proper code analysis and prompt engineering is insufficient for high-quality release note generation.
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VerLog outperforms all baselines in all metrics, with particularly notable improvements in pre-
cision. The substantial advantages over these baselines, including advanced LLM-based approaches,
underscores the effectiveness of our approach combing graph-based code analysis, multi-granularity
information integration, and adaptive prompting for automated release note generation.
VerLog significantly outperforms all baselines in release note generation, achieving a 21% higher F1

than the best baseline (GPT-4o) and a 59% improvement over traditional approaches like TextRank,

demonstrating the merits of combining graph-based code analysis with LLM capabilities.

Table 2. Description of ablation design

Ablation Graph Knowledge Multi-granularity Exemplars

(Phase 1) (Phase 2) (Phase 3)

Random-exemplars ✓ ✓ ⃝
Zero-Exemplars ✓ ✓ ×
Only-Code-Diff × ✓ ×
No-Code-Diff ✓ × ✓
No-Graph × ✓ ✓

3.3.3 RQ3: Ablation Studies. In this
subsection we conducted ablation
study to better understand the contri-
bution of each component inVerLog.
This study helps isolate the impact
of individual design elements on the
overall performance of our approach.

We considered four main ablations, which are shown in 2. They are: (1) No-Graph: Removes
graph knowledge-based prompting (Phase 1). (2) Zero-Exemplars: Eliminates adaptive semantics
augmentation (Phase 2), (3) Random-Exemplars: Uses random exemplar selection instead of
adaptive selection.(4) No-Code-Diff: Removes multi-granularity feature composition (Phase 3),
and (5) Only-Code-Diff: Retains only code diff information, removing Phases 1 and 2.

Table 3. Results of ablation studies

Ablation Precision Recall F1

Full Design 0.7077 0.8002 0.7111

Random-exemplars 0.6888 0.7511 0.7013
Zero-Exemplars 0.6499 0.7673 0.6714
Only-Code-Diff 0.5951 0.7498 0.6354
No-Code-Diff 0.2667 0.2848 0.2571
No-Graph 0.6756 0.7703 0.6918

Our ablation experiments revealed several key
findings. Firstly: Graph knowledge-based prompting

is crucial. The No-Graph variant saw F1 score drop
from 0.7111 to 0.6918, highlighting the value of
semantic graph representation for code changes.
Secondly, Adaptive semantics augmentation is sig-

nificant: Zero-Exemplars (F1: 0.6714) and Random-
Exemplars (F1: 0.7013) both underperformed com-
pared to the full VerLog, demonstrating the impor-
tance of adaptive exemplar selection. Furthurmore, Multi-granularity feature composition is critical:
No-Code-Diff variant showed a dramatic performance drop (F1: 0.2571), emphasizing the need
for diverse information sources in release note generation. The full VerLog system (F1: 0.7111)
outperformed all ablated variants, including the Only-Code-Diff ablation (F1: 0.6354), validating
the necessity of our multi-faceted approach.

These results confirm VerLog as a balanced system where each component plays a vital role. The
graph-based representation provides semantic context, adaptive exemplar selection guides relevant
output, and multi-granularity information ensures comprehensive coverage. Future work could
explore refining exemplar selection strategies and integrating additional software development
artifacts to further enhance performance.
Moreover, this ablation study offers insights into potential areas for future improvement. For

instance, the relatively strong performance of the "Random-Exemplars" variant suggests that
there might be room for further refinement in our exemplar selection strategy. Additionally, the
significant impact of removing multi-granularity information points to the potential value of
exploring even more diverse information sources or developing more sophisticated methods for
integrating different types of software development artifacts.

All the key design elements in VerLog, graph-based prompting, adaptive exemplar selection, and

multi-granularity feature composition, contribute significantly to its overall effectiveness.
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3.3.4 RQ4: Cost-Efficiency. The cost structure in VerLog primarily stems from token usage in
LLM interactions. Each prompt consists of three main components: system instruction, exemplars,
and the prompt body. For input token usage analysis, we measured the average tokens per full
prompt, together with minimum and maximum number of tokens in one prompt (including all
three components) using a tokenizer, with a result of 2,217, 10,909, and 2,978, respectively. Our
measurements show that most prompts fall within the 2K-4K token range, with a relatively low
average. This efficient token usage is achieved via our careful prompt engineering designed to
minimize input length while maintaining effectiveness, as discussed in Section 4.1.2.

