
Understanding Android Application Programming
and Security: A Dynamic Study

Haipeng Cai
Washington State University, Pullman, USA

hcai@eecs.wsu.edu

Barbara G. Ryder
Virginia Tech, Blacksburg, USA

ryder@cs.vt.edu

Abstract—Most existing research for Android focuses on
particular security issues, yet there is little broad
understanding of Android application run-time characteristics
and their implications. To mitigate this gap, we present the first
systematic dynamic characterization study of Android apps
that targets a broad understanding of application behaviors in
Android. Through lightweight method-level profiling, we
collected 59GB traces of method calls and Intent-based
inter-component communication (ICC) from 125 popular
Android apps and 62 pairs among them that enabled an
intensive empirical investigation of their run-time behaviors.
Our study revealed that, among other findings, (1) the
application executions were overwhelmingly dominated by the
Android framework, (2) Activity components dominated over
other types of components and were responsible for most
lifecycle callbacks (3) most event handlers dealt with user
interactions as opposed to system events, (4) the majority of
exercised ICCs did not carry any data payloads, and (5)
sensitive data sources and sinks targeted only one/two
dominant categories of information or operations. We also
discuss the implications of our results for cost-effective
program analysis and security defense for Android.

I. INTRODUCTION

The Android platform and its user applications (referred
to as apps) dominate the mobile computing arena, including
smartphones, tablets, and other consumer electronics [1], [2].
Meanwhile, accompanying the rapid growth of Android apps
is a surge of security threats and attacks of various forms [1],
[2]. In this context, it becomes crucial for both developers and
end users to understand the particular software ecosystem of
Android for effectively developing and securing Android apps.

While written in Java, Android apps have set themselves
apart from traditional Java programs by how they are built
and the environment in which they execute. Android apps are
supposed to rely on the Android SDK and other third-party
libraries [3], [4]. In fact, many of the distinct characteristics
of Android apps have led to unique challenges in developing
sound and effective code-based app analyses, resulting in
specialization and customization for Android of analyses
originally designed for traditional object-oriented programs.

Specifically, the framework-based nature of Android apps
requires substantial modeling of the Android runtime for
static analyses [3]–[5] to achieve reasonable accuracy.
Implicit invocation between components in Android apps
through a mechanism called inter-component communication
(ICC) requires special treatments (e.g., ICC resolution [6],
[7]) for a soundy [8] whole-program analysis. In addition,
the event-driven paradigm in Android programming accounts
for many challenges in Android security analyses, such as
determining application and component lifecycles [3], [5],
[9] and computing callback control flows [9], [10].

Existing research on Android has been predominantly
aimed at security (as lately surveyed in [2]). Most solutions
targeted specific security issues, with merely a few offering a
broader view of application security related characteristics in
general [11], [12]. Several recent studies on Android apps
investigated aspects other than security [13]–[16] but
targeted static characterizations by examining the source
code rather than the run-time behaviors of the apps. Existing
dynamic studies for Android address individual apps
(e.g., [17]) or focus on malware (e.g., [18], [19]) rather than
performing a general behavioral characterization.

We randomly chose 125 free Android apps from Google
Play and 80 linked pairs among them, exercised each app
and app pair with automatically generated inputs attaining a
mean line coverage of 70% per app, and gathered 59GB
traces of ordinary function calls and ICCs. From these
traces, which reasonably represent how the chosen apps are
executed, we characterize applications on the primary
Android market from both security and program
understanding perspectives. In particular, we stress metrics
relevant to the analysis challenges including the interaction
between user code and libraries, distribution of components
and ICCs, classification of callbacks, and categorization of
security-sensitive data accesses.

These metrics and corresponding results constitute the first
systematic dynamic characterization of Android apps, which
will benefit customization and/or optimization of future
Android app analyses. For the longer term, our findings will
inform better design of techniques and methodologies for
more effectively developing and securing Android apps.
Further, changes in these behavioral characteristics over time
will reveal how Android apps evolve.

The main contributions of this work include:

• A dynamic study of the layered composition and
functionality distribution of Android apps, which sheds
light on their run-time structure and its security
implications. The study reveals that (1) Android apps are
extremely framework-intensive, with around 90% of all
callers and callees being SDK methods and (2) constantly
the most (60–90% of all) exercised components are
Activities, which receive most (about 60% of all)
exercised lifecycle callbacks.

• An intensive investigation of Intent-based ICC, the main
inter-component communication mechanism in Android,
which suggests optimization strategies for ICC-involved
program analyses of Android apps. The investigation
reveals that (1) most ICCs (70–80%) do not carry any
data payloads and (2) ICCs that carry data payloads favor

bundles over URIs, particularly in inter-app ICCs (>20%
using bundles versus <5% using URIs).

• A detailed characterization of sensitive API calls during
long Android app executions, which informs code-based
analysis of sensitive-data accesses for improved
cost-effectiveness. The characterization reveals that (1) up
to 5–10% of method calls access sensitive data/operations
(with respect to highly comprehensive source/sink lists)
and (2) constantly most (90% of all) exercised sensitive
calls target only one or two particular (out of over ten)
types of data/operation.

• An open-source dynamic study toolkit including an
Android app (line) coverage measurement tool that does
not rely on source-code access and various predefined
categorizations that can be reused for future studies and
understanding of Android apps, along with a benchmark
suite of dynamically communicating (via ICC Intent) app
pairs that can support other Android studies and analyses,
especially dynamic inter-app analyses.

II. BACKGROUND

Android is now the most popular operating system (OS)
running on smartphones and other types of mobile devices.
To facilitate the development of user applications, the
Android OS provides a rich set of APIs as part of its SDK
which implements functionalities commonly used on various
mobile devices. These APIs serve as the only interface for
applications to access the device, and the framework-based
paradigm allows for quick creation of user applications
through extending and customizing SDK classes and
interfaces. The Android framework communicates with
applications and manages their executions via various
callbacks, including lifecycle methods and event handlers [9].

Four types of components are defined in Android, Activity,
Service, Broadcast Receiver, and Content Provider, as the
top-level abstraction of user interface, background service,
response to broadcasts, and data storage, respectively [20].
The SDK includes APIs for ICC by which components
communicate primarily via ICC objects called Intents. We
focus on ICCs based on Intents that can link components
both within the same app (i.e., internal ICC) and across
multiple apps (i.e., external ICC). Application components
send and receive Intents by invoking ICC APIs either
explicitly or implicitly. For an explicit ICC, the source
component specifies to which target component the Intent is
sent; for an implicit ICC, the component which will receive
the Intent is determined by the Android OS at runtime.

Some information on mobile devices is security-sensitive,
such as device ID, location data, and contacts [11], [20].
Taint analysis commonly identifies sensitive information
leakage by detecting the existence of feasible program paths,
called taint flow, between predefined taint sources and taint
sinks [9], [21]. In Android, taint sources are the APIs
through which apps access sensitive information (i.e.,
sensitive APIs). The Android SDK also provides APIs
(inclusive of those for ICCs) through which apps can send
their internal data to other apps either on the same device or
on remote devices (e.g., sending data to network and writing
to external storage). These APIs potentially constitute
operations that are security-critical as they may lead to data
leakage (i.e., critical APIs or taint sinks).

