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This paper presents a parallel visualization technique for illustrative rendering of dense
three-dimensional (3D) geometry data sets. Our approach maps the depth information
in each geometry onto various visual dimensions of graphical representations, includ-
ing shape, color, brightness, transparency, and size, to achieve legible display in dense
geometry environments where visual clutters often hinder perception and navigation in
the visualizations. At the same time, we leverage legacy CPU computing power to over-
come performance challenges as a result of the depth-dependent illustrations used for the
visual legibility enhancement. This is realized by a novel parallel rendering algorithm we
developed particularly for illustrative visualizations of depth-dependent stylized dense
geometries at interactive frame rates. While the computation could be performed atop
modern GPU devices, we target a parallel visualization framework that enables it to
efficiently run on commodity CPUs, which are much more available than GPUs for ordi-
nary users. We evaluated our framework with visualizations of depth-stylized geome-
tries derived from 3D diffusion tensor MRI data, by comparing its efficiency with sev-
eral other alternative parallelization platforms with respect to the same computations.
Results show that our approach can efficiently render highly dense 3D geometry data
sets and, thus, it offers not only an alternative and complementary, but also more
adoptable, solution to users in contrast to parallel visualization environments that rely
on GPUs.

Keywords: Illustrative visualization; parallel rendering; 3D geometry; depth-dependent
rendering; stylized visualization; visual legibility.

1. Introduction

When visualizing large-scale geometrical data such as dense tubes or simply poly-
lines, one of the critical issues lies in the visual perception in the depth dimension
due to inherent clutters or occlusions as a result of overlapping graphical objects
and/or structures. To improve the overall visual legibility of three-dimensional (3D)
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data visualizations, mapping depth information to various visual variables of graph-
ical representations can be an effective means for enhancing depth perceptions,
especially during user interactions in the context of interactive visualizations.

On the basis of the semiology of graphics,'® various visual variables, such as
size, color, brightness (value), and transparency, etc. can be used for the depth
mappings. For instance, a linear mapping from per-vertex depth value to the radius
(i.e. the size) of a tube in a visualization of dense 3D geometries can give users a
visual cue for discerning depth positions as the radii monotonically decreases along
the viewing direction. Similarly, a consistent mapping from depth to color provides
a constant correlation between the view distance from the viewer to the geometries
and the color, thus it helps the viewer navigate the visualized data set along the
depth direction. In both cases, better depth perception can be obtained to enhance
the overall legibility of the rendering in the visualization.

To render the depth-dependent visualizations at interactive frame rates, real-
time computation involved in the depth mappings is desirable and usually required.
In that regard, there are two major computation-intensive steps to be performed
every time depth reordering is needed — for example, the data view is changed
as a consequence of rotating the visualization. First, depth values are calculated
according to updated viewing directions and sorted along those directions. Second,
mappings are computed and the geometries are rendered over again to update
the visualization. Concisely, depth sorting and re-rendering should be performed
once depth order is changed due to view transformations which disrupt the visual
distance from users to individual geometries. To obtain an interactive frame rate of
such visualizations, therefore, these computations need be performed in a real-time
fashion, which have been proven difficult either with sequential approaches or by
direct use of general-purpose parallel-computing facilities.

To address such performance challenges, it is reasonable to consider parallelizing
the depth-dependent visualizations for interactive rendering. While GPUs are being
increasingly applied in many modern parallel computations and, indeed, visualiza-
tions of large-scale dense geometry data could be a perfect fit for GPU computing
platforms, we aim at a cheaper solution to the same challenges. In particular, we
target a solution that can be a useful complement to the GPU computing paradigm,
especially when GPU devices and related high-end hardware configurations are not
readily available. In fact, this is mostly true since GPUs are generally much more
expensive than ordinary computer users would like to afford for tasks like visualizing
dense geometries.

In this context, we present a parallelized illustrative visualization approach that
enables real-time computations for interactive depth mappings hence enhanced
visual legibility in 3D visualization environments. Our technique utilizes the mes-
sage passing interface (MPI) in collaboration with the Visualization ToolKit
(VTK)!® while extending current VTK facilities for the purpose of performance
optimization. Through the optimized coordination between a parallel depth order-
ing algorithm and parallel rendering method with customized data structures for
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real-time depth mappings, our approach has been shown as an efficient solution in
visualization use scenarios involving dense 3D geometry data sets.

We applied our approach to depth-dependent 3D dense geometry visualizations
with depth mapped to primary visual variables, and have obtained interactive ren-
dering speed with either single variable mapping applied or multiple variable map-
pings combined. It is noticeable that even with the combination of mappings from
depth to size and those to any other visual variables, in which two passes of depth
sorting and rendering plus geometry generation from polylines are all required for
each frame, our approach has still been able to render the dense data sets at inter-
active frame rates.

The main contributions of this paper are the legibility-enhanced visualization
of dense 3D geometries and the CPU-based parallel rendering scheme. While we
demonstrate its application only in context of illustrative visualizations of geometry
data, the parallel rendering can also be applied to relevant other performance-
critical scenarios where, for example, real-time sorting of vertices is needed.

The rest of this paper is organized as follows. Section 2 highlights the legibil-
ity issues encountered in our visualization scenarios with existing approaches that
motivate this work and gives necessary background necessary for understanding
our approach and experimental data set. Then, we describe the details about our
approach in Sec. 3 and key implementation issues in Sec. 4. Section 5 presents our
empirical studies and evaluation results, followed by an extended discussion on the
implications of those results in Sec. 6. We discuss previous research related to our
approach in Sec. 7 and give concluding remarks finally in Sec. 8.