Regarding output tokens, which have higher pricing, the costs are minimal since we specifically
instruct the LLM to generate a concise, single-sentence release note entry per prompt. Given
this controlled output format, output token costs can be considered negligible in the overall cost
calculation. This allows for accurate cost projections for typical release note generation tasks.

Table 4. Time cost (in seconds) breakdown

Phase/Task Time Percentage

Phase 1

Changes Localization 0.53 1.73%
Call Graph Construction 14.33 46.80%

CMG Construction <0.01 <0.01%
Phase 2-3 (i.e., prompt formation) 1.54 5.03%

Phase 4 (i.e., LLM inference) 14.22 46.44%
Total 30.62 100.00%

Time efficiency is another crucial aspect of our
cost analysis. We record the time cost of each phase
and certain subtasks, as seen in Table 4. As Phase
2 and Phase 3 are simpler in implementation, com-
pared to Phase 1, and do not rely on multiple LLM
API calls, compared to Phase 4, we count them to-
gether for time cost computation. The time cost anal-
ysis reveals major dominants in VerLog’s pipeline:
call graph construction (Phase 1) and LLM process-
ing (Phase 4), each consuming approximately 46% of the total execution time. This distribution
indicates that the computational overhead is primarily split between static analysis and language
model inference, with other components having minimal impact on overall runtime.

Call graph construction time (14.33s on average) represents a dominant due to the need for static
analysis. This cost item scales with project size and complexity, as the analysis must track method
relationships across the entire codebase on the call graph. The similarly substantial time cost in
Phase 4 (14.22s) is subject to the total amount of prompts generated, instead of the inference time
cost for one single prompt; of course, the efficiency of the LLM itself is also a key factor.
Notably, other components like changes localization (0.53s) and CMG construction (<0.01s)

have minimal impact on overall runtime. The multi-granularity feature composition and adaptive
semantics augmentation (Phases 2-3) together consume only about 5% of the total execution time
(1.54s), indicating efficient implementation of these novel components.

The average total execution time of 30.62 seconds per release suggests that VerLog can be
practically integrated into development workflows without introducing significant delays.

VerLog is reasonably efficient for practical use, and the primary cost dominants are static code

analysis and LLM inference. These costs can be paid off by the quality of release notes it generates.

3.3.5 RQ5: In-the-Wild User Study. To evaluate VerLog’s performance in real-world scenarios
and gather insights from practitioners, we conducted an in-the-wild user study. This study aimed
to assess the quality and usability of release notes generated by VerLog compared to baseline
approaches and existing low-quality release notes.

Methodology. We recruited 10 participants, all of whom were experienced Android developers
and users. Each participant was assigned 10 different Android applications, specifically chosen
for their historically low-quality release notes. For each application, we generated release notes
using VerLog and our five baseline approaches. Participants were asked to evaluate each set of
generated release notes across five key dimensions, rating them on a scale of 1 to 5 (where 1 is the
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lowest and 5 is the highest): (1) Overall Quality, (2) Completeness, (3) Accuracy, (4) Readability, and
(5) Preference (compared to existing low-quality release notes).

Table 5 reveals results of how participants evaluated different metrics on VerLog and baselines.
VerLog achieved the highest overall average score of 3.99, but the distribution of scores across
different metrics and approaches offers valuable insights into the strengths and limitations of
various techniques. A clear pattern emerges when comparing LLM-based approaches (VerLog,
DIFF, GPT-4o, CodeLlama) with traditional textual-based methods (TextRank, GCG). LLM-based
approaches consistently received higher scores across all dimensions, particularly in readability
and overall quality, suggesting that LLMs’ natural language capabilities contribute significantly to
generating comprehensible and well-structured release notes.