III. EXPERIMENTAL METHODOLOGY

We traced method calls and Intent ICCs to understand the
dynamic features of applications in Android. The resulting
traces capture coarse-grained (method-level) control flows
but not data flows. Nonetheless, such traces can reveal a
broad scope of important dynamic characteristics regarding
the typical behaviors and security-related traits of Android
apps. Next, we elaborate on the design of our empirical
study—benchmark apps, inputs used for the dynamic
analysis, metrics calculated, and study process.

A. Benchmarks and Test Inputs

We randomly downloaded 3,000 free apps from Google
Play and statically analyzed the ICCs of each app using the
most precise current ICC analysis [7] to find potentially
communicating app pairs by matching the ICCs across
apps [22]. This process led to a pool of over one million
such pairs linked via either explicit or implicit ICCs, or both.

Next, we randomly picked 20 different pairs and removed
them from the pool, performed our instrumentation, and then
ran the instrumented code on an Android emulator [23]. To
ensure that we gathered useful traces and that our study
reflected the use of current Android SDK features, we
discarded pairs in which at least one app (1) was built on a
version of Android SDK lower than 4.4 (API 19) or (2)
failed to run on the emulator after the instrumentation, or (3)
did not have at least 55% (as is higher than the average line
coverage achieved by Monkey [24], [25]) user code covered
by Monkey inputs. We repeated this random selection until
we obtained 80 different potentially communicating app
pairs which included 125 unique apps and covered all
Google Play app categories (e.g., Sports and Tools).

Previous dynamic studies of Android apps, using much
smaller benchmark suites, mostly resorted to manual (expert)
inputs [21], [26]–[29], because the coverage of automatically
generated Android inputs was regarded as too low. We chose
to use automatically generated inputs for two reasons. First,
manually manipulating various apps is expensive, subject to
human bias and uneven expertise, and an unscalable strategy
for dynamic analysis. Second, state-of-the-art automatic
Android input generators can achieve practically as high
code coverage as human experts [24] and they are scalable.
The latest, most comprehensive comparison of such
generators showed that the Monkey [30] tool outperformed
over its peer approaches in terms of user code coverage [25]
(another tool [31] achieved slightly higher average coverage
of 55% yet it is not as applicable). Therefore, we utilized
Monkey for our study. Although Monkey does not generate
many system events directly, it triggers those events
indirectly through UI events. The coverage of our per-app
traces ranged from 55% to 91% (mean=70.1%, standard
deviation=11.2%). The Monkey inputs we used also
exercised inter-app communication for 62 out of the 80 app
pairs. Eventually, the 125 single-app traces and 62 inter-app
traces formed the basis of our empirical study.

B. Metrics

We characterize run-time behaviors of Android apps via
122 metrics in three complementary perspectives/dimensions
each consisting of several supporting measures defined as

2

http://chapering.github.io/droidfax/

ICC analysis

Benchmark app pairs Static code analysis

Instrumented
apps

Run with single-
app setting

Run with inter-

app setting

Single‐app
traces

Inter‐app
traces

Static information of apps

Compute

ICC metrics

Compute
all metrics

Free Android apps
Study
result
report

1. Pre-processing 2. Profiling 3. Characterization

List of callback
interfaces

Lists of sources
and sinks

Fig. 1: The three phases of our characterization process, including the inputs and outputs.

follows. Metrics in the ICC dimension also cover both intra-
and inter-app communications. Thus, our dynamic
characterization is systematic in terms of the study scope.

General metrics—concerning the composition and
distribution of app executions with respect to their usage of
different layers of functionalities: user code (UserCode),
third-party libraries (3rdLib), and the SDK (SDK). Specific
measures include (1) the distribution of function call targets
over these layers, (2) the interaction among the layers (i.e.,
calling relations and frequency), and (3) the extent and
categorization of callback usage.

ICC metrics—concerning Intent-based inter-component
interaction within single apps and across multiple apps. ICC
has been a major security attack surface in Android [6], [22],
[32] as well as a feature of Android application
programming that sets it apart from ordinary Java
programming. Specifically, we measure (1) the distribution
of the four types of components (see Section II) in Android
app executions, (2) the categorization of run-time ICCs with
respect to their scope (internal/external) and linkage
(implicit/explicit), and (3) the data payloads carried by ICC
Intents with respect to different ICC categories.

Security metrics—concerning the production,
consumption, and potential leakage of sensitive data in
Android app executions. We measure (1) the extent of use of
the producers (i.e., sources) and consumers (i.e., sinks) and
(2) the categories of information accessed by executed
sources and operations performed by executed sinks.

For each of these measures, with each app, we examined
the full execution traces of method calls and exercised Intent
ICCs for the app. We considered all instances for each call
and ICC (i.e., accounting for the frequency) to capture the
run-behaviors of the app. For understanding inter-app ICCs,
we also examined the traces for each pair of apps. We trace
all calls including those via exceptional control flows [33] by
reusing our previous relevant utilities [34].

C. Procedure
To collect the operational profiles of the benchmark apps,

we first ran our tool to instrument each app for monitoring
ICC Intents and all method calls. Next, we ran each
instrumented individual app separately and then each app
pair, gathering the single-app and inter-app traces (when
multiple target apps in inter-app ICCs are available, one was
randomly chosen). All of our experiments were performed on
a Google Nexus One emulator with Android SDK 6.0/API
level 23, 2G RAM, and 1G SD storage, running on a Ubuntu
15.04 host with 8G memory and 2.6GHz processors. To
avoid possible side effects of inconsistent emulator settings,
we started the installation and execution of each app or app
pair in a fresh clean environment of the emulator (with
respect to built-in apps, user data, and system settings, etc.).

For each individual app, Monkey inputs were provided for
up to one hour of execution. For each app pair, the two apps
ran concurrently, taking Monkey inputs alternately for an
hour. To reduce the impact of possible non-determinism in
the benchmarks, we repeated each experiment three times
and took the average of these repetitions. We checked the
repeated traces for each app and app pair, and found only
very small deviations among them. Thus, we used the mean
over the repetitions for each metric as the final metric value
per app and per app pair in the statistics of our results.

IV. CHARACTERIZATION PROCESS

Figure 1 depicts the process of our characterization study,
including its three phases as well as inputs and outputs.

Pre-processing. After obtaining the benchmark app pairs
as described in Section III-A, the static code analysis
instruments the Android (Dalvik) bytecode of each app for
method call profiling and ICC Intent tracing. This first phase
also produces relevant static information for each app using
class hierarchy analysis (CHA), including the component
type each class belongs to (i.e., the top component class it
inherits) and callback interface each method implements in
the app. This information is used for computing trace
statistics in the third phase. Both the instrumentation and
CHA are implemented on top of Soot [35].

Profiling. The second phase runs the instrumented code of
each individual app and app pair to produce the single- and
inter-app traces in the respective settings. We recorded method
calls and ICC Intents using the Android logging utility and
collects the traces using the logcat tool [36].

Characterization. The third phase analyzes the traces by
first building a dynamic call graph. Each node of the graph
is the signature of a method (executed as a caller or callee),
and each edge represents a dynamic call which is annotated
with the frequency (i.e., number of instances) of that call.
Also, for each ICC, the graph has an edge going from the
sending API (e.g., startActivity) to the receiving API
(e.g., getIntent) of that ICC. This phase computes
various metrics using the call graph and the static
information computed in the first phase. From single-app
traces, we calculated metrics of all three dimensions. From
inter-app traces only the ICC metrics are computed. In order
to categorize event handlers, we utilized a predefined
categorization of callback interfaces, which we manually
produced from the uncategorized list used by FlowDroid [9].
We did the categorization based on our understanding of
each interface according to the official Android SDK
documentation. Lifecycle callbacks were categorized using
CHA. Another input to this phase is the lists of sources and
sinks that we defined by manually improving the training set
of SuSi [37] hence producing a more precise categorization.