2. Motivation and Background

This work was originally motivated by our research on visualizing the diffusion ten-
sor magnetic resonance imaging (DT-MRI or DTI) data sets.*% As an advanced
MRI technique, DTI has been shown advantageous over other imaging techniques
in enabling in wvivo investigation of biological tissues. Specifically in our work on
scientific visualizations targeting neuroscientists and radiologists, we are primarily
concerned about the DTI model of human brains. One way to visualize the brain
DTT data sets is to, via 3D tractography, reconstruct the geometrical model of the
distribution and connectivity of neural pathways in the brain white matter. For our
end users (i.e. the domain scientists), these pathways represented by 3D geome-
tries (e.g. polylines and tubes) can greatly assist with understanding the internal
structure of brains hence diagnosing cerebral anomalies and planning neurological
surgeries.®”

However, under a common data-acquisition setting (e.g. a scanning resolution of
0.9375 mm x 0.9375 mm x 4.52mm), the resulting 3D DTI geometry model usually
contains over 10000 polylines each consisting of up to 100 line segments. What is
more challenging is that not only is the scale of these geometries quite large, but
also they are extremely dense, reflecting the cramped layout of neural pathways
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in human brains. Consequently, directly rendering such highly dense geometries in
a 3D setting ends up with visualizations full of visual clutters,® making it quite
difficult for domain scientists to explore hence understand the brain model.

Moreover, streamtubes® are usually more preferable than polylines as they are
able to convey more data characteristics, such as shape, size and orientation, of
the brain neural pathways. Unfortunately, streamtube visualizations tend to suffer
much more greatly from legibility issues such as visual clutters than polyline repre-
sentations due to the need for expressing the added data properties. In fact, previous
studies have shown that even reaching a region of interest in a dense streamtube
visualization appears quite difficult even with aids of specialized interaction facili-
ties.>” Despite of a large body of previous research on visualizing DTI data sets,
existing approaches mostly turn to render the data sets with different metaphor
or graphical representations (e.g. visualizing the underlying tensor field itself or
showing only higher-level abstractions of the data model), missing the benefits of
facilitating the comprehension of the spatial structures and internal connectivity of
the brain.

To address the legibility issues in the 3D visualization of dense data set, an
important and effective approach is to enhance depth perception as the loss of
depth information accounts largely for the difficult navigation in 3D rendering envi-
ronment.'#2% Depth mapping to various visual elements can greatly alleviate that
difficulty as it provides additional visual cues that help viewers orientate them-
selves along the depth dimension. On the other hand, however, such mappings can
also substantially increase the overhead of rendering, which is particularly true in
interactive visualizations as in our situation. While the modern GPU computing
architecture is designed to address challenges in graphics rendering performance, the
commodity CPUs are more commonly seen in legacy computing platforms. Thus, a
much cheaper solution that provides real-time visualizations with depth-enhanced
illustrations seems to be right in demand.

3. Approach
3.1. Depth dimension management

Visual legibility of two-dimensional (2D) graphical representations can be charac-
terized by graphical density, angular separation, and retinal separation.!® Further,
retinal separation is defined by six visual variables: size, color, shape, value, ori-
entation and texture. Motivated by the legibility rules defined in terms of these
dimensions, we explore the visual legibility issues in 3D data visualizations by
examining 3D legibility dimensions. While our exploration is still based on the
2D legibility framework, certain expansion is required to characterize legibility in
3D environments. To that end, we expand that framework from 2D to 3D by adding
the depth-separation dimension, which is characteristic of 3D data visualizations in
general as well. We also examine how typical retinal variables affect the legibility
of 3D visualizations by investigating visual encodings that map depth information
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to each of those variables separately and combinatorially. Through such encodings,
users are given visual cues to better discern depth locations so that the overall
legibility of the visualization can be enhanced.

Specifically, in our 3D legibility framework, we reused the three variables, size,
color and (brightness) value, from the 2D legibility framework directly, and added
one more variable, transparency, which plays an important role in depth percep-
tion in 3D geometries. In our visual encodings, depth information of geometries is
encoded either by a single visual variable alone or by multiple variables combined.
By comparing different encodings, we examine effects of those visual variables on
the depth-separation dimension hence the overall 3D visualization legibility.

3.2. The parallel visualization pipeline

Our parallel visualization pipeline is outlined in Fig. 1. The parallelism is realized
through the MPI infrastructure and the visualization powered by the VTK with
parallelization supports. Among the four processes shown in the figure, the master
process Py is responsible for data I/O, visualization interactions, and coordina-
tions that are required for a parallel rendering with consistent depth mappings,
and for rendering local data partitions as also done by all slave processes. The col-
laborations between the master process and slave processes involve all key steps
in the pipeline, from data decomposition to parallel depth sorting and geometry
rendering.

3.3. Data decomposition

Data decomposition is usually an essential part of a parallelization mechanism.
Although the concrete decomposition scheme can be very much dependent on the

Load _’Broadcasl Data _.Local depth Merge & | Depth | Local A Pixel-wise
geometryfl |geometry Jf [partitioning] «| ordering Broadcast mapping renderin, Compositing

~ | [ )
Interaction event handling \\‘ “1 \ j

Process 0 (master) [

| Data _é_\:Local depth : \ .| Depth Local
partitioning § | ordering [N mapping rendering]
r_____ ‘; “,“ &
Process 1 (slave) g /’
o X
\ A \
Data | “JLocal depth] Depth | | Local
partitioning ordering mapping renderin,

Process n-1 (slave)

Fig. 1. The overview of our parallel visualization pipeline. The data partitioning is done in the
master process: for N processes, the master equally divides the entire data set into N partitions,
keeps one partition for itself, and then sends each of the other partitions to one of the N — 1 slave
processes.
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interrelations among data components, and there are different levels of granularity
at which the data components are defined, it is natural to split the whole data
set into independent partitions such that data processing of each partition can be
performed in parallel. In the case of 3D geometries, for instance, a single geometry
unit (e.g. a polyline or tube in the DTI model) is regarded as a unit component
and vertices on a geometry should not be assigned to different partitions.