Table 5. User study results

Overall Quality Completeness Accuracy Readability Preference Average
VerLog 4.00 3.81 3.63 4.56 3.94 3.99

TextRank 2.94 3.44 3.50 2.25 2.38 2.90
GCG 2.25 2.31 3.13 2.69 2.19 2.51
DIFF 3.00 3.13 3.50 3.13 2.50 3.05
CodeLlama 3.12 3.26 3.35 3.65 3.03 3.28
GPT-4o 3.24 3.38 3.44 4.15 3.23 3.49

Textual-based approaches also
showed notably lower scores in
user preference. This indicates
that while these approachesmay
capture relevant information,
they struggle to present it in
a user-friendly manner. GCG’s

consistently low scores across all metrics suggest that relying solely on repository metadata might
be insufficient for generating quality release notes.
Notably, participants’ preference scores aligned more closely with readability ratings than

accuracy/completeness, suggesting that the clarity and presentation of information might be more
important to users than technical precision/coverage. This observation is supported by VerLog
and GPT-4o achieving the highest readability scores and correspondingly high preference ratings.

Other than these metrics, participants provided additional comments that shed light on VerLog’s
performance. Some participants offered suggestions for improvement, such as: "It would be helpful to
have more granular categorization of changes in some cases." and "For larger updates, a brief summary

at the beginning would enhance quick comprehension."

The results of the user study not only validate VerLog’s performance metrics from our controlled

experiments but also demonstrate its practical value to developers. The positive reception and

constructive feedback from experienced practitioners underscore VerLog’s potential to significantly

enhance the release note generation process in real-world software development contexts.

4 Discussion
4.1 Scalability of VerLog
4.1.1 Graph Complexity vs. Cost. To stress test VerLog’s scalability, we conducted additional
experiments with larger apps. With the same methodology as for curating our main evaluation
dataset (Section 3.1.1), including ground truth building and automatic compilation, we identified
5 large-scale apps across 15 releases, with compiled APK sizes ranging from 30MB to 90MB—the
largest in our main dataset is 21MB. We examine the (1) graph complexity of these larger apps
together with the main dataset and (2) VerLog’s performance on releases of these larger apps.

Table 6. Graph complexity across all apps

Metric Min Max Mean

Size of complete call graph 143 65,840 4,947.0
#CMGs 1 306 12.3

Total size of all CMGs 1 2,645 78.0
Size of one CMG 1 440 6.3

Graph complexity. Table 6 summarizes graph sizes (in
terms of #edges) across the combined dataset. Although
the complete call graphs can be extensive, our Contextu-
alized Minimal Graphs (CMGs) remain quite manageable.
To manage graph complexity effectively, VerLog em-
ploys a two-pronged approach as detailed in Section 2.1.
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First, we only extracted the immediate callees of changed methods, limiting the input size for
constructing CMGs. Second, when building CMGs with changed methods with callees, we prune
the call graph by only keeping user-defined methods. This design in VerLog prevents the formation
of deeply nested structures while preserving the semantic relationships (between changed code
and its context) crucial for accurate automated release note generation.
Second, we implement a CMG/prompt merging strategy to handle cases in which changes are

scattered across many simple CMGs. Our analysis shows that, on the 5 large apps, a significant
portion (59.3%) of CMGs contain only a single node, which could lead to fragmented prompts hence
inefficient LLM utilization. To address this, we merge these single-node CMGs based on class and
package hierarchy, ensuring that each resulting prompt either contains multiple single-node CMGs
from the same class/package or represents a unique isolated change. This optimization significantly
reduces the number of required prompts—for the large apps, it reduces the maximum number of
prompts from 306 to 104 while maintaining semantic coherence. The merging threshold (currently
set to single-node CMGs) can be customized based on specific requirements, offering flexibility in
balancing prompt count and complexity.
We further examined the correlation between graph complexity and VerLog’s computational

cost. Since call graph construction, slicing, and CMG construction all happen in Phase 1, for the cost
here we consider the time taken in Phase 1. As seen in Table 7, while the complete call graph size
shows a strong correlation with processing time, CMG-related metrics demonstrate no significant
correlation. Specifically, the correlation coefficients for total #nodes in all CMGs (per release)
and #nodes in one CMG indicate that our graph slicing approach effectively manages complexity
irrespective of the original codebase size.