3

To facilitate reproduction and reuse, we released the
open-source implementation of our study utilities as an
open-source toolkit DROIDFAX [38], including a line
coverage tracking tool directly working on an APK. Given a
configured Android emulator or device and a set of apps
and/or app pairs, the automated study workflow produces
both metrics values and their visualization and tabulation.
Also available are our study results, the categorization of
event handlers we created, the improved source and sink
categorization we generated, and other documentation
including the detailed definition of the 122 metrics used.

V. RESEARCH QUESTIONS

With respect to the metrics described above, our study seeks
to answer the following research questions.

RQ1: How heavily are the SDK and other libraries used
by Android apps? This question addresses the construction of
Android apps in terms of their use of different layers of code
and the interaction among them. Answering this question
offers empirical evidence on the extent of the
framework-intensive nature of Android apps—previous
works only suggested the existence of that nature through
static analysis [4], [5]. RQ1 is answered using the first two
measures (i.e., (1) and (2)) of the general metrics.

RQ2: How intensively are callbacks invoked in Android
apps? It is well known that callbacks, including lifecycle
methods and event handlers, are widely defined or registered
in Android app code [3], [9], [10]. This research question
addresses their actual usage in Android app executions, that
is, the frequency of callback invocation and the distribution
of different types of callbacks. RQ2 is answered using the
third measure (i.e., (3)) of the general metrics.

RQ3: How do Android app components communicate using
the ICC mechanism? Much prior research has targeted Android
security concerning ICCs [6], [7], [22], [32], yet it remains
unclear how often ICCs occur relative to regular function calls
during app executions, how different types of ICCs are used,
and whether all ICCs constitute security threats. The answers
to each of these questions are subsumed by RQ3, and are
investigated using the ICC metrics.

RQ4: How is sensitive information accessed in Android
apps? Addressing the secure usage of sensitive information
has been the focus of various previous works, including taint
analysis [3], [9], privilege escalation defense [5], [27], and
data leakage detection [22], [39]. However, how often that
usage is exercised or which kinds of sensitive information
are mostly accessed has not been studied. RQ4 explores
these questions using the security metrics.

VI. EMPIRICAL RESULTS

This section presents the results of our study, reporting the
three categories of metrics with respect to relevant research
questions. For call frequencies, we report the number of
instances of each executed callsite throughout all single-app
traces using scatterplots. For callback and source/sink
categorization, we rank the categories for each app and
report for each category the mean rank across all benchmarks
along with the standard deviation of the ranks. For each of
the other metrics, which was consistently expressed as a
percentage, we first calculated the percentage (from the three
repetitions as described above) for each app (or each app

U
se
rC
od
e

3r
dL
ib

S
D
K

0 20 40 60 80 100

class
method

Fig. 2: Percentage distribution (x axis) of method calls to the
three code layers (y axis) at class and method levels.

pair) separately. Then we report either the distribution of all
these percentages using boxplots or their summary statistics
(mean and its standard deviation) using tables. In each
boxplot, the lower whisker, the lower and upper boundaries
of the box, and the upper whisker indicate the minimum, the
first and third quartiles, and the maximum, respectively. The
middle bar in the box indicates the median and the diamond
indicates the mean. We have set the whiskers to extend to
the data extremes (so no outliers are shown).

For each category of metrics, we first present the results
in detail and then summarize and discuss the most important
observations from an average-case perspective. We also offer
insights into the implications of our empirical findings and
demonstrate how our results can be used in future development
and security defense of Android apps.

A. General Characteristics of Android Apps

To gain a general understanding of Android app behaviors,
we investigated the structure of their execution in terms of
three layers of functionality (i.e., UserCode, SDK, and 3rdLib),
the interaction among these layers, and the usage of callbacks.

1) Composition of Code and Execution: The composition
of the method call trace of each Android app is characterized
in terms of the percentages of call instances accessing user
code, third-party libraries, and the Android SDK. Figure 2
shows the distribution of these layers in all the single-app
traces, with each group of boxplots depicting both class and
method granularity.

The plots reveal that consistently all the subject apps
employed library functionalities extensively, especially the
SDK, in performing their tasks. On average, at both class
and method levels, SDK code was executed the most
frequently among the three layers, suggesting that run-time
behaviors of the SDK dominate in the apps. The observation
that over 90% (on average) of all calls were to the SDK
code in almost all apps corroborates that Android apps are
highly framework-intensive. In contrast, these apps tend to
execute their user code relatively occasionally—in fact, only
25% of the apps had over 2% of their calls target user code
and none had over 20%. Third-party library code was not
called frequently either albeit more so than user code: the
means are larger than the 75% quartile, implying that only a
few outlier apps had over 10% calls to third-party libraries.

2) Inter-layer Code Interaction: Figure 3 scatter-plots the
frequency of each executed callsite per app. The data points
are categorized by the calling relationships, denoted in the
format of caller layer→callee layer, among the three code
layers. Each plot shows the call-frequency ranking for one of

4

http://chapering.github.io/droidfax/

1e+00 1e+02 1e+04 1e+06

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

SDK −> UserCode
3rdLib −> UserCode
SDK −> 3rdLib
UserCode −> 3rdLib
UserCode −> UserCode
UserCode −> SDK
3rdLib −> 3rdLib
3rdLib −> SDK
SDK −> SDK

Call

F
re

q
u
e
n
c
y

Fig. 3: Executed callsites of all apps (x axis) ordered (per pair
of layers) non-descendingly by their frequencies (y axis).

0.22%

70.26%

9.80%

0.04%

0.27%

13.95%

1.73%

0.04%

3.70%

0% 20% 40% 60% 80%

SDK‐>3rdLib
SDK‐>SDK

3rdLib‐>SDK
3rdLib‐>UserCode
UserCode‐>3rdLib
UserCode‐>SDK

UserCode‐>UserCode
SDK‐>UserCode
3rdLib‐>3rdLib

Fig. 4: Percentages of different categories of inter-layer call
instances over all benchmark app executions.

the nine categories of inter-layer interaction. The breadth of
each plot indicates the total number of executed callsites in
the corresponding interaction category, while the height
suggests the range of frequencies of all those calls. To better
distinguish categories, logarithmic scales are used on both
axes. For instance, the rightmost plot represents the
frequency ranking for calls between SDK methods
(SDK→SDK), covering over 200K callsites with the highest
individual call frequency of about 800K.

Consistent with the results in Figure 2, these plots confirm
that (1) many more SDK and third-party library APIs were
called than user methods and (2) the total number of unique
SDK callees overwhelmingly dominated all callees. The plots
reveal that categories having larger numbers of callsites mostly
had larger frequency maxima as well. The most frequently
exercised calls were from SDK (which also received the calls
of the highest frequency) followed by those from user code.

Figure 4 shows the percentage of call instances in each
inter-layer interaction category over the total call instances in
all benchmark app executions. Noticeably, the majority
(75.7%) of call instances over all apps happened within the
same layer—dominated by the SDK layer (70.3%)—rather
than across layers. User functions were called very rarely by
any callers (no more than 4%), reconfirming our previous
observation from Figure 2. The results reveal that the vast
majority of calls to third-party library functions were from
the same layer of code. Calls to UserCode from SDK or
3rdLib were callbacks from the framework and other
libraries to application methods. The much smaller numbers
and lower frequencies of such calls show that user-code
callbacks were executed comparatively rarely.