In addition, to maximally harness the computing resources available, we equally
decompose the whole geometry model among all partitions, and then evenly dis-
tribute the computational tasks for sorting, mapping, and rendering to all processes.
This simple data partitioning scheme is efficient for our case of dense-geometry ren-
dering because, for one thing, there is no data or semantic dependency among all
geometries, and for another, task load for each process is closely equal to others
even if the master process takes certain additional roles of management and coor-
dination. Moreover, our data decomposition strategy enables the independence of
partitions on view updates: each process deals with the partition of the entire geom-
etry model assigned to it, including updating the depth mapping and refreshing the
visualization, independently of other processes dealing with the rest of the model;
the decomposition scheme itself does not change in the event of viewpoint (camera)
changes (arising from user interactions, for instance). However, data decomposition
in general itself is a separate topic and there are no universally optimal solutions,
and probing the cost-effectiveness tradeoffs and impacts on parallelization perfor-
mance of different decomposition strategies is out of the scope of this work.

When using MPI as the underlying parallelization support, the visualization
data set is decomposed according to the local process id (LocalProcld) and total
number of processes specified (ProcNum). Precisely, suppose a total of n data parti-
tions is intended, given all the data components Cy, C,Cs, ..., C,—1 in the equal-
partition scheme, local sub-range of data for process ¢ will be {Cs;gz, Ceids }, Where
sidx = n/ProcNum x Local Procld, eidx = n/ProcNum * (Local ProcId + 1), for
the starting and end index of the data partitions, respectively. Specially, the last
process may take more or less data components than others if n is not exactly
divided by ProcNum, in which case eidx = n. Figure 2 illustrates this data decom-
position scheme while showing the overall picture about how the depth-stylized
visualization is rendered in parallel.

3.4. Parallel depth sorting
3.4.1. Per-vertex depth ordering

In application scenarios like the 3D stylized visualization of dense geometries, depth
information of each vertex (or other geometry units such as triangles and stripes)
can be flexibly mapped to different visual variables, such as size, color, and trans-
parency, to assist with visual perception and navigation. However, despite of which
particular mapping is applied, such mappings must be consistent regardless of the
current user viewing directions in order to maintain depth perception hence visual
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Fig. 2. Illustration of data partitioning and pixel-wise compositing in our framework.

legibility along the depth dimension. In other words, all the vertices (or other
geometry units) need to be ordered along the current viewing direction so that
they can be consistently mapped to visual variables initially assigned.

Thus, once the viewing direction changes, which typically occurs when users
rotates the view, those vertices need to be reordered before mappings are updated
to refresh the visualization. Concretely, in the case of dense-geometry rendering,
depth ordering for vertices is required if a depth-dependent size encoding is applied.
An example of such encodings is that a tube tapers or grows in its radius along the
depth dimension.

3.4.2. Real time sorting

From the above discussion, we can see that, for our visualization scenarios at least,
depth ordering is necessary and real-time depth mapping relies on real-time depth
sorting. In fact, (re-)sorting attributes (e.g. depth) of geometries (e.g. vertices)
is commonly required in interactive 3D visualizations when the attributes change
during the interactions to address the object visibility problem. Note that depth
buffering (i.e. Z-buffer) alone is not sufficient for our illustrative visualizations since
we need to maintain consistent visual encodings with respect to various visual
elements such as size and color.

For the per-vertex depth sorting, the computation is essentially sorting a
sequence of floating-point numbers. For other geometry units, the computation
can also be reduced to the problem of per-vertex depth sorting. For instance, if we
want to discern the depth locations only at the level of tubes rather than that of
vertices (i.e. all vertices on a tube have the same visual-variable value), a vertex
can be selected to represent the entire unit, and then the per-geometry sorting
becomes sorting the selected representatives — how representative vertices are cho-
sen depends on particular application needs. Therefore, we generalize the depth
sorting problem into the sorting of a sequence of cells. Practically, the cell can
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either contain a single numerical value such as a floating-point number or be a
packed data such as a structure including multiple fields. In our case, the concrete
structure of the cell is determined by the specific depth mapping or chosen combina-
tion of multiple mappings because different mapping requires different granularity
at which the visual elements need to be distinguished (e.g. at the levels of vertices,
lines, or tubes).

While there are a rich set of parallel sorting algorithms freely available,? they
mostly serve the solitary purpose of sorting and are usually implemented as stand-
alone parallel applications. Since our ultimate goal is to parallelize dense geometry
visualizations in which depth mappings are integrated, we need a holistic parallel
framework where the sorting algorithm works together with other steps, such as
depth mapping and parallel rendering, in such a way that maximizes the overall
visualization performance. In contrast, we integrated our parallel sorting algorithm
into the holistic illustrative visualization pipeline (Sec. 3.5), that includes data
partitioning, and fitted it with efficient depth mappings (Sec. 3.6.1).

We adopt mixed sorting algorithm for our parallel depth sorting by the fol-
lowing key steps. First, each process updates the depth values (z-coordinates) of
local vertices through simple vector arithmetics using the current camera parame-
ters (focal point and position, etc.). Then, every process sorts vertex depth values
in the partition assigned to it using a common quick-sort algorithm and then
sends the sorted depth information to master process once finished. Finally, the
master process gathers locally sorted partitions and performs either a multi-way
merge sort or multiple two-way merge sorts. Given our data decomposition strat-
egy, we employed the latter scheme on the master process, which is more efficient
because an iterative two-way merging can be performed once a sorted partition
is received from a slave process without waiting all processes to finish their local
sorting. Algorithm 1 shows how this parallel sorting algorithm works while illustrat-
ing how the real-time depth mappings fit the parallel visualization framework as
a whole.