Table 7. Spearman coefficient between graph complexity met-

rics and VerLog’s Phase 1 time cost and peak memory usage

Metric
Time Cost Peak Memory

Coefficient 𝑝-value Coefficient 𝑝-value

Size of complete call graph 0.916 <0.001 0.665 <0.001
#CMGs 0.034 0.561 0.053 0.362

Total size of all CMGs -0.001 0.982 -0.029 0.624
Size of one CMG -0.082 0.159 -0.149 0.010

Effectiveness. Moreover, on these
larger apps VerLog also maintained
strong effectiveness, with a precision
of 0.91, recall of 0.71, and F1 score of
0.80, even higher than those on the
main dataset. While these improved
metrics may be partially attributed to
the smaller number of samples and

moderate changes in these releases, they demonstrate VerLog’s ability to handle larger code-
bases effectively.

Table 8. VerLog cost on large apps

Metric Value

Avg. peak memory usage (MB) 3,667.67
Avg. (Phase-1) time cost (s) 39.78
Avg. token usage per prompt 3,751
Max. token usage per prompt 51,051
Avg. token usage per release 126,784

Cost. Results on resource utilization against these larger apps
are shown in Table 8. The average peak memory usage of
3,667.67MB and time cost of 39.78 seconds in Phase 1 indicate
that graph construction and analysis, while more resource-
consuming for larger codebases, maintains practical scalability.
This processing time primarily stems from the comprehensive
static analysis required for call graph construction, which
scales with codebase size but remains manageable through our optimized graph slicing approach.

The average token usage per prompt (3,751) demonstrates that most prompts remain short, even
for large apps. However, the maximum token usage of 51,051 tokens per prompt indicates that some
complex changes require more extensive context. The average token usage per release (126,784)
reflects the cumulative processing of multiple prompts for a complete release note. Despite higher
token counts, our prompt partitioning (as detailed in Section 4.1.2) and merging (as described above)
strategies effectively manage these larger requirements while maintaining generation quality.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA084. Publication date: July 2025.



ISSTA084:18 Jiawei Guo, Haoran Yang, and Haipeng Cai

In summary, despite the relatively small sample size of this additional evaluation, the further
results suggest that VerLog remains practically scalable and effective for large-scale applications.

4.1.2 Long Prompt Handling. A critical challenge to LLM-based systems lies in the handling of
long inputs (prompts) to the LLMs. We address this challenge through both preventive design and
remedial strategies when necessary.
Our design of VerLog, Phase 1 in particular, proactively minimizes prompt length through

preventive mechanisms. It reduces the overall scope of analysis via slicing (the complete call graph),
while minimizing the input context via the CMG abstraction. Moreover, since a prompt corresponds
to a CMG, our effort to minimize CMG complexity also contributes to prompt reduction, as we
discussed in Section 4.1.1. The prompt formation geared towards graph-based reasoning (e.g., each
prompt is only responsible for generating part of the release note corresponding to one subgraph)
further helps reduce the prompt length.
For cases in which prompts might still exceed input limits despite these optimizations, we

implement a prompt partitioning strategy, formulated as a bin-packing problem solved with the first-
fit-decreasing (FFD) algorithm. This approach treats changed statements as items and prompts as
bins (with max #tokens per LLM API call as bin size), maintaining necessary context by preserving
method signatures and multi-granularity information while distributing changed statements across
partitions. While this partitioning may end with necessitating multiple LLM API calls instead of
one, each partition carries complete context to ensure accurate generation. For smaller CMGs, we
optimize token usage by merging "fragmented" prompts based on class or package hierarchy to the
extent where no two prompts contain only single methods from the same class or package.
Our analysis of token distributions demonstrates the effectiveness of the preventive design. In

our dataset, prompts range from 2,217 to 10,909 tokens, averaging 2,978 tokens. Most prompts
(92.39%) fall within 2-4K tokens, with only 7.42% using 4-8K tokens and a mere 0.19% exceeding 8K
tokens. This distribution indicates that our length minimization strategies successfully keep most
prompts within manageable limits.

