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Abstract—Program slicing is a popular but imprecise technique
for identifying which parts of a program affect or are affected
by a particular value. A major reason for this imprecision is
that slicing reports all program statements possibly affected by
a value, regardless of how relevant to that value they really are.
In this paper, we introduce quantitative slicing (q-slicing), a novel
approach that quantifies the relevance of each statement in a
slice. Q-slicing helps users and tools focus their attention first on
the parts of slices that matter the most. We present two methods
for quantifying slices and we show the promise of q-slicing for a
particular application: predicting the impacts of changes.

I. INTRODUCTION

A major problem of program analyses is their impre-
cision, manifested in an excess of false positives (false
alarms) or false negatives (missed targets) or both. Program
slicing [1] is one such analysis that is popular but also
quite imprecise [2]. Static (code-based) slicing often reports
too many potentially-relevant statements, whereas dynamic
(execution-based) slicing—a variant that trades completeness
for precision—can also produce many false positives [2], [3].

To increase the precision of static slicing by reducing the
size of slices, researchers have proposed combining static and
dynamic slicing (e.g., [4]) and pruning slices based on some
criterion (e.g., [5], [6]). However, these methods can suffer
from false positives and even false negatives. Other attempts
to improve this precision include better alias and points-to
analyses, which can reduce slice sizes to some extent.

To address the limitations of slicing, especially its static ver-
sion, we introduce in this paper quantitative slicing (q-slicing),
our umbrella project for assigning quantities to statements in
a slice, such as scores or probabilities. These quantities denote
the relevance of each statement in that slice to help users
and tools focus their attention first on the parts of the slice
that matter the most. For example, for change-impact analysis,
q-slicing points users to the most affected areas of the program
first so they can take major corrective actions early. Q-slicing
can also help tools prioritize regression-testing targets by their
likelihood of interaction with changes.

As with program analysis in general, we use two approaches
to computing quantitative slices (q-slices): a static and a
dynamic approach. We have developed one technique of each
type. Each technique has its own merits and has the potential
to complement the other. The first technique uses a proba-
bilistic model of dependence propagation to analyze the static
structure of the program [7]. The second technique applies

sensitivity analysis to program executions to dynamically
measure the degree to which statements in the program depend
on modifications to other statements.

In this paper, we discuss both techniques with an emphasis
on our new dynamic approach that combines sensitivity anal-
ysis and execution differencing. The results are encouraging.
Using our new sensitivity-analysis tool, we quantified the for-
ward static slices from various locations. The resulting scores
isolated with great precision, among all potentially-impacted
statements found by static slicing, the actual impacts observed
at runtime after making real changes in those locations.

The benefits of quantifying slices are many and can further
the adoption of program slicing in development tools. We al-
ready found that early change-impact analysis, in which users
assess the potential impact of changing a location before de-
signing the change, can become highly effective. Quantitative
forward slicing can also support regression testing, testability
analysis, and information-flow analysis. Meanwhile, quantita-
tive backward slicing can improve debugging, comprehension,
reverse engineering, and parallelization. Even dynamic slicing
can benefit from q-slicing, as dynamic slices are mediocre
approximations of true runtime dependencies [2], [3].

II. EXAMPLE

Consider the code fragment in Figure 1 for finding tangents
between circles. The forward static slice from c at line 2 con-
tains lines 2–11, which suggests that they might be affected by
c. However, c at line 2 strongly affects c*c at line 3 but less
strongly affects the branching decision in that line—variations
in c may or may not flip the branch taken. Therefore, because
c may or may not affect this decision, the remaining lines are
“less affected” than lines 2 and 3. Lines 6–11, however, also
use the value of c, which makes them “more affected” than
lines 4 and 5 (but still less affected than lines 2 and 3).

Q-slicing quantifies these differences among lines in the
slice. A q-slicing technique can give, for example, a score of
1.0 to lines 2 and 3, 0.5 to lines 4 and 5, and an intermediate
value 0.75 to the rest. The actual scores for these lines will
depend on the specific q-slicing technique used to quantify the
slice. We present two such techniques next.