0 10 20 30 40

lifecycle

event

method

handler

Fig. 5: Percentage distribution (x axis) of callbacks, including
lifecycle methods and event handlers (y axis), over all calls.

In summary, results on inter-layer code interaction further
confirm the highly framework-intensive nature of Android
apps, indicating that the Android framework tends to do the
majority of application tasks while user code often just
relays computations to the SDK and various other libraries.

3) Usage of Callbacks: We examined the extent of
callback usage (over all code layers) in the benchmark apps
through the distribution of percentages of callback method
invocations. As shown in Figure 5, callbacks in these apps
were not invoked very frequently. The average percentage of
either type of callback invocations was under 3%, indicating
that callbacks, while prevalently defined and registered in
Android apps [9], [10], tend to be only lightly used at
runtime. This observation is consistent with the call
frequency ranking of Figure 3, where we have seen that
relatively small numbers and low frequencies of calls
invoking user code from the SDK or other libraries.
Comparing the two types of callbacks reveals that (1) event
handlers were called more frequently than lifecycle callbacks
(2.7% versus 0.6%) and (2) there were apps executing event
handlers substantially (up to 47% of total call instances) yet
none of the apps had more than 20% of calls targeting
lifecycle methods. Note that the medians were all below 2%,
for both lifecycle and event-handling callbacks, implying the
generally light invocations of callbacks overall in these apps.

To look further into the callback usage, we categorized
lifecycle callbacks by their enclosing classes with respect to
the four types of application components and the Application
type corresponding to the android.app.Application

class defined in the SDK. The rank (by the number of call
instances) of each category is listed in Table I, including the
means (of ranks) and corresponding standard deviations over
all 125 benchmark apps. From the second to the sixth row of
the table, the component types are listed in a non-ascending
order by the corresponding rank averages.

As shown, Activity lifecycle methods were invoked most
frequently in comparison to such methods in other
categories. In fact, our results also show that these methods
dominated the targets of all executed lifecycle-method calls.
In the vast majority of the apps, Activity was consistently
ranked the first (i.e., rank=1) among the five classes of
lifecycle-method call receivers, with a few apps having this
component type ranked the second (i.e., rank=2). As a result,
the average rank was 1.28 for Activity. The second most
handled lifecycle events were associated with the application
as a whole, with an average rank of 1.76. Events handled by
the other three types of components were close in their mean
ranks, and were all considerably lower than the two
dominant categories (i.e., Activity and Application).

In addition, on average the apps had over 75% of all
lifecycle callbacks associated with Activity components.
These numbers suggest that the vast majority of lifecycle

5

TABLE I: Lifecycle methods breakdown over all categories
Category rank average standard deviation
Activity 1.28 0.54
Application 1.76 0.61
ContentProvider 2.49 0.79
BroadcastReceiver 2.48 0.77
Service 2.54 0.77

TABLE II: Significant categories of invoked event handlers
Category rank average standard deviation

UI View 1.81 0.69
System System mgmt. 1.89 1.09
UI App bar 2.07 1.21
UI Dialog 2.46 0.93
UI Widget 2.56 0.99
System App mgmt. 2.63 1.22
System Media control 2.69 1.15
System Hardware mgmt. 2.72 1.21

method calls were dealing with Activities, hinting at the
pattern that Android apps typically have abundant user
interfaces (UI) and rely on frequent user interaction. Further,
the small standard deviations (all less than half of the
associated means) suggest that the pattern was pretty
consistent across the benchmark apps. This observation
justifies focusing on selected callbacks in modeling lifecycles
of an Android app as a whole, such as considering Activity
only when analyzing static control flows for lifecycle
callbacks [10], to reduce analysis complexity and/or to
achieve better performance.

Exploring the data further, Table II presents a two-level
breakdown of invoked event handlers according to our
manual categorization of those callbacks (see Section IV).
When at least one of the benchmark apps had over 1% of all
call instances falling in a (second-level) category, we
regarded that category as significant. We only report
significant categories.

In the table, all the significant second-level categories are
listed in a non-ascending order by the corresponding rank
averages. Overall, in most of these apps, there were more
callbacks triggered by UI events than those handling system
events. The top three categories were pretty consistently
ranked at top in most apps, while the other categories were
close in the average ranks implying the ranking of these
categories had more variations across different apps.

A more detailed look reveals that the majority of UI event
handlers dealt with two particular kinds of user interfaces,
View (generally ranked the first with an average rank of
1.81) and App bar, while user events on Dialog or Widget
were much less frequent. On average, most system event
handlers responded to events that serve system management
(mgmt.), with a few others dealing with app and hardware
management and media control. The relatively small
standard deviations of the average ranks imply that the
sample means capture the general traits of these apps. Given
these results, Android app analyses of event handlers [3],
[9], [10] could be customized or optimized for better
cost-effectiveness while remaining soundy [8] by prioritizing
analysis of those in the most commonly exercised categories.

4) Summary and Discussion: The general metrics show
that at runtime Android apps (1) depend heavily on the
SDK—over 80% of methods executed are defined in the
SDK and (2) are highly framework-intensive—90% of all
call instances are those of SDK methods, and the largest

Activity

Service

Receiver

ContentProvider

0 20 40 60 80 100

Fig. 6: Percentage distribution (x axis) of the four types
components (y axis) in app executions.

numbers (over 10K) of calls with the highest frequencies
(over 100K) targeted methods in the SDK. Thus, a clear,
deep understanding of the SDK and its interface with apps is
essential for secure Android app development. Meanwhile,
the security of the Android framework itself deserves
foremost attention in securing the whole Android software
ecosystem. The overwhelming dominance of SDK in app
executions uncovers promising benefits of SDK optimizations.

In addition, Activity was the predominant (above 70%)
target of lifecycle method calls, which indicates that Android
apps are generally rich in user interfaces. Therefore, Android
app analyses should pay considerable attention to application
features that are relevant to UI elements (e.g., UI-induced
data and control flows). Since invocations of various
callbacks account for only small percentages (less than 5%)
of all method calls, it would be practical and rewarding to
fully track callback data/control flows for fine-grained
dynamic security analyses. Finally, giving priority to the very
few top-ranked categories of lifecycle methods and event
handlers would render lifecycle modeling, taint analysis, and
callback control flow analysis more cost-effective (e.g.,
sacrificing safety for higher scalability).

B. ICC Characterization

ICCs constitute the primary communication channel
between the four types of components as well as a major
attack surface in Android. We first look at component
distribution in the app executions before examining the
interaction between them through Intent ICCs. We then
characterize whether data payloads are carried (i.e., data
carriage) in the ICCs. We report the measures based on
exercised ICC calls with respect to single- and inter-app
traces separately and compare findings in these two settings.

1) Component Distribution: Figure 6 shows the
distribution of method calls over different component types.
Despite the existence of (four) outlier apps which had
ContentProviders dominate all their invoked components, by
far the majority of our benchmark apps used Activities the
most (almost 90% on average) among all components
executed. Receivers were used noticeably (about 5% on
average), related to the previous observation that these apps
had considerable percentages of callbacks handling system
events over all invoked callbacks (see Table II). Except for
in one outlier app where 20% executed components provide
background service, Service components were generally
invoked very sparingly.