3.5. Parallel geometry rendering

In stylized geometry visualizations, the primary performance challenges come from
two sources: depth sorting and geometry rendering. For each updated frame,
the whole geometry model needs be rendered over again after depth sorting to
reflect the depth mapping updates. Although both are critical for a real-time frame
rate, the rendering part (7)) usually takes a larger proportion of the total frame
refreshing time (T = T + T;.) than the depth sorting time (7). In one sample test
with a geometry date set of 140000 vertices, we found that T /T was less than 10%
in the illustrative visualization where per-vertex depth was mapped to vertex color.
This suggests that the rendering phase can be the main bottleneck for the overall
visualization performance. In other words, interactive depth-stylized visualization
depends on real-time rendering of the depth-mapped geometries. Nevertheless, as
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Algorithm 1 integrated parallel depth sorting and mapping

=
=

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

numProcs <+ total of processes
myld < local process rank
numPts < total number of vertices in local partition
Gather all numPts values into array all NumPts
idoset «— 0
for i =0 — myld—1do
idoset «— idoset + allNumPts|i]
end for
for i =0 — numPts — 1 do
depthli].vd «— depth value of the ith vertex in local geometries calculated
from camera parameters
depthli].id < i + idoset
end for
sort depth according to the vd field using gsort
Sum up all numPts to total Pts
if myld == 0 then
oset «— 0
tdepth|0..numPts — 1] < depth[0..numPts — 1]
for i =1 — numProcs — 1 do
Receive tdepth[numPts + oset.numPts + oset + allNumPts[i]] from
process 1%
inplace merge tdepth[0..numPts + oset.numPts + oset + all NumPts]i]|
oset «— oset + all Num Pts|i]
end for
for i =0 — totalPts — 1 do
hashIndex[tdepthl[i].id] < i
end for
Broadcast hashIndex
else
Send depth to master process 0
Receive hashIndex from master process 0
end if
for i =0 — numPts — 1 do
Rankgiobai 1] < hashIndex[i + idoset]
end for

mentioned earlier, the proposed approach aims at a cheap and readily applicable
parallel illustrative visualization solution based on commodity CPUs, rather than
resorting to specialized architecture like GPUs. Our approach to parallel rendering
simply consists of two major steps.
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3.5.1. Concurrent local rendering

After data decomposition, we first deploy the local partition to each process. Here
we refer to as a process any basic program unit of computation, which can be a single
processor on a multiple-processor platform, a single core on a multi-core processor,
or a worker thread on a single core processor. For each rendering frame, all separate
renditions, each performed by a single process, are aggregated into a single holistic
rendering that is only visible on the one of the processes called master process,
which is randomly elected from among all processes at runtime. This aggregation
is practically realized by means of pixel-wise image compositing as the second step
detailed in next section.

3.5.2. Pizel-wise compositing

When each process finished its local rendering of the partition assigned to it, the
rendering ends up with a set of pixels in the frame buffer. As such, pixel-wise com-
positing is in essence a process of compositing frame buffers. In practice, to reduce
computational costs, compositing only the color buffer and depth buffer is sufficient
for our visualization purposes. Although in other application contexts alpha buffer
may also have to be considered, for brevity, here we describe compositing for these
two main types of frame buffer only (alpha buffers can be composited in similar
ways).

The compositing process is performed in the following three steps: (i) each pro-
cess fetches pixels from the frame buffers in its local process memory space; (ii)
all slave (as opposed to the master) processes send all the buffers to the master
process but not its local buffers though; and (iii) the master process performs a
pair-wise buffer compositing every time it receives the buffer from a slave process
until all slave buffers are composited. Finally, the master process writes the com-
posited depth and color values back to corresponding local frame buffers to create
a complete rendering. Figure 2 illustrates this pixel-wise compositing process, of
which an example is shown in Fig. 3 where four processes are utilized to parallelize
the rendering phase.

In addition, when rendering geometries in parallel in the background, the par-
allelization should be transparent to users. So except for special needs for show-
ing slave rendering, no rendering partitions should be visible and the composited
visualization is displayed on the master process only. Furthermore, there are two
optional optimizations for the compositing process, which we have included in our
current implementation of the visualization framework. First, off-screen rendering is
applied to avoid slave rendering. This is not only to meet the need of slave renderers
for invisible rendering but also, and more importantly, to improve the overall ren-
dering performance. Second, creation of rendering windows on all slave processes
is avoided. Depending on practical graphics platforms used, a less ideal solution
would be to hide the rendering windows if it is necessary to create them for correct
rendering. Example case includes that a window must be created to establish a
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rocess 1

Process 0 (root)

Fig. 3. An example of the pixel-wise compositing in our parallel visualization framework. The
dense geometry (tube) visualization with depth mapped to size, color, and transparency (three
visual encodings combined) is parallelized using four processes. Process 0 (master) gathers all
parallel rendering from slave processes and composites them together with its own local rendering
to produce the final holistic rendering.

context for the drawing function to take place in. Finally, synchronizing camera
parameters across all processes before any process starts to render can simplify the
last step of the compositing. As adopted in our approach, a simple way of realiz-
ing this synchronization is to broadcast key camera parameters (focal point and
position, for instance) retrieved from the master process to all slave processes.