III. STATIC QUANTIFICATION

Static quantification of program slices can be achieved by
analyzing the control- and data-flow structure of programs [7],
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1: for (sign1 = +1; sign1 >= -1; sign1 -= 2) {
2: c = (r1 - sign1 * r2) / d;
3: if (c*c <= 1.0) {
4: h = sqrt(d*d - pow(r1-sign1*r2),2)) / d;
5: for (sign2=+1; sign2>=-1; sign2-=2) {
6: nx = vx * c - sign2 * h * vy;
7: ny = vy * c + sign2 * h * vx;
8: print x1 + r1 * nx;
9: print y1 + r1 * ny;
10: print x2 + sign1 * r2 * nx;
11: print y2 + sign1 * r2 * ny; }}}

Fig. 1. Excerpt from a program that computes the tangents among circles.

[8]. The advantages of this approach are that no execution
data is required and the results represent all behaviors of the
program. The latter advantage is quite attractive for tasks like
testing because, no matter how many test cases have been
created, this approach points users to behaviors not tested yet.

Our static approach for q-slicing uses two key insights:
1) Some data dependencies are less likely to occur than

others because the conditions to reach the target from
the source of the dependence vary.

2) Data dependencies are more likely to propagate informa-
tion than control dependencies, yet control dependencies
should not be ignored either as in some existing work.

Using the first insight, we created a reachability and alias
analysis of the control flow of the program that estimates the
probability that the target of a dependence is reached from its
source and that both points access the same memory location.
Using the second insight, our approach performs another
reachability analysis, this time on the dependence graph, that
gives a lower but non-zero score to control dependencies.

We estimate the probability that a statement a affects a
statement b by computing two components: (1) the probability
that a sequence of dependencies from a to b occurs when
the program executes and (2) the probability that information
flows through that sequence. More details of this approach and
initial positive results are presented in [7], [8].

IV. DYNAMIC QUANTIFICATION

Given a representative test suite, we can quantify slices via
differential execution analysis [2] and sensitivity analysis [9].

A. Differential Execution Analysis

Differential execution analysis (DEA) is designed specifi-
cally for forward slicing from changes to identify the runtime
semantic dependencies [10] of statements on changes. Seman-
tic dependencies tell which statements are truly affected by
which other statements or changes. Although finding semantic
dependencies is an undecidable problem, DEA detects such
dependencies on changes when they occur at runtime to under-
approximate the set of semantic dependencies in the program.
Therefore, DEA does not guarantee 100% recall of semantic
dependencies but it achieves 100% precision. This is much
better than what dynamic slicing normally achieves [2], [3].

DEA works by executing a program before and after the
change, collecting the augmented execution history [2] of each
execution, and then comparing both histories. The execution

history of a program for an input is the sequence of statements
executed for that input. The augmented execution history is the
execution history annotated with the values read and written
by each statement occurrence. The differences between two
such histories reveal which statements had their occurrences
or values altered by a change—the conditions for semantic
dependence. A formal definition of DEA is given in [2].

B. Sensitivity Analysis

DEA can be used to quantify static forward slices when
the change is known—for post-change impact analysis. To
do this, a DEA-based q-slicing technique can execute the
program repeatedly with and without the change for many
inputs and find, for each statement, the frequency with which
it is impacted by the change. If the inputs are sufficiently
representative of the program’s behavior, we can use these
frequencies as the quantities for the statements in a q-slice.

More generally, however, the specifics of a change might
not be known when a user asks for the impacts of modifying
a statement or when the slicing task does not involve a
change (e.g., debugging, information-flow analysis). For such
situations, we created SENSA,1 a new sensitivity-analysis tech-
nique and tool for slice quantification and other applications.
Sensitivity analysis is used in many fields to determine how
modifications to some aspect of a system (e.g., an input) affect
other aspects of that system (e.g., the outputs) [9].

We designed SENSA as a generic modifier of program states
at given locations, such as changes or failing points. SENSA
inputs a program P , a test suite T , and a statement c. For each
test case t in T , SENSA executes t repeatedly, replaces each
time the value(s) computed by c with a different value, and
uses DEA to find which statements were affected by these
modifications. With this information for all test cases in T ,
SENSA computes the sensitivity of each statement s in P to
the behavior of c by measuring the frequency with which s is
affected by c. These frequencies are the degree of dependence
on statement c of all statements s in P , given T .

For a forward static slice from statement c in program
P , SENSA uses T to quantify the dependence on c of the
statements in that slice. For a backward static slice from
s, SENSA can be used in a similar fashion to quantify the
dependence of s on selected statements c from that slice.

