
Artifacts for Dynamic Analysis of Android Apps
Haipeng Cai

Washington State University, Pullman, USA
hcai@eecs.wsu.edu

Barbara G. Ryder
Virginia Tech, Blacksburg, USA

ryder@cs.vt.edu

I. INTRODUCTION

As Android continues to gain momentum in mobile
computing, increasing research has been invested in analyzing
Android apps. In particular, due to inherent limitations of static
analysis (e.g., in dealing with dynamic language constructs and
code obfuscation), dynamic analysis has been recognized as an
alternative or complement [1]. However, in contrast to reusable
utilities available for static analysis of Android apps (e.g., [2]),
such utilities for dynamic analysis of apps are rare. To facilitate
research based on dynamic app analysis, we share a set of
reusable and extensible artifacts that we have applied for our
recent dynamic characterization study of Android apps [3].
We show how these artifacts can be used to reproduce the
study. Moreover, we briefly discuss how they can be reused
and extended for more applications. The artifact package along
with details on setup and usage instructions is available here.
The package consists of the analysis code and dataset used in
the study, and a VM for demonstration and replication.

II. ANALYSIS CODE

While the executables are sufficient for reproducing our
study results, we share the source code also so that (1) the
toolkit can be customized by interested readers to conduct
similar characterizations but with varied metrics, and (2)
development of different dynamic analysis tools can be
facilitated by reusing some of the components in the toolkit.
The source directory (code) includes six components:

• dynCG: a dynamic call graph construction and search
tool, which profiles all method calls of an app including
those via reflection and in exception-handling constructs.

• eventTracker: a profiler of system and user-interface
events occurred during an app execution.

• intentTracker: a tracer of Intent objects carried by
all exercised inter-component communications at runtime.

• covTracker: a statement coverage tracker working on
the APK (without relying on the source code) of an app.

• utils: various utilities for bytecode instrumentation and
manipulation, including a bytecode transformer that adds
exception-handling constructs to specified methods.

• reporters: a set of statistics calculators for computing
characterization metrics from an app execution trace.

All these components are based on Soot [2] using its Jimple
IR. The first four can work as standalone tools and are
extensible, which demonstrate how to readily write a dynamic
analysis tool using Soot and can be used as code templates
for that purpose. In particular, previous works that measured
statement coverage for Android apps relied on source code of
the apps. The utils component can be immediately reused for
building various Soot-based tools. A build file and all libraries
required are included in the artifact package. Also included are

scripts for running these tools, scripts for experimental data
analysis, and various other helper scripts (used to download,
install/uninstall, query, and launch APKs, etc.).

III. DATASET

Study results. The data directory (data) includes the raw
data of our study along with the results presented in the
research paper. The data on metrics in three dimensions
(General/Structure, ICC, and Security) is placed in the
respective folder. R scripts for producing final results from
the raw data in each folder are included accordingly. Each
raw data file is explained here, and the purpose of each R
script is explained here. A convenience script produceall.sh is
included under data for processing all the raw data at once.
Benchmark suites. Our study used two benchmark suites:
a suite of 125 individual apps and a suite of 62 app
pairs that actually communicate at runtime as quickly
triggered by random inputs from Monkey [4]. The first
suite can be readily downloaded from Google Play using
our helper scripts. The list of these apps is included (in
data/benchmarks/used-benig-apps-droidfax.txt).

The second suite is even more worthy of sharing because
finding a set of apps with dynamically communicating peers
is not trivial. This suite is particularly useful for evaluating
an inter-app dynamic analysis for Android. We have not
only provided the pairs but also the statistics on the ICCs
that linked them at runtime in our study (as detailed in
data/benchmarks/app-pair-statistics.html).
Characterization metrics. We defined a set of 122 metrics
in the three dimensions mentioned above. These metrics have
been used for discovering new insights into the behavioral
traits of Android apps in our study. Furthermore, they have
been utilized for developing advanced malware classifiers as
well (based on the behavioral profile, defined by these metrics,
of benign apps versus malware) [5]. These metrics (detailed
here) can be used by others for understanding app behaviors
and reused for future studies and techniques.

REFERENCES

[1] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of Android malware and Android analysis techniques,” ACM
Computing Surveys, vol. 49, no. 4, p. 76, 2017.

[2] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a Java bytecode
optimization framework,” in Cetus Users and Compiler Infrastructure
Workshop, 2011, pp. 1–11.

[3] H. Cai and B. Ryder, “Understanding Android application programming
and security: A dynamic study,” in Proceedings of International
Conference on Software Maintenance and Evolution, 2017.

[4] Google, “Android Monkey,” http://developer.android.com/tools/help/
monkey.html, 2015.

[5] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Unified dynamic
detection of Android malware,” Tech. Rep. TR-17-01, January 2017, http:
//hdl.handle.net/10919/77523.

https://www.dropbox.com/sh/au1rryjerxn9wmr/AAAodBGJDq-atOpdqg3Lte9-a?dl=0
http://chapering.github.io/droidfax/page_resultformat.html
http://chapering.github.io/droidfax/page_usage.html
http://chapering.github.io/droidfax/metricdef.pdf
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://hdl.handle.net/10919/77523
http://hdl.handle.net/10919/77523