3.6. Depth mappings

Depth mappings are applied to stylize geometry units according to their depth
values so that a better perception in the 3D environment can be obtained. Depend-
ing on how the depth value is mapped to the value of different visual variables, a
depth mapping is either a linear or non-linear function f(v) = V(Rank(vq)), where
Rank(x) is the rank (order) of = in the sorted sequence, v, is the depth value of a
single geometry unit, and function V' maps the rank sequence to the domain of the
associated visual variable, [Viyin, Vinaz].* In the case of linear mapping, for instance,

Vmaw - szn
T Z T (). (1)

Tmax — Tmin
When considering size (s), color (¢), value (i), and transparency (¢) as the visual
variables to which depth values are mapped, V(z) is a scalar function. Also, V (z)

Viz) =

2For brevity, we mostly use the case of vertex to illustrate our approach, which however can be
applied similarly to other types of geometry units.
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is a unitary function for single mapping, while multiple mappings are simply an
aggregation of multiple single mappings. For example, when mapping depth to
size, color, and transparency at the same time, V : z — (s,¢,t) is simply V : & —
(S(z),C(x),T(z)), where S,C,T are all unitary mappings for the size, color, and
transparency, respectively.

3.6.1. Depth mappings in parallel rendering

In the context of geometry rendering, depth mappings are easily performed accord-
ing to the simple function evaluations as described above. However, depth mappings
need be parallelized as well in order to collaborate with parallel rendering for opti-
mized performance of the illustrative visualization. In our parallel visualization
framework, depth mappings are required to be coherent in the geometry model as
a whole. Therefore, simply mapping local geometry on each process independently
and then compositing the locally depth-stylized rendering would not produce cor-
rect visualizations.

On each individual process, the input of depth mapping is the rank of depth
values of local geometries and, as a result, each process will only have the local
rank for every vertex in its local geometry partition. However, the global rank of a
vertex in the range of the whole geometry must be retrieved for a coherent global
depth mapping. With global ranks of local vertices, every process can render its
local geometry independently yet correctly due to the correct mappings from the
local vertices to the partition of the range of V(Rank(vq)) corresponding to those
vertices. Figure 4 shows the outline of the integrated parallel sorting and depth
mapping algorithm in our parallel visualization.

3.6.2. Hash index

To obtain the global depth-sorting rank of each local vertex, a straightforward
solution would be to gather all locally sorted partitions together onto the master
process, sort all depth values, and then broadcast the resulting ranking, stored in an
array, to all other processes. As such, the global rank would be retrieved from the
depth ranking received for evaluating f(v) for each vertex v. However, the retrieval
would be of a O(N?) cost for all N local vertices, which can be too prohibitive to
reach an interactive frame refreshing. Instead, for a real-time global depth ranking,
we create a global hash index for the whole geometry immediately after the depth
sorting on the master process completed.

In both the local and global depth arrays, an index is kept for each depth value
at each element and the depth array is essentially a sequence of vector (d, Id) where
d is the depth value and Id is the index, which is initialized with the global depth
rank of a vertex in the original input geometry model. As such, wherever a depth
array element is moved after sorting, its original rank, taken as a vertex identifier as
well, can be always retrieved immediately. We use this id to associate the unsorted
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Fig. 4. Hash index for efficient depth mapping in support of interactive illustrative visualizations
in our framework.

with sorted depth array through the hash index. Figure 4 illustrates this hashing
process used for our depth mappings.

3.6.3. Depth-mapping updating

As we discussed earlier, during the interactive exploration of the depth-stylized visu-
alizations, mappings need be updated whenever the depth order of geometries along
the current viewing direction changes, and the mapping updating is then reflected
through rendering refreshing. For that purpose, our technique actively triggers the
frame refreshing once the mapping is updated. Two strategies are available for
the synchronization between frame refreshing and mapping updating such that the
former is immediately triggered upon the occurrence of the latter.

First, a polygonal data filter, which is used for depth sorting, can be inserted
into the demand-driven rendering pipeline so that rendering update will be triggered
when either the input or output of the filter is modified. However, besides updat-
ing depth mappings, geometry cloning between the data filters is also required,
which can greatly slow down the visualization frame rate. It is noteworthy here
that the geometry itself is not updated at all when the depth mappings change.
The other mechanism is to explicitly invoke frame refreshing via user-interaction
handling, with which only mappings are recomputed while no geometry cloning
is involved. We employ the latter for a better performance. In addition, for the
interaction-driven updating strategy, we only directly handle user inputs, such as
mouse interaction, that may change the depth order of geometries on the master
process. When responding to such user inputs, the master process invokes frame
updating after finishing mapping calculations and then sends a remote method invo-
cation (RMI) message to all slave processes. In the RMI handler on each process,
mapping updating is first triggered, followed by an active call to frame updating.
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4. Implementation

Our parallel depth-stylized visualization is implemented in C/C++4 using VTK with
parallelization supports of MPI. In the parallel sorting algorithm, the gsort routine
is adopted from the standard C library for local quick-sort on each process, and
generic in-place merge algorithm in C++ STL library is used for iterative two-way
merge sort on the master process. We have employed image-compositing functional-
ities provided by VTK with necessary extensions that tailor their functions for our
customized pipeline components in order to implement the pixel-wise compositing.

In addition, our depth sorting filter is extended from VTK’s filter for polygonal
data depth sorting and also from an interactor component extended from VTK’s
track-ball camera interactor, which work together to realize the interaction-driven
mapping updating mechanism. To explicitly trigger frame updating, user-defined
RMI messages are added and the callbacks are registered to VITK’s multiple pro-
cess controller before parallel rendering starts. With these extended components,
the interactor responds to data rotation by broadcasting a mapping-updating RMI
message to all slave processes, and then mapping calculations and frame update are
invoked in the callback of the RMI message. The visualization program is simply
running as a MPI application, thus the number of processes can be specified when
launching the MPT runtime. As we discuss in detail in Sec. 5, an optimal number of

=
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Fig. 5. The outlook of our parallel depth-stylized 3D geometry visualization interface.
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processes to be used depends on the configurations of underlying hardware archi-
tecture.