2) ICC Categorization: Having an understanding of the
usage of different types of components, we now break down
all exercised ICCs (i.e., links between components), as
shown in Figure 7, over four possible categories (on the x

axis) in single- and inter-app traces separately. Each data

6

single−app inter−app

internal-explicit internal-implicit external-explicit external-implicit

0
20

40
60

80
10
0

Fig. 7: Percentage distribution (y axis) of all ICCs over four
categories (x axis) in single-app versus inter-app executions.

single−app inter−app

standard−data only bundle−data only both forms of data

0
20

40
60

80
10
0

Fig. 8: Percentage (y axis) of ICCs that carried data payloads
in different forms (x axis) over all ICCs exercised.

point in the boxplots represents the percentage of ICCs in a
particular category over all the ICCs for one app or app pair.

In the single-app setting, the results show the dominance
of internal-explicit and external-implicit ICCs. In contrast,
there were much smaller percentages of external-explicit
ICCs while internal-implicit ones were even fewer. These
observations suggest that components within the same app
tend to connect explicitly—in fact, they rarely communicate
via implicit ICCs. There were substantial percentages of
external ICCs even in the single-app traces because system
and built-in apps (e.g., photo viewer, camera, web browser,
maps, etc.) often communicated with our benchmark apps
(almost always via implicit ICCs according to our results).

In the inter-app setting, external-explicit and
external-implicit ICCs combined (over 80% on average)
dominated over the internal ones (around 10%) in most app
pairs. Dominating internal ICCs were seen only in a few
outlier cases, and the majority of those ICCs were explicit.
On average, external-explicit ICCs accounted for much
higher percentages (60%) than external-implicit ones (25%).
We inspected the traces and found that some implicit ICCs
did not succeed because there were no receiver apps
available on the device to handle the requests sent. In such
cases, the (external) ICCs were not successfully exercised
thus ignored in our study. Nonetheless, these apps more
preferably used explicit ICCs when communicating with peer
user apps than when communicating with system/built-in
apps (as observed in the single-app setting).

We also found that less than 0.5% of method invocations
were API calls for either sending or receiving ICCs. This
marginal percentage implies that the overwhelming majority
of calls were between methods within individual
components; in comparison, components communicated with
other components only occasionally (e.g., when an
intra-component computation completed and results were

ready to deliver). More than half of all ICCs were between
two Activity components; among the other ICCs, over 60%
were either initiated by or aimed at Activities. These
observations are expected given the dominance of Activity
among all component types (see Figure 6); this implies that
the predominant use of ICCs in Android apps tends to serve
the communication between various user interfaces.

3) Data Carriage: Part of the reason for ICCs to become
a major security attack surface is that they can carry, hence
possibly leak, sensitive and/or private data. Thus, we
investigated the ICC data carriage of single-app and app-pair
executions. There are two ways in Android in which ICCs
can carry data in an Intent: via the data field of the ICC
Intent object, specified only through a URI, and via the
extras field of that object (i.e., a bundle of any additional
data accessible as a key-value structure). We refer to these
two forms as standard and bundle data, respectively.

Figure 8 shows the percentage distribution (y axis) of
data-carrying ICCs with different forms of data (x axis) over
all ICC instances. The single-app traces saw similar usage of
standard as that of bundle data, although the latter was
favored in more apps. In the inter-app setting, however, on
average no more than 5% of ICCs transferred standard data
only, while bundle-only ICCs were over 20% of the same
total. Very few ICCs carried both standard and bundle data
at the same time, though, in either communication setting.
Despite outlier apps that passed either or both forms of data
in almost all their exercised ICCs, the general observations
are that (1) the ICCs that carried data account for a lesser
proportion (25%) of the total and (2) bundles were favored
(especially between user app pairs) over URIs. An immediate
implication of this observation to data-leak detection is that
checking only the data field of Intents is inadequate as it
would miss the majority of potential data leaks. Instead,
security analyses of ICC-based data leaks should carefully
examine the bundles contained in ICC Intents [29].

4) Summary and Discussion: Our ICC categorization
(Figure 7) reveals that components of the same apps
communicate rarely through implicit ICCs (less than 1% on
average) as opposed to through explicit ICCs (over 35% and
below 10% in the single- and inter-app settings,
respectively); components across apps (i.e., in the inter-app
setting) use implicit ICCs (about 20%) also much less often
than using explicit ICCs (over 70%). This dominance of
explicit ICCs over implicit ones suggests that conservatively
linking components via implicit ICCs (i.e., through the
action, category, data tests [3], [6]) may lead to
large imprecision in static analyses of ICC-induced
information flows. Our ICC data-carriage characterization
(Figure 8) reveals that most (75%) ICCs do not carry any
data and those carrying data across apps tend to do so
preferably via bundles (over 20%) instead of URIs (below
5%). Thus, security analyses involving ICCs may benefit
from prioritizing examination of ICCs carrying data,
especially those using bundles, to obtain more effective
results within a time budget. The preference of data-carrying
ICCs for bundles also calls for deeper analysis of the
extras fields in Intents.

The characteristics of ICCs in single-app executions are
different from those in inter-app settings: (1) percentages of

7

source

sink

0 10 20 30 40

Fig. 9: Percentage distribution (x axis) of sources and sinks
(y axis) over all calls.

all internal ICCs are much more substantial in the single-app
setting (nearly 40%) than in the inter-app setting (about
10%), whereas the latter saw (around 20%) larger
percentages of all external ICCs than the former; and (2)
components across apps connected more often via implicit
ICCs in single-app traces (about 60%) than in inter-app ones
(below 5%) while external explicit ICCs were much (over
60%) more often seen in inter-app traces. Due to these
differences, an ICC-involved single-app analysis can produce
results considerably different from those given by an
inter-app analysis that deals with ICCs. There has been no
concrete assessment of the effects of these differences.
Nevertheless, an accurate ICC analysis should consider its
communication context (potential communicating peer apps).

C. Security-Sensitive Data Accesses

Android security analysis has been largely concerned with
inappropriate accesses to security-sensitive data. To
understand the implications of those accesses, we
investigated in our benchmarks (1) the usage of sensitive and
critical APIs and (2) the categories of sensitive data the
sensitive APIs (sources) accessed and categories of critical
operations the critical APIs (sinks) performed.

1) Usage of Sources and Sinks: Since sensitive data in
Android is accessed via invocations of sensitive and critical
SDK APIs, understanding the production and consumption
of sensitive data requires examining the frequency of API
calls that are data sources or sinks as a percentage of all
method calls, as shown in Figure 9. Overall, the apps tended
to retrieve sensitive information often, containing on average
one sensitive API call out of every ten callsites exercised
during their executions. Half of the apps had an even larger
proportion (up to 22%) of sensitive API calls.

The exercised sources and sinks were run-time projections
of the predefined lists [37] of (17,920 unique) sources and
(7,229 unique) sinks we used, respectively. Thus, the
percentages of source and sink calls we reported were
directly influenced by the sizes of these lists.

Our results show that sources were invoked much more
frequently than the sinks. The majority of the apps had total
source API calls account for about 15% of total call
instances, with the highest up to 50%. In comparison, 75%
of the apps saw less than 5% sink calls among all their
method calls, with up to 45% in a couple of outlier apps. In
short, the apps had considerably intensive accesses to
sensitive information, yet did not perform potentially
data-leaking operations as much often. This difference can
be partially ascribed to the much longer list of predefined
sources compared to the shorter list of predefined sinks.