Table 9. Effectiveness on all benchmarks (ALL) and benchmarks

with (one or more) long (#tokens>4K) prompts (LP).

Metric
VerLog TextRank GCG DIFF GPT-4o CodeLlama

ALL LP ALL LP ALL LP ALL LP ALL LP ALL LP
Precision 0.66 0.71 0.33 0.36 0.13 0.17 0.28 0.25 0.60 0.55 0.42 0.47
Recall 0.77 0.80 0.84 0.80 0.15 0.19 0.60 0.55 0.67 0.56 0.56 0.53
F1 0.71 0.68 0.44 0.45 0.13 0.19 0.35 0.32 0.57 0.53 0.43 0.43

To validate our remedial strategy’s
effectiveness, we conducted experi-
ments with a 4K token limit, com-
mon in deployed open-source mod-
els. As shown in Table 9, for the 7.42%
of prompts exceeding this limit, our
results show minimal effectiveness
impact. Several factors contribute to

this robustness: (1) when multiple prompts are needed to generate one release note, those prompts
typically have varying lengths, (2) prompt partitioning usually yields only two sub-prompts, and
(3) these long prompts are distributed across different releases, not concentrated for one release.

Expectedly, textual-based approaches like TextRank and GCG maintain consistent performance
regardless of app size. This is because they operate on commit messages and pull requests, which
are inherently shorter and more uniform in length compared to code-based prompts. However,
this textual-only nature, while computationally simpler, limits their ability to capture detailed
code-level changes, as evidenced by their overall lower effectiveness comparatively.

4.2 Technical Generalizability and Limitations
For generalizability concerns, even though we applied VerLog to Android projects, VerLog’s core
design isn’t inherently tied to Java or Android-specific features. The fundamental requirements of
our approach – including software repository metadata, parsed source code, and call graphs – are
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common across various programming languages. The prompt format we use for the Large Language
Model (LLM) would remain consistent across different programming languages. Therefore, in terms
of design, VerLog is is also language-agnostic.
As for limitations, VerLog faces three primary technical limitations. First, it struggles with

non-code changes, particularly UI modifications in Android apps. While UI changes significantly
impact user experience, our current implementation does not capture these effectively. A potential
solution involves using multimodal LLMs to analyze and describe UI changes through screenshot
comparisons. However, this approach would require comprehensive GUI testing across various
device configurations, increasing complexity and resource demands.

Lastly, while VerLog automates much of the release note generation process, it doesn’t eliminate
the need for human oversight. As indicated in our title, VerLog is designed to enhance the process
of release note generation, not to fully substitute developers. The tool aims to provide developers
with a high-quality, automated starting point, allowing them to focus on refining and customizing
the release notes according to specific needs or preferences. Release notes often require human
oversight for legal, marketing, or user-specific language, and VerLog significantly reduces the
manual burden by automating the most tedious part of the process—sifting through commits and
code changes to extract meaningful information.