Figure 5 shows the outlook of our parallel visualization interface (as in other
sample visualizations, we omit the colormap to highlight the rendering itself; our
system provides options to show or hide colormaps). The GUI is created using
Qt 4.0 by which all the interaction widgets are set up for the depth-stylizing cus-
tomizations. In order to achieve better performance, parallel processing is applied
only to the rendering widget and all other GUI components are created on the
master process only. GUI interactions have to be explicitly relayed from the master
process where they are triggered to all slave processes so that the slave renderings
can reflect changes in the illustrative rendering settings as a result of those interac-
tions. To that end, we register another type of RMI message and define a callback
devoted to realizing the RMI for updating slave renderings. RMI messages are easily
transmitted by MPI communications. Note that beyond the visual encodings and
illustrative geometry rendering we presented in this paper, our framework has also
integrated additional features, such as tube halos and volume rendering. We omit
discussion on them in this paper in order to focus on the central topic.

5. Empirical Results

We have applied our parallel visualization framework to interactive depth-stylized
3D tube visualizations of DTI data sets with single and multiple depth encod-
ing schemes applied in order to enhance users’ depth perception in the 3D
visualizations. Figure 6 shows sample renderings produced by our framework for
one of the DTT data sets.

Additionally, using the implementation as described above, we evaluated the
efficiency of our parallel visualization approach by first measuring the overall ren-
dering cost, including that of depth sorting and MPI communication, and then
comparing our method to other alternative parallel rendering approaches. Next,
we report the results based on many runs of illustrative rendering of a selected
DTT model on an Intel(R) Core(TM)2 Quad 2.66 GHz processor with 4 GB DDR2

memory.

5.1. Parallel performance

We measured the proposed parallel visualization method by first comparing its ren-
dering performance against sequential alternatives, for different scales of 3D geom-
etry data sets. Specifically, for each test data set, the total time (in milliseconds)
spent by our approach for rendering a single frame of the interactive visualization
is compared to that by the sequential alternative for performing the same com-
putation. Here in our application scenarios, we visualize 3D depth-stylized tubes
generated from diffusion tensor MRI data with different depth mapping schemes
applied for the tube illustrations.
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Depth encoded by size Depth encoded by color

Depth encoded by vlaue

Depth encoded by size and color Brépth.encoded by value and transparency|

Fig. 6. Our parallel visualization of a DTI model using tube shape-encoding with single mapping,
including depth to size (upper left), color (upper right), value (middle left), and transparency
(middle right), respectively, and multiple mappings, including depth to size and color combined
(bottom left) and to value and transparency combined (bottom right). We use these different
mappings with typical visual variables to communicate depth information in this 3D DTI tube-
based visualizations.
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Fig. 7. Performance for depth-stylized geometry visualizations using our parallel method com-
pared with sequential visualization approach. Both single depth encoding and multiple depth
encodings are applied in the experiment and performance results compared between the two (par-
allel and sequential) visualization approaches.

As shown in Fig. 7, parallelization enables interactive rendering performance for
our depth-stylized geometry visualizations, which is hard to obtain with a sequential
approach. Each number of the rendering-time measures is an average of the total
rendering cost over 100 continuous frames. For the parallel rendering, the time
measure included the cost of communications among the (four) processes we used
in our experiments.

Without loss of generality, we differentiate only two instances of visual encoding
schemes here: depth to color only and depth to size and color combined. These two
instances may represent two disparate types of computations in terms of complexity
for depth encodings in our study. For the single-variable mapping, from depth to
color, there is only one pass of depth sorting beyond the rendering phase. For the
multiple-variable mappings, from depth to both size and color at the same time,
there are two passes of depth sorting plus the tube mesh generation besides the
rendering phase. Of these two passes of depth sorting, one is for mapping the depth
of geometries to the sizes of them before geometries of different radii are generated.
The other is for mapping the depth of tube geometries to the color of them after
tube geometries are generated from polylines (the input format of the geometry
model).

To examine the effects of the number of processes on the visualization perfor-
mance, we run the comparative study with different numbers of processes used in
our parallel rendering pipeline. The main results are shown in Table 1. As can be
seen, performance increases monotonically with the number of processes before that
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Table 1. Effects of the number of processes on the parallel performance in
terms of time costs in milliseconds, on parallel speedup, and on efficiency.
The data points were obtained from an experiment running our parallel
visualization framework for the visualizations of 9635 tubes consisting of
1447005 vertices, with depth mapped to color.

Number of processes

Metrics 2 3 4 5 8 12

Time (ms) 409 359 347 401 469 642
Speedup 1.72 1.95 2.02 1.75 1.5 1.09
Efficiency 0.86 0.65 0.51 0.35 0.19 0.09

number reaches four. However, beyond four processes, the performance decreases,
also monotonically, when the number continues to grow. This may be explained by
the fact that the CPU we used has four cores — running the visualizations on a CPU
of more cores is expected to see more speedups before reaching the cutoff point. On
the other than, it seems to be counterintuitive that with four cores the paralleliza-
tion achieved a speedup of 2 x only (while ideally it should have been around 4 x).
The main reason for the unideal speedup is that, according to the architecture of
our framework, the rendering of all data partitions is not fully parallel — the pixel
compositing task needs to wait for the other rendering tasks to complete before it
can start, and the compositing task itself, which is more expensive than the slave
rendering tasks, is not parallelized.

It is also important to note that although we used a quad-core CPU for this
experiment, and, as the results suggest, the architecture (e.g. number of cores) of
computing hardware does affect the visualization performance, our technique itself
does not require the CPU to have multiple cores, nor does it have any other specific
requirements concerning the hardware architecture — the goal of our approach is
to offer an efficient illustrative rendering solution for legible visualizations in dense
geometry environments by maximally harnessing any commodity CPUs available
to users.