SENSA is highly configurable. In addition to parameters
such as the number of times to re-run each test case with a
different modification (the default is 20), SENSA lets users
choose among built-in modification strategies for picking new
values for c at runtime. Furthermore, users can add their own
strategies. SENSA ensures that each new value picked for
c is unique, to maximize diversity while minimizing bias.
Whenever a strategy runs out of possible values for a test case,
SENSA stops and moves on to the next test case. SENSA offers
three modification strategies from which the user can choose:

1) Random: A random value is picked within a specified
range. By default, the range covers all elements of the

1SENSA is available for download at http://nd.edu/~hcai/sensa/html

1270



TABLE I
SUBJECTS AND OVERALL RESULTS FOR STUDY OF CHANGE-IMPACT PREDICTION USING SENSA FOR Q-SLICING

Subject Description Lines of Test Changes Average Average impact-prediction cost (% of ranking)
code cases studied slice size ideal slicing SENSA-rnd SENSA-inc SENSA-obs

Schedule1 priority scheduler 290 2650 7 63% 37.1% 45.2% 38.4% 38.3% 38.4%
NanoXML XML parser 3497 214 7 52% 7.8% 24.6% 9.9% 10.7% —
XML-security encryption library 21613 92 7 73% 5.7% 35.8% 12.0% 12.5% —

value’s type except for char, for which only readable
characters are picked. For some reference types such as
String, objects with random states are picked. For all
other reference types, the strategy currently picks null.2

2) Incremental: A value is picked that diverges from the
original value by increments of i (the default is 1.0).
For example, for a value v, the strategy first picks v+ i
and then picks v − i, v + 2i, v − 2i, etc. For common
non-numeric types, the same idea is used. For example,
for string foo, the strategy picks fooo, fo, foof, oo, etc.

3) Observed: First, the strategy collects all values that c
computes when running T on P . Then, the strategy picks
iteratively from this pool the new value at c. The goal is
to ensure that values remain meaningful to the program.

C. Preliminary Evaluation

We compared the q-slices produced by SENSA with context-
insensitive static forward slices for predicting change impacts
at various program locations. The scenario is early change-
impact analysis, in which users query for the potential impacts
of changing a location without necessarily knowing the details
of the change yet. Our research questions were:

RQ1: How good is q-slicing at predicting impacts?
RQ2: How good is q-slicing for different usage budgets?
RQ3: How expensive is SENSA for q-slicing?
The first and second questions address the benefits of

q-slicing overall and per slice-inspection effort. The third
question targets the practicality of SENSA.

1) Setup: SENSA extends DUA-FORENSICS [11], our
analysis and monitoring tool for Java bytecode programs.
For this study, we chose three Java subjects from the SIR
repository [12] for which many test cases and changes (bug
fixes) are provided. Table I lists these subjects along with short
descriptions, sizes, test suites, changes used, and average sizes
of their slices as percentages of the respective subject sizes.

2) Methodology: We first applied SENSA and static for-
ward slicing to the locations of the changes to reproduce
the scenario in which users query for the consequences that
changing those locations would have. Then, for each q-slice
given by SENSA, we ranked its statements from greatest to
lowest score. For comparison, we also ranked the static slices
using Weiser’s approach [1] by visiting statements in breadth-
first order from the change location and sorting them by
increasing visit depth. For tied statements in a ranking, we
used as their rank the average of their positions in that ranking.

To assess and compare the predictive power of the rankings
given by q-slicing via SENSA and Weiser’s slicing, we applied

2We are developing a method to instantiate most types with random states.

the changes, one at a time, to the corresponding location
in its subject. Then, for each change, we used DEA on the
unchanged and changed subject to find the statements actually
impacted when running all test cases for that subject. Using
these actual impacts, we calculated how closely each ranking
predicted those impacts. For each ranking and each impacted
statement found by DEA, we determined the percentage of the
slice that would have to be traversed, in the ranking’s order, to
reach that statement. We call this percentage the cost of finding
an actually-impacted statement using that ranking. Then, we
computed the average cost of finding all actual impacts for
each ranking—the lower this cost is, the better the technique
that produced that ranking is at predicting impacts.