4.3 Threats to Validity
Internal Threats. The primary internal validity threat lies in potential implementation errors in
VerLog and our experimental scripts. To mitigate this risk, we conducted thorough code reviews
of our implementations against manageable testing scenarios. We also employed extensive unit
and integration testing to verify the correctness of individual components and the system as a
whole. Large Language Models are prone to hallucination [48], which could lead to inconsistent
and unreliable release note generation. To address this issue, we set the temperature of the LLM to
zero in our experiments, encouraging more deterministic outputs. We generated multiple samples
for each release note and computed consistency metrics across these samples.Also, Each exper-
iment was run multiple times, and we only considered results that were consistent across runs.
Despite these precautions, we cannot entirely rule out the possibility that developers using VerLog
may occasionally encounter slight variations in the generated release notes or require additional
iterations to achieve the same level of quality demonstrated in our evaluation.
External Threats. Our study primarily used open-source Java Android applications from F-
droid. This focus may limit the generalizability of our results to closed-source software projects
or applications in other programming languages. While F-droid is a widely used benchmark in
software engineering research, the release notes and development practices in this dataset may not
fully represent those found in all real-world scenarios. For LLM selection, We chose GPT-4o-mini
for our experiments due to its balance of capability and cost-effectiveness. However, with the
rapid evolution of LLMs, more advanced models may not necessarily show the same degree of
improvement as presented in our study. In terms of project Diversity: The scale and complexity of
projects in our dataset may not fully represent the entire spectrum found in industry, very large or
highly complex projects might present challenges not encountered in our study.

5 Related Work
Several studies have investigated the importance and characteristics of release notes in software

development. Bi et al. [8] conducted a comprehensive study on release note production and usage,
analyzing over 32,000 release notes from 1,000 GitHub projects. Yang et al. [47] focused specifically
on release note patterns in popular Google Play Store apps.
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The core focus of our work aligns closely with automatic release note generation. Moreno et
al. [31] proposed ARENA, an approach for automated generation of release notes that has been
a significant baseline in the field. Nath and Roy [34] used extractive summarization techniques,
specifically an improved TextRank algorithm, for generating release notes from commit messages
and pull request titles. More recent approaches have leveraged advanced natural language processing
techniques. Kamezawa et al. [23] introduced RNSum, a large-scale dataset for release note generation
via commit log summarization, proposing class-wise extractive-then-abstractive approaches using
transformer-based models like BART. Jiang et al. [21] presented DeepRelease, a language-agnostic
approach for generating release notes from pull requests in open-source software.
While not directly focused on release note generation, several works in related areas have

informed our approach. Dunlap et al. [13] also utilized git-diff hunks and in-context learning
to exploit LLM to help understand security patches. Fan et al. [15] explored the capabilities of
LLMs for code change-related tasks, which aligns with our use of LLMs in VerLog. Grund et
al. [18] introduced CodeShovel for constructing method-level source code histories, a technique
that informs our approach to code differencing. Bansal et al. [6] demonstrated the effectiveness of
function call graph context encoding for neural source code summarization, which inspired our
graph-based approach in VerLog. Recent works like Ahmed et al. [3] on semantic augmentation
of language model prompts for code summarization, and Geng et al. [16] on few-shot comment
generation via in-context learning, have influenced our approach to leveraging LLMs in VerLog.
Finally, recent works on automatic commit message generation by Zhang et al. [49] and Li et al. [25],
as well as identifying geographic feature variations in Android apps using LLMs by Guo et al. [20],
provide valuable insights into summarizing code changes, which is relevant to our task.

6 Conclusion
We present VerLog, a novel approach to automated release note generation using LLMs. VerLog
addresses the challenges of manual release note creation by combining static code analysis-guided
LLM graph knowledge reasoning, adaptive LLM prompting informed by app functionality domain,
and multi-granularity information integration in few-shot in-context learning.
Our evaluation on dozens of real-world Android apps demonstrates VerLog’s superiority over

academic and industrial state-of-the-art baselines in terms of completeness, accuracy, and read-
ability. The key technical contributions of VerLog include: (1) Graph knowledge-based prompting
for semantic code change representation, (2) Adaptive exemplar selection for domain-specific
release note generation and (3) Multi-granularity feature composition for comprehensive change
documentation. These innovations enable VerLog to capture nuanced code changes and generate
contextually appropriate release notes, outperforming existing techniques that rely solely on tex-
tual artifacts or simple code diffs. While our results are promising, limitations such as language
specificity and potential LLM hallucinations warrant further investigation. Future work should
focus on expanding language support, integrating VerLog into CI/CD pipelines, and exploring
personalization based on user roles.

7 Data Availability
We have released our code and datasets to facilitate relevant future research, as found at

https://figshare.com/s/8450d527685bee8fd06a.
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