5.2. Peer comparisons

Beyond the performance comparisons between our technique and sequential alter-
natives, we further investigated the efficiency of the proposed approach to peer
parallel alternatives, for depth-stylized geometry rendering. We implemented the
3D geometry visualization with depth-stylizing using both partially- and fully-
parallel rendering. For both configurations, we gauged the total rendering time
with five different scales of 3D tube geometries stylized by depth-dependent
color and/or size encodings, similar to the methodology for measuring perfor-
mance gain of parallel over sequential visualizations presented in Sec. 5.1. We
also used the same experiment settings as those in the first study, including
the quad-core CPU.

1650002-18



Int. J. Image Grap. 2016.16. Downloaded from www.worldscientific.com
by WASHINGTON STATE UNIVERSITY on 10/30/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

Legible Illustrative Visualizations of Dense Geometries on Commodity CPUs

Rendering performance compared with KXAAPI

2000 T T T

=—a sequential rendering
s—=a paralle]l with our method
o—a paralle]l with KXAAPT

1500 —

1000 —

Rendering time (milliseconds)

th

S

=)
T

o . \ \ \
0.0 500.0 k 10M 15M

Number of vertices

Fig. 8. Performance for partially-parallel depth-stylized geometry visualizations using our
approach compared to that using KXAAPI with respect to the same computations (for depth
sorting). Performance of the sequential approach is also included for reference.

For the partially-parallel configuration, only the depth sorting is parallelized
while the rendering phase is sequential, with which we intend to show the advan-
tages of our approach with respect to meshing the sorting parallelization with the
rendering parallelization. We employed the Kernel for Adaptive, Asynchronous Par-
allel and Interactive programming (KXAAPI) framework!! to sort the depth infor-
mation of the whole geometry model on the sequential visualization pipeline of
VTK. The major result is depicted in Fig. 8, where the y-axis indicates the execu-
tion time taken by the three alternative sorting approaches while the z-axis lists
different scales of geometry in terms of the numbers of vertices sorted. As can be
seen, the KXAAPI took almost as much the time for the sorting as the sequen-
tial algorithm, and the growth of time expense with the growing geometry sizes is
also very close to the sequential approach. A possible reason is that the KXAAPI
framework focuses on the overall parallel programming facilities rather than sorting
performance only. In contrast, the results suggest that our approach appears to be
much more efficient, outperforming the peer solution by over two times: not only
did it take significantly less time on any of these five data sets, the time cost also
grows much slower when the data size increase, suggesting a better scalability of
our algorithm.

For the fully-parallel configuration, both depth sorting and the overall render-
ing pipeline are parallelized. For an alternative fully-parallel visualization solution
to compare, we implemented our depth-stylized geometry visualization using the
IceT module in Paraview.!'” We used the same performance metrics used in com-
parative study with the parallel sorting solution KXAAPI. Specifically, we ported
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Fig. 9. Performance of fully-parallel depth-stylized geometry visualization using our approach
compared to that of Paraview IceT with respect to the same computational tasks. Performance
of the sequential approach is also included for reference.

part of the IceT module as necessary from the Paraview source package to VTK
for our experimentation. Figure 9 shows the comparisons in the same format as
Fig. 8. The results clearly exhibit the advantages of parallelization over sequen-
tial computation — there is a large gap between these two types of computing
schemes. Nevertheless, our parallel visualization solution largely outperformed the
IceT based parallelization constantly. In addition, our approach also appears more
scalable than the peer solution, although not as much as seen in the comparisons
to partially-parallel approaches.

6. Discussion

In our application scenarios, we visualize depth-stylized 3D geometries, which is
generated on the fly during visualization rendering. Alternatively, tube meshes can
be produced beforehand to avoid the computational cost of tube generation during
the rendering process. However, we did not adopt off-line tube generation due to
performance considerations. During the interactive visualization, we need to change
visual variable values (e.g. geometry sizes like tube radii) upon depth changes for
depth encodings, for which manipulating geometries during the rendering process
can help obtain higher overall visualization performance than loading preprocessed
geometries. For example, it is more efficient to load line geometries and then gen-
erate tubes on the fly for visualizing geometries with depth to tube size mapping
than loading tube meshes as original inputs and then transforming each geometry
to implement the depth encoding.
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One interesting observation from our experiment results is that, as the geom-
etry model size scales up, the visualization performance accelerations are much
greater when multiple-variable depth mappings are applied than when the depth is
mapped to one visual variable at a time only. A possible explanation is that larger
portions of the overall computation tend to be parallelized with multiple-variable
mappings than with single-variable ones, hence the larger gain in the overall render-
ing performance. This may suggest that it is promising to scale our framework to
more sophisticated visualization contexts where more computation-intensive steps
associated with rendering are involved.

Based on the scalability results shown in Table 1, one may extrapolate that
the visualization performance may continue to grow beyond four processes if we
increase the number of cores in the CPU used in the experiment. Also, in terms of
implementation, given the scalability of the underlying MPI infrastructure to more
advanced computing architectures, including multiple processors, the performance
could be further accelerated on those architectures. However, as we noted before,
we do not intend to develop a parallel visualization solution superior to solutions
leveraging sophisticated hardware such as GPUs, but rather to offer a solution
as efficient as possible on cheap commodity architectures. In this sense, using our
approach on an advanced computing platform may not be the best option: a GPU-
based solution may give better performance. On the other hand, users may consider
adopting our framework based on their budgets. For example, using advanced CPUs
(such as those of many-cores) to obtain better performance with our framework may
not be worth it: GPU-based solutions can be more cost-effective if those advanced
CPUs are even more expensive than GPUs.