Also, to assess how close to the best possible result each
ranking was, we created the ideal ranking by placing all
actually-impacted statements at the top of that ideal ranking.

3) Results and Analysis: The last five columns of Table I
present the average cost, for each subject and the seven
changes in that subject, of five rankings: the ideal ranking,
the slicing ranking (using Weiser’s traversal), and the rankings
for SENSA and its three strategies: rnd (Random), inc (Incre-
mental), and obs (Observed). For some changes in NanoXML
and XML-security, SENSA-obs was not applicable as only one
value at the change was observed at runtime and, thus, SENSA
could not find a different value to replace it. In consequence,
we omitted the SENSA-obs results for those subjects.

RQ1: The ideal cost for Schedule1 in Table I reveals that, on
average, more than a third of the statements in the slices were
actually impacted, in contrast with the two other subjects, for
which less than 10% of the statements in their slices were
impacted. For Weiser’s slicing, the prediction costs ranged
between 25–45%, whereas SENSA was remarkably closer
to the ideal predictions at 10–38%. All SENSA strategies
exhibited similar costs when applicable. In all, SENSA for
q-slicing seems much better overall than simple program
slicing (Weiser’s traversal) at predicting actual impacts.

RQ2: Because slices can be large, if users cannot explore
the entire slice, we expect that they will inspect each ranked
slice from the top. The graphs of Figures 2 for NanoXML
and 3 for XML-security—the two largest subjects—show, on
average for all changes in the subject, the percentage of the
actual impacts found (Y axis) for each percentage of the
ranked slice inspected (X axis). For example, at 10% of the
traversal for NanoXML, on average, the ideal ranking finds
75% of the actual impacts while the slicing predictions find
only 33%. The SENSA predictions, in contrast, find 66–67%
of those impacts, suggesting that SENSA is not only better
overall (RQ1) but is also especially good for the portions of
the rankings that users and tools would inspect first.
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Fig. 2. Effectiveness of slicing per inspection effort for NanoXML.

RQ3: We run our experiments on an Intel Core i5 quad-core
machine with 8GB RAM and 64-bit Linux. The average time
taken by SENSA for all changes in our subjects ranged from
303 to 493 seconds. The runtime overhead of executing the
entire test suites for the instrumented subjects ranged between
32–63%. We consider these costs acceptable. There is also
plenty of room for optimizations in our implementation.

V. RELATED WORK

A few other techniques discriminate among dependencies
within slices. Two of them [5], [13] work on dynamic back-
ward slices to estimate influences on outputs, but do not
consider coverage probabilities as we do. These techniques
could eventually be compared with q-slicing after we develop
backward variants. Also for backward analysis, the work
of [14] models the behavior of dependencies statistically and
thin slicing [6] prunes control dependencies incrementally.

Sensitivity analysis has been used in software engineering to
analyze requirements and components (e.g., [15]). For other
tasks, however, only restricted forms of sensitivity analysis
have been used, such as mutation analysis and mutation
testing [16]. Mutation testing changes code in many loca-
tions to simulate common programming errors for test-suite
assessment, whereas our approach systematically modifies the
program state at one point to find as many impacts as possible.

VI. CONCLUSION AND FUTURE WORK

Quantitative slicing promises significant increases in the
usefulness of program slices. Rather than pruning statements
from slices, q-slicing grades statements according to their rel-
evance in a slice. In this paper, we discussed two approaches,
including a novel dynamic technique, for computing relevance
scores. More techniques can be added under the umbrella of
q-slicing. The possibilities are many for quantifying slices
in better ways and for improving other applications, such as
debugging. Q-slicing is an emerging, rich, and open field.

We are adding dynamic slicing to our comparisons. We
are also extending our studies to more subjects and changes.
Moreover, we are developing a visualization tool for q-slices
to improve our own understanding of the overall approach and
specific techniques. Using this tool, we will also study how
developers take advantage in practice of quantitative slices.
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Fig. 3. Effectiveness of slicing per inspection effort for XML-security.

Slightly farther in the future, we foresee adapting q-slicing
to quantify other important tasks, such as debugging, com-
prehension, mutation and interaction testing, and information-
flow analysis. More generally, we see q-slicing’s scores as
abstractions of states and interactions among those states.
Those scores can be expanded to multi-dimensional values
or data structures and reduced to discrete sets on demand.
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