2) Categorization of Sensitive Data Accesses: One way to
further examine how Android apps use sensitive and critical
API calls is to look into the information itself accessed by

TABLE III: Source breakdown over significant categories
Category rank average standard deviation
Network information 1.0 0.0
System settings 2.13 0.49
Calendar information 2.27 0.60
Location information 2.38 0.65
Account information 2.40 0.68

TABLE IV: Sink breakdown over significant categories
Category rank average standard deviation
Account setting 1.18 0.41
Logging 2.21 0.91
System setting 2.36 0.81
Network operation 3.10 1.18
File operation 3.25 1.24
SMS/MMS 3.33 1.30

the apps and operations that may leak such information. To
that end, we categorized the source and sink API calls
according to the kinds of data retrieved by the sources and
operations performed by the sinks. Knowing which kinds of
information Android apps tend to access most and which
types of critical operations are most often performed can
inform end users about the potential risks of leaking
security-sensitive data when using the apps, as well as help
security analysts make right choices and/or configurations of
security-inspection tools.

Table III lists the rank (by the numbers of source call
instances accessing sensitive information) of each source
category, in the same format as Table I. Categories having
maximal percentage below 1% are omitted. There were only
five categories noticeably accessed by the benchmark apps.
Network information was dominant, constantly ranked first
in any benchmark app. Additionally, the average percentage
of all source calls that retrieved network information was as
high as 98%. Network information was previously noted as
widely accessed in Android apps [12], yet such
overwhelming dominance of this category has not been
reported. System settings, calender, location and account
related data were also among the most commonly used
categories of accessed data [11], [12], [40].

A similar breakdown of sinks over six significant
categories is summarized in Table IV. Interestingly, the
dominant category was associated with account settings,
suggesting that the Android apps deal with account
management intensively relative to other kinds of critical
operations. Applying possibly sensitive data in managing
accounts does not seem to constitute a data-leak risk, yet
such risks can occur when a user shares account settings
across apps (e.g., user age and location data used in the
settings for an account on one app may be disclosed to
another app where the user logs in to the same account). The
second most prevalent potential consumer of sensitive data
was logging operations, which can disclose data via external
storage. Similarly to account-setting operations, API calls for
system settings can lead to data leakage as well. Lastly,
network, file, and message-service operations are capable of
leaking data through network connections or file-system I/Os
to remote apps and devices. In fact, these categories of sinks
were previously recognized as the major means of leaking
data out of Android apps or the mobile device [11], [21].

In all, our results reveal that security-sensitive accesses in
Android apps are not targeted broadly in terms of the
categories of information accessed and operations executed.
Instead, only very few kinds of sensitive data and critical

8

operations, which are indeed highly relevant to common
mobile device functionalities, are most involved. The
generally small standard deviations corroborated the
consistency of the ranking across the apps. This finding
suggests that one approach to optimizing security defense
solutions based on information flow analysis (e.g., [3], [9])
could be to prioritize the search for vulnerable flows in those
that involve data and operations of the predominating
categories. The analysis performance might be greatly
boosted without increasing false negatives substantially by
ignoring a marginal portion of vulnerable flows.

Alternatively, drawing on the results from a dynamic
analysis, the long lists of predefined sources and sinks used
by static analyses may be prioritized to focus on the ones
used most often. For example, based on our results,
considering just one or two top categories of sources and
sinks would allow static taint analyses to capture taint flows
between over 85% of all sources and sinks, providing an
unsafe but rapid solution—both previous studies and our
experience suggest that cutting the lists significantly may
lead to substantial analysis performance gains [3], [9].

3) Summary and Discussion: We found that (1) sensitive
information accesses and critical operations are commonly
exercised during Android app executions, though they are not
heavily invoked (accounting for on average less than 15% of
all calls even with respect to the highly-comprehensive lists
of predefined sources and sinks), and (2) the target
information of sources and target operations of sinks are
both in narrow scopes: the vast majority (stably ranked top,
and over 90% of all) sources focus on accessing network
information, while the constantly most accessed (ranked
among the top, and more than 80% in total out of all) sinks
focus on operations related to account setting and logging.

In light of these findings, Android security analysis may
prioritize on the few predominant categories of sources and
sinks to avoid being overly conservative in discovering taint
flows to gain better overall tradeoffs between precision and
efficiency. End users and security experts should also pay more
attention to these highly accessed categories to make better
decisions on permission management and app vetting. It is of
particular interest to investigate whether this pattern remains
over time in the context of the evolving Android ecosystem
through a longitudinal study, part of our future work.

D. Inter-App Benchmark Suite

Several Android app benchmark suites have been shared
by researchers [3], [9], [18] yet they all targeted a single-app
static analysis. For an inter-app dynamic analysis, a suite of
apps with known communicating peers in the same suite is
more desirable. At an early stage of our study, we faced the
challenge of finding such a suite. Now we have created one
and released it for public reuse.

Our study results have confirmed that out of the 80
potentially communicating app pairs (based on static ICC
resolution and matching) 62 have ICCs between the pair that
have been exercised readily by random Monkey inputs. Of
these pairs, 34 have ICCs going in both directions between
the app pair. The package names and exercised ICC statistics
of each pair are available for download from our project
website (see Section IV), where we have hosted
corresponding APKs for free, handy downloads too.

E. Threats to Validity

One threat to internal validity of our study results lies in
possible errors in the implementation of our toolkit
DROIDFAX and various experimentation scripts. To reduce
this threat, we have conducted careful code review of the
toolkit and scripts in addition to manual verification of their
functional correctness against our experimental design. The
maturity of the Soot framework supporting our toolkit also
helps increase the credibility of our tool implementation.
Another threat comes from the possibility of missing or
incorrectly placing profiling probes (for the instrumentation)
due to code obfuscation, which has been a significant block
for static analysis of Android apps [1], [24]. However, our
manual inspection of Soot Jimple [35] code and call traces
for the benchmark apps revealed that for the few obfuscated
apps this did not affect our simple static analysis.

Primary threats to external validity concern our choice of
benchmark apps and the test inputs we used for dynamic
analysis. First, we studied a limited number of Android apps,
which may not be representative of all Android apps on the
market or in use. To mitigate this threat, we started with a
much larger pool of popular apps and picked each app from
that pool randomly. Our benchmark suite is reasonably large
for a systematic dynamic study that requires long profiling
time. In addition, our study targeted relatively new apps
which were built on Android SDK 4.4 or above. Thus, our
results may not generalize to older apps. However, with the
Android app market migrating to newer platforms [41], we
believe that studying Android apps with respect to more
recent platforms gives more valuable information for the
development and protection of future Android applications.

Like any other dynamic analyses, our empirical results are
subject to the coverage of the test inputs used—some
behaviors of the benchmarks might not have been exercised.
To reduce this threat, we used the tool applicable to us that
gives the highest coverage among peer tools [25] (and only
5% lower than the highest reported so far which was
achieved by manual inputs in a much smaller-scale
study [24]). Moreover, we carefully chose benchmarks for
which the randomly generated inputs did achieve a
reasonable coverage (55% at least and 70% on
average)—our toolkit and methodology are not limited by
the coverage, but we aimed at results more representative of
app behaviors by using inputs of higher coverage.
Nonetheless, the presented conclusions and insights are
limited to the chosen apps and covered app behaviors—the
coverage threshold applied during benchmark selection
potentially affected the representativeness of the apps we
chose. Possible non-determinism in the chosen apps could
also be a threat, so we repeated our experiments three times
and took the average metric values for each app and app
pair, and found marginal variances between the repetitions.