7. Related Work
7.1. Depth enhancement

There has been much previous work focused on technical solutions to the depth
perception issues and visual occlusions in 3D data visualizations. For instance, a
rich set of landmarks and context cues?® and shading with transparency'? both help
enhance depth perception while alleviating occlusion problems within overlapping
structures. Focusing on improving depth perception also, Bruckner et al. employ
volumetric halos to increase the 3D legibility of volume visualizations.? They intro-
duce different halos according to different ways of halo-volume combination, and
use halos to construct inconsistent lighting, which accentuates depth even further
from a different perspective.

Elmqvist et al.'® give a thorough discussion about occlusion management
in 3D visualizations, where they focused on reducing 3D occlusions. Occlusion
management for visualization is a more general class of visibility problem in com-
puter graphics, which is concerned about improving human perception for spe-
cialized visual tasks, such as occlusion, size and shape. This method extensively
enhanced the legibility of 3D data visualizations. In contrast, we investigate how to
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manipulate typical retinal variables'3 in graphics perception to address depth-wise
legibility.

As visualization data sets usually include a large number of overlapping struc-
tures, even direct volume rendering techniques can also suffer from poor depth cues.
Using MIP (maximum intensity projection) rendering,'* however, only few effort
is required to create a good understanding of the structures represented by high
signal intensities. This algorithm adds two different visual cues, occlusion reveal-
ing and depth based color. For the first cue, the MIP color of occluding objects is
modified for the same materials as those at points of maximum intensity; for the
second, actual positions of shaded fragments are used to change their color using
a spherical map. In this paper, we explore depth enhancement in dense geometry
visualizations by encoding depth information using various visual variables.

Ritter et al.?6 employ hatching strokes to communicate shape while using
distance-encoded shadow to further enhance depth perception in their vascular-
structure visualizations. In addition, they achieve real-time rendering performance
using GPU-based hatching algorithm, which is efficient for rendering complex tabu-
lar structures with depth being emphasized. Similarly, we handle tabular shapes in
our visualization scenarios also, but intend to improve depth perception in a much
denser 3D (geometry) date set derived from human brain MRI models. More impor-
tantly, our approach provides a cheaper interactive rendering solution that works
on commodity CPUs in comparison to the GPU rendering facilities they employed.

7.2. Parallel visualization

Parallelization has been extensively harnessed in data visualizations, especially
where performance becomes a challenge. In Ref. 1, the authors developed a scalable
and portable parallel visualization system based on augmenting VTK for efficiently
visualizing large scale time-varying data. The system they proposed provides par-
allelism on both task and pipeline levels, which primarily addresses visualization
programmers. Also at a system scale but even earlier, SCIRun'® had offered task
and data parallelism as a data-flow-based visualization system running on shared-
memory machines with multiprocessors. This system was later extended to support
task parallelism on distributed-memory architectures.?! In comparison, we present
a lightweight parallelization method for visualizations of large 3D geometries by
using existing facilities, such as MPI and VTK, instead of providing a full-flown
integrated system or extended programming library.

Compared to system-level solutions, a lot more parallelization efforts for visu-
alization focus on parallel rendering, ranging from photo-realistic rendering?® to
volume rendering?® and parallel iso-surfacing.?® Other researchers have probed in
more indirect approaches, such as image composition schemes'® and data decom-
position strategies,?® to improve polygon rendering performance. More recently,
various parallel rendering algorithms, including sort-first, sort-last, and the syn-
thesis of them, were used and evaluated on shared-memory computers, yet these
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algorithms originally targeted distributed-memory architectures.?? In our work, we
also explore polygon rendering parallelization and employ image composition, but
we aim particularly at depth enhancement for the purpose of providing more legi-
ble 3D geometry visualizations, by overlapping parallel depth sorting with parallel
polygonal data rendering.

Note that the parallel sorting problem, which is at the core of our paralleliza-
tion framework here, could be alternatively solved with possibly high efficiency on
GPU platforms using a rich set of existing algorithms.?427 In this paper, we target
a cheaper solution without relying on high-end computing resources such as GPUs.
Alternatively and complementarily, we use CPU-based parallel sorting algorithms
leveraging a single processor of either single or multiple cores, which is widely avail-
able in almost any modern computers with bottom-line hardware configurations.

9,19

8. Conclusion and Future Work

We presented a parallel illustrative visualization framework that enables interac-
tive frame rates in legibly rendering dense 3D geometries. The framework leverages
commodity computing architectures to offer rendering efficiency for interactive visu-
alizations, and utilizes flexible depth encodings to enhance the visual legibility in
the dense 3D environment. Our approach has been evaluated using dense geometry
models containing millions of vertices with multiple mappings from geometry depth
information to various visual variables, and shown to be effective for addressing per-
formance issues often seen in legible dense 3D visualizations like the depth-stylized
illustrations we explored in this paper. We also demonstrated the advantages of our
approach, as a commodity-CPU-based parallel visualization framework, over both
sequential alternatives and peer parallelization approaches including XKAAPT and
Paraview Icet. Our results suggest that the proposed framework can provide an
effective option for parallel visualizations, especially when only cheap commodity
computing hardware is available.

The presented evaluation has been focused on the rendering performance of the
proposed parallelization approach, with the empirical assessment on the improve-
ment in visual perception supposedly provided by the illustrative visualizations is
left for future work. An immediate next step would be to conduct an user study that
consists of two components: a qualitative survey collecting subjective user opinions
on the usefulness of various legibility enhancements of our visualizations, and a
quantitative experiment measuring how the enhanced visual perception improves
users’ understanding of the visualized data set, with respect to a set of predefined
user tasks,® such as identifying an anomaly in the brain MRI model and recogniz-
ing the difference in seeding resolution applied during the MRI data acquisition.®
More specifically, for the quantitative study, the task performance can be gauged
in terms of the accuracy and time cost for each task and compared between two
groups where one group uses the enhanced features under test while the other is
given the visualizations with corresponding features disabled.
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