The main threat to conclusion validity concerns the
distribution of underlying data points. Thus we reported
standard deviations of means for metrics with which we did
not show the entire distribution. As none of the benchmarks
were identified as malicious by VirusTotal [42], our results
may not generalize to malware. Our results and observations
regarding callback and source/sink categorizations are
subject to the validity of the corresponding predefined lists

9

(e.g., callback interfaces and source/sink APIs) (see
Section IV). We have used the best such resources we are
aware of to reduce this additional threat.

It is important to note that the numbers we reported in our
results are not intended to serve as absolute and exact metric
values that precisely quantify Android app characteristics.
With different benchmarks and test inputs, those numbers are
expected to shift. However, comparing these results to those
from our previous, pilot study on different benchmarks
reveals that the deviations are mostly small. More
importantly, the major observations remain almost the same.
Nonetheless, rather than making strong claims about the
numbers in absolute terms, we emphasize on the general
trends (e.g., overwhelming dominance of calls to SDK code
and callbacks to Activity components), contrasts (e.g., more
external-explicit ICCs in inter-app executions versus
single-app ones), and distributions (e.g., the majority of
sources accessing network information versus other
categories of sources executed) that constitute an overall
understanding of app behaviors. The numbers should be
taken as estimates that assist with the understanding.

VII. RELATED WORK

A. Dynamic Analysis for Understanding

Various dynamic analysis techniques have been employed
for program understanding in general [43], of which the most
relevant to us is execution trace analysis (e.g., [44], [45]).
Yet, many existing works of this kind concerned techniques
aiming at effectively exploring the traces themselves, such as
trace reduction [46] and visualization [47]; and others serve
different purposes other than directly for understanding the
behavior of programs, including evolution tracking [48] and
architecture extraction [49]. We also employed trace analysis
for program-understanding purposes. However, instead of
exploring the traces directly or improving trace analysis
techniques, we focused on studying the functionality
structure and runtime behavior of programs by utilizing
execution traces as a means. Also, we target mobile
applications, unlike the majority of prior approaches which
addressed other domains such as traditional desktop software.

A few dynamic analyses focusing on Android involved
tracing method calls as well, for malware detection [45], app
profile generation [17], and access control policy
extraction [50]. Yet, their main goal was to serve individual
apps thus different from ours of characterizing Android
application programming in general. In addition, their call
tracing aimed at Android APIs only, whereas our execution
traces covered all method calls including methods defined in
user code and third-party libraries.

B. Android Security Analysis
There has been a growing body of research on securing

Android apps against a wide range of security issues [1].
Among the rich set of proposed solutions [2], modeling the
Android SDK and other libraries [3], [9], approximating the
Android runtime environment [4], [5], and analyzing
lifecycle callbacks and event handlers [9], [10] are the main
underlying techniques for a variety of specific vulnerability
and malware defense approaches [2]. Examples of such
specific approaches include information flow analysis [21],
[51] in general and taint analysis [9], [52] in particular.

In comparison, we are concerned about similar aspects of
the Android platform and its applications, such as different
layers of app code and interactions among them, as well as
lifecycle methods and event handlers. However, rather than
proposing or enhancing these techniques themselves, we
empirically characterized sample Android apps with respect
to relevant app features and investigated how such features
discovered from our study could help with the design of
those techniques. Also, different from many of them that are
purely static analyses, our work is dynamic. Compared to
existing dynamic approaches to security analysis for Android
which were mostly platform extensions (i.e., modifying the
SDK itself), our work did not change the Android framework
but only instrumented in Android apps directly as in [29].

C. Characterization of Android Apps

Empirical works targeting Android also have emerged
lately, covering a broad scope of topics ranging from
resource usage [12], battery consumption [15] permission
management [53], code reuse [14] to ICC robustness [32],
SDK stability [16] and user perception of security and
privacy [40]. In contrast, our work aims at the general
characterization of Android applications from the point of
view of language constructs and run-time behaviors.

For categorizing information accessed by sensitive and
critical API calls, we utilized predefined sources and sinks
based on those used in [37], where frequencies of source and
sink usage in malware samples were studied. Several other
works on Android app characterization also targeted Android
malware [18], [19], [54]. These studies either utilized static
analysis [37], [54] or relied on manual investigation [18]. In
contrast, we focused on understanding the run-time behaviors
of benign Android apps via dynamic analysis, which
potentially complements those previous studies.

VIII. CONCLUSION

We presented the first systematic dynamic study of
Android programming that targets a general understanding of
application behaviors and their implications in Android. To
that end, we traced method calls and ICC Intents from
one-hour continuous executions of 125 popular apps
randomly selected from Google Play and 80 communicating
pairs among them. We developed an open-source toolkit
DROIDFAX and applied it to characterize the execution
structure, usage of lifecycle callbacks and event handlers,
ICC calls and data payloads, and sensitive data accesses of
Android apps at runtime. We also have produced an app-pair
benchmark suite and its exercised ICC statistics for future
dynamic Android inter-app analysis.

Our results reveal that (1) Android apps are heavily
dependent on various libraries, especially the Android SDK,
to perform their tasks, (2) only a small portion of method
calls target lifecycle callbacks (mostly for Activities) or event
handlers (mostly for user interactions), (3) most executed
ICCs do not carry any data payloads and inter-app ICCs pass
data mainly via bundles instead of URIs, and (4) sensitive
and critical APIs mostly focus on only a couple kinds of
information and operations. In addition, we offered insights
into the implications of our empirical findings that
potentially inform future code analysis and security defense
of Android apps towards better cost-effectiveness tradeoffs.

10

REFERENCES

[1] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Con-

ti, and M. Rajarajan, “Android security: a survey of issues, malware

penetration, and defenses,” IEEE Communications Surveys & Tutorials,

vol. 17, no. 2, pp. 998–1022, 2015.

[2] D. J. Tan, T.-W. Chua, V. L. Thing et al., “Securing Android: a survey,

taxonomy, and challenges,” ACM Computing Surveys, vol. 47, no. 4, pp.

1–45, 2015.

[3] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general

inter-component data flow analysis framework for security vetting of

Android apps,” in Proceedings of ACM Conference on Computer and

Communications Security, 2014, pp. 1329–1341.

[4] M. Gordon, D. Kim, J. Perkins, L. Gilhamy, N. Nguyen, and M. Rinard,

“Information-flow analysis of Android applications in DroidSafe,” in

Proceedings of Network and Distributed System Security Symposium,

2015.

[5] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: statically vetting

Android apps for component hijacking vulnerabilities,” in Proceedings

of ACM Conference on Computer and Communications Security, 2012,

pp. 229–240.

[6] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.

Traon, “Effective inter-component communication mapping in Android

with Epicc: An essential step towards holistic security analysis,” in Pro-

ceedings of USENIX Security Symposium, 2013, pp. 543–558.

[7] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Com-

posite constant propagation: Application to Android inter-component

communication analysis,” in Proceedings of IEEE/ACM International

Conference on Software Engineering, 2015, pp. 77–88.

[8] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,

B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Var-

doulakis, “In defense of soundiness: a manifesto.” Communications of

the ACM, vol. 58, no. 2, pp. 44–46, 2015.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.

Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow,

field, object-sensitive and lifecycle-aware taint analysis for Android app-

s,” in Proceedings of ACM Conference on Programming Language De-

sign and Implementation, 2014, pp. 259–269.

[10] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-flow

analysis of user-driven callbacks in Android applications,” in Proceed-

ings of the 37th International Conference on Software Engineering,

2015, pp. 89–99.

[11] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of An-

droid application security,” in Proceedings of USENIX Security Sympo-

sium, 2011, pp. 21–21.

[12] D. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and A. K. Dey,

“Securacy: an empirical investigation of Android applications’ network

usage, privacy and security,” in Proceedings of ACM Conference on

Security & Privacy in Wireless and Mobile Networks, 2015, pp. 1–11.

[13] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia, “Under-

standing Android fragmentation with topic analysis of vendor-specific

bugs,” in Proceedings of IEEE Working Conference on Reverse Engi-

neering, 2012, pp. 83–92.

[14] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan, “Understand-

ing reuse in the Android market,” in Proceedings of IEEE International

Conference on Program Comprehension, 2012, pp. 113–122.

[15] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding

human-smartphone concerns: a study of battery life,” in Pervasive

Computing, 2011, pp. 19–33.

[16] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API sta-

bility and adoption in the Android ecosystem,” in Proceedings of IEEE

International Conference on Software Maintenance, 2013, pp. 70–79.

[17] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid:

multi-layer profiling of Android applications,” in Proceedings of ACM

International Conference on Mobile Computing and Networking, 2012,

pp. 137–148.

[18] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization

and evolution,” in Proceedings of IEEE Symposium on Security and

Privacy, 2012, pp. 95–109.

[19] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,

V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 apps later: A view

on current Android malware behaviors,” in Proceedings of Internation-

al Workshop on Building Analysis Datasets and Gathering Experience

Returns for Security (BADGERS), 2014, pp. 3–17.

[20] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android secu-

rity,” IEEE security & privacy, no. 1, pp. 50–57, 2009.

[21] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. Sheth, “TaintDroid: An information-flow tracking system for

realtime privacy monitoring on smartphones,” in Proceedings of USENIX

Symposium on Operating Systems Design and Implementation, 2010, pp.

393–407.

[22] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing

inter-application communication in Android,” in Proceedings of ACM

International Conference on Mobile Systems, Applications, and Services,

2011, pp. 239–252.

[23] Google, “Android emulator,” http://developer.android.com/tools/help/

emulator.html, 2015.

[24] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input genera-

tion system for Android apps,” in Proceedings of joint European Soft-

ware Engineering Conference and ACM International Symposium on the

Foundations of Software Engineering, 2013, pp. 224–234.

[25] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-

eration for Android: Are we there yet?” in Proceedings of IEEE/ACM

International Conference on Automated Software Engineering, 2015, pp.

429–440.

[26] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “QUIRE:

Lightweight provenance for smart phone operating systems,” in Pro-

ceedings of USENIX Security Symposium, 2011.

[27] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shas-

try, “Towards taming privilege-escalation attacks on Android,” in Pro-

ceedings of Network and Distributed System Security Symposium, 2012.

[28] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of

the communication between colluding applications on modern smart-

phones,” in Proceedings of Annual Computer Security Applications Con-

ference, 2012, pp. 51–60.

[29] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of

inter-application communication vulnerabilities in Android,” in Proceed-

ings of ACM International Symposium on Software Testing and Analysis,

2015, pp. 118–128.

[30] Google, “Android Monkey,” http://developer.android.com/tools/help/

monkey.html, 2015.

[31] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated

testing for Android applications,” in Proceedings of ACM International

Symposium on Software Testing and Analysis, 2016, pp. 94–105.

[32] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An empirical

study of the robustness of inter-component communication in Android,”

in Proceedings of Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks, 2012, pp. 1–12.

[33] H. Cai and R. Santelices, “A comprehensive study of the predictive

accuracy of dynamic change-impact analysis,” Journal of Systems and

Software, vol. 103, pp. 248–265, 2015.

[34] ——, “TracerJD: Generic trace-based dynamic dependence analysis with

fine-grained logging,” in Proceedings of International Conference on

Software Analysis, Evolution, and Reengineering, 2015, pp. 489–493.

11

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

[35] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a Java bytecode

optimization framework,” in Cetus Users and Compiler Infrastructure

Workshop, 2011, pp. 1–11.

[36] Google, “Android logcat,” http://developer.android.com/tools/help/

logcat.html, 2015.

[37] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for

classifying and categorizing Android sources and sinks.” in Proceedings

of Network and Distributed System Security Symposium, 2014.

[38] H. Cai and B. Ryder, “DroidFax: A toolkit for systematic characteriza-

tion of Android applications,” in Proceedings of International Confer-

ence on Software Maintenance and Evolution, 2017.

[39] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming

information-stealing smartphone applications on Android,” in Trust and

Trustworthy Computing, 2011, pp. 93–107.

[40] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but vibra-

tion ain’t one: a survey of smartphone users’ concerns,” in Proceedings

of ACM workshop on Security and privacy in smartphones and mobile

devices, 2012, pp. 33–44.

[41] Google, “Android Developer Dashboard,” http://developer.android.com/

about/dashboards/index.html, 2016, accessed online 09/20/2016.

[42] “VirusTotal,” https://www.virustotal.com/.

[43] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and

R. Koschke, “A systematic survey of program comprehension through

dynamic analysis,” IEEE Transactions on Software Engineering, vol. 35,

no. 5, pp. 684–702, 2009.

[44] J. Moc and D. A. Carr, “Understanding distributed systems via execu-

tion trace data,” in Proceedings of International Workshop on Program

Comprehension, 2001, pp. 60–67.

[45] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:

Android malware detection through manifest and API calls tracing,” in

Proceedings of Asia Joint Conference on Information Security, 2012,

pp. 62–69.

[46] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of large

traces to facilitate the understanding of the behaviour of a software

system,” in Proceedings of IEEE International Conference on Program

Comprehension, 2006, pp. 181–190.

[47] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen,

and J. J. van Wijk, “Execution trace analysis through massive sequence

and circular bundle views,” Journal of Systems and Software, vol. 81,

no. 12, pp. 2252–2268, 2008.

[48] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind, “System evolution

tracking through execution trace analysis,” in Proceedings of IEEE In-

ternational Workshop on Program Comprehension, 2005, pp. 237–246.

[49] T. Israr, M. Woodside, and G. Franks, “Interaction tree algorithms to ex-

tract effective architecture and layered performance models from traces,”

Journal of Systems and Software, vol. 80, no. 4, pp. 474–492, 2007.

[50] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android per-

missions demystified,” in Proceedings of ACM Conference on Computer

and Communications Security, 2011, pp. 627–638.

[51] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani, E. J.

Lehner, S. Y. Ko, and L. Ziarek, “Information flows as a permission

mechanism,” in Proceedings of IEEE/ACM International Conference on

Automated Software Engineering, 2014, pp. 515–526.

[52] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity

software,” in Proceedings of Network and Distributed System Security

Symposium, 2005.

[53] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,

“Android permissions: User attention, comprehension, and behavior,” in

Proceedings of the Symposium on Usable Privacy and Security, 2012,

pp. 1–14.

[54] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “DroidMiner:

Automated mining and characterization of fine-grained malicious behav-

iors in Android applications,” in Proceedings of European Symposium

on Research in Computer Security, 2014, pp. 163–182.

12

http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://www.virustotal.